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Abstract: Some public-key cryptosystems based on the tropical semiring have been proposed in
recent years because of their increased efficiency, since the multiplication is actually an ordinary
addition of numbers and there is no ordinary multiplication of numbers in the tropical semiring.
However, most of these tropical cryptosystems have security defects because they adopt a public
matrix to construct commutative semirings. This paper proposes new public-key cryptosystems
based on tropical circular matrices. The security of the cryptosystems relies on the NP-hard problem
of solving tropical nonlinear systems of integers. Since the used commutative semiring of circular
matrices cannot be expressed by a known matrix, the cryptosystems can resist KU attacks. There
is no tropical matrix addition operation in the cryptosystem, and it can resist RM attacks. The new
cryptosystems can be considered as a potential post-quantum cryptosystem.

Keywords: cryptographic algorithm; key exchange protocol; public-key encryption scheme; tropical
algebra; tropical circular matrices

1. Introduction

Public-key cryptography was introduced by Diffie and Hellman [1]. In a public-
key cryptosystem, the key for encryption is public and the key for decryption is private.
Since then, public-key cryptography has been booming and has been widely used in
modern communications. Modern public-key cryptography relies mainly on the integer
factorization problem (IFP) [2] and discrete logarithm problem (DLP) [1,3]. However,
Shor [4] proposed a quantum algorithm that can solve the integer factorization problem
and discrete logarithm problem in polynomial time on a quantum computer. So, it is
a research area focused on public-key cryptography to design public-key cryptosystems
that can resist quantum attacks [5].

In the past two decades, different algebraic structures have been recommended
to improve the existing public-key cryptosystems. Some researchers considered non-
abelian groups to design public-key cryptosystems such as matrix groups [6-9], braid
groups [10,11], inner automorphism groups [12], and ring structures [13] for cryptographic
primitives. However, many successful attacks on such cryptosystems have been pub-
lished [14-17].

Maze, Monico, and Rosenthal proposed one of the first cryptosystems based on semi-
groups and semirings [18], using some ideas from [10], as well as from their previous
article [19]. However, it was broken by Steinwandt et al. [20]. Atani published a cryptosys-
tem using semimodules over factor semirings [21]. Durcheva applied some idempotent
semirings to construct cryptographic protocols [22]. A survey on semirings and their
cryptographic applications was carried out by Durcheva [23].

Grigoriev and Shpilrain proved that the problem of solving the systems of min-plus
polynomial equations in tropical algebra is NP-hard and suggested using a min-plus
(tropical) semiring to design a public-key cryptosystem [24]. An obvious advantage of
using tropical algebras as platforms is high efficiency because, in tropical schemes, one
does not have to perform any multiplication of numbers since tropical multiplication is the
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usual addition. However, “tropical powers” of an element exhibit some patterns, even if
such an element is a matrix over a tropical algebra. This weakness was exploited by Kotov
and Ushakov to propose a fairly successful attack on the public-key cryptosystem in [25].
Then, Grigoriev and Shpilrain improved the original scheme and proposed the public-
key cryptosystems based on the semi-direct product of the tropical matrix semiring [26].
However, some attacks on the improved public-key cryptosystem have been suggested by
Rudy and Monico [27] and Isaac and Kahrobei [28]. As we know, most of these tropical
public-key cryptosystems have security defects because they adopt a public matrix to
construct commutative semirings or there is a tropical matrix addition operation in the
cryptosystems. A review of the tropical approach in cryptography was carried out by
Ahmed, Pal and Mohan [29].

Our contribution: This paper provides new public-key cryptosystems based on tropi-
cal t-circular matrices. The security of the cryptosystem relies on the NP-hard problem of
solving tropical nonlinear systems of integers. Since the used commutative semirings of
circular matrices cannot be represented by a known matrix and there is no tropical matrix
addition operation in the cryptosystem, these cryptosystems can resist all known attacks
such as KU attacks and RM attacks. Our results show that these cryptosystems are secure
when the computational two-side tropical circular matrices action problem (CTCMAP)
and the decisional two-side tropical circular matrices action problem (DTCMAP) are hard.
It seems that our cryptosystems based on tropical circular matrices can be considered as
potential post-quantum cryptosystems.

The rest of the paper is organized as follows: We focus on some definitions as funda-
mental key notions of tropical matrix algebra in Section 2. In Section 3, we present the new
public-key cryptosystems based on tropical circular matrices. Then, in Section 4, parameter
selection and efficiency of the cryptosystems are discussed. Finally, the conclusion and
further research are given in Section 5.

2. Tropical Matrix Semiring over Integer

The definition of a semiring was first given by Vandiver [30]. These are structures that
satisfy all the properties of a ring, except for the existence of additive inverses. Imre Simon,
a Brazilian mathematician and computer scientist, discovered what is now known as the
tropical semiring [31].

Definition 1. ([32]) Let R be a non-empty set with binary operations “+” and “-”; then, R is called
a semiring if it satisfies the following conditions:
(1) (R, +) is a commutative semigroup with an identity element 0;
(2) (R, -) is a semigroup with an identity element 1 % 0;
(8)  Multiplication satisfies the left and right distribution law for addition;
4) (Va€eR)a0=0a=0.
If (R, -) is commutative, then the semiring is called a commutative semiring.

Definition 2. ([24]) The integer tropical commutative semiring is the set Z = 7 U {oo} with
addition and multiplication as follows:

(Vx,y € Z)x®y =min(x,y), xQy=x+y.
oo satisfies the following equations:
(Vx € Z)ooBx =x, c0®@x = 00.

It is clear that(Z, &, ®) is a commutative semiring whose zero element and unitary element are oo
and 0, respectively.
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Let My (Z) be the set of all k x k matrices over Z. We can also define the tropical matrix ®
and © operations.

n
(VA = (aij)kxk’B = (bij)kxk € Mk(Z)>A€BB = ({Ill']' EBbij)ka,A®B = (Zail ®b1]>
kxk

(& DY
& Do -(+3
(e -2 )

Let t be an integer. If a matrix A has the following form,

Example 1.

ag A1 @t ap ., @t -+ a1t

ay ap A1 @t -+ aa @t

A= ap a ag e a3t
-1 ak—2 k-3 Ao

then it is called an upper t-circular matrix. We denote A by [ag, a1, - -, ak_ﬂ]t{ orlap,ar,- -, ak_l]t.
Let Ct = {A € Mi(Z)|A is upper t—circular matrix}.

Proposition 1. For any integer t, CL is a commutative sub-semiring of My(Z).

3. Public-Key Cryptography Using Tropical T-Circular Matrices
3.1. Key Exchange Protocol Based on Tropical Circular Matrices

Definition 3. Let s and t be two integers. Let P € C;, Q € Cf, and Y € M(Z)\(C; UCY).
Suppose that N = PY Q. The two-side tropical circular matrix action problem (TCMAP) is to find
two matrices P € C;, Q € C,tc such that N = PYQ, given the matrices N and Y.

Protocol 1. Let k, s, t be three positive integers. Let Y € My(Z)\(C; U C}). In addition, k, s, t
and Y are public.

(1)  Alice selects at random two matrices Py € C} and Qy € C!, and computes K, = P,YQq. In
addition, she sends to Bob the matrix K,,.

(2)  Bob selects at random two matrices P, € C} and Q € C,t(, and computes K, = P,Y(Qy. He
sends to Alice the vector K.

(8) Alice computes K = Py K, Q1. In addition, Bob computes K = P,K;Q».
Since C} and Cf{ are commutative sub-semirings of My(Z), we have PP, = PPy,

Q1Q2 = Q2Qq and
PiK,Q1 = P1(P2YQ2)Q1 = (P1P2)Y(Q2Q1) = (P2P1)Y(Q1Q2) = P2(P1YQ1)Q2 = 2K, Q2

Then, Alice and Bob share a secret key K.

Definition 4. Let k,s,t be three positive integers. Let P;,P» € Ci, Q1,Q2 € C,i and
Y € Mi(2)\(C; UC}). Suppose that K, = PiYQq and K, = P,YQ,. The computational
two-side tropical circular matrix action problem (CTCMAP) is to find a matrix K € My(Z) such
that K = P1P,YQ1Qy, given the matrices Ky, Ky and Y.

Proposition 2. An algorithm that solves TCMAP can be used to solve CTCMAP.
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Theorem 1. Finding the common secret key from the public information of Protocol 1 is equivalent
to solving CTCMAP.

We give a practical example of Protocol 1 with small parameters in Appendix A.

Remark 1. Protocol 1 is simplified. It can only resist passive attacks, but not active attacks, such
as intruder-in-the-middle attacks. To avoid these attacks, it is desirable to have a procedure that
authenticates Alice and Bob’s identities to each other while the key is being formed. A standard
way to stop an intruder-in-the-middle attack is the station-to-station (STS) protocol, which uses
digital signatures.

The extended protocol makes use of certificates that, as usual, are signed by a TA (trusted au-
thority). Each user U will have a signature scheme with a verification algorithm Very and a signing
algorithm Sigy;. The TA also has a signature scheme with a public verification algorithm Verta.
Each user U has a certificate

Cert(U) = (ID(U), Very, Sigra (ID(U), Very)),

where ID(U) is certain identification information for U.

Protocol 2. The public domain parameters consist of k,s,t and Y as Protocol 1.

(1) Alice selects at random two matrices Py € Cj and Qq € Ct, and computes K, = P;YQj.
She sends Cert(A) and K, to Bob.

(2) Bob selects at random two matrices P, € C; and Q, € C}, and computes

Ky = PYQs, K= PKsQy = PoP1YQ1Qo, yp = sigg(ID(A)||Kp||Ka)-

Then, Bob sends Cert(B), Ky, and y;, to Alice.
(3) Alice verifies y, using Verp. If the signature y, is not valid, then she “rejects” and quits.
Otherwise, she “accepts” and computes

K = PiKyQ1 = Pi1P,YQ>Q1, ya = sigy (ID(B)||Ka|[K}),

and she sends y, to Bob.
(4) Bob verifies y, using Vera. If the signature y, is not valid, then he “rejects”; otherwise,
he “accepts”.

3.2. Public-Key Encryption Scheme Based on Tropical Circular Matrices
Cryptosystem 1.

(1) Key generation: Let k, s, t be three positive integers. Let P, € C}, Q1 € C,t{ and
Y € Mi(Z2)\(C; UC}). Suppose that K, = P;YQ;. k,s,,Y are public. Alice’s public
key is K,. Alice’s secret key is P;, Q1.

(2) Encryption: Bob wants to send a message M € M (Z) to Alice.

(1) Bob chooses at random P, € Ci, Q2 € C,i and computes R = P,YQ, as a part
of the ciphertext.

(ii) Bob computes S = M + P,K,; Q7 as the rest of the ciphertext, where “+” is the
ordinary integer matrix addition.

(iii)  Bob sends the ciphertext (R, S) to Alice.

(3) Decryption: Alice receives the ciphertext (R, S) and tries to decrypt it.

(i) Using her secret key P, Q1, Alice computes T = P;RQ;.
(i)  Alice computes S — T, where “—" is the ordinary integer matrix subtraction.
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Since

S-T =M+ PK;Q2 — PIRQq
=M+ P (P1YQ1)Q2 — P1(P2YQ2)Q1
=M+ PPYQ1Q2 — P1P2YQ2O1
=M+ PPYQ1Q2 — PP YQ1Q2
- M,

Alice obtains the plaintext messages M.

Definition 5. Let k,s,t be three positive integers. Let P;,P» € Ci, Q1,Q2 € C,t( and
Y,E € M(Z2)\(CUC}). Suppose that K, = PiYQq and Ky = PYQ,. The decisional
two-side tropical circular matrix action problem (DTCMAP) is to decide whether E = P1P,Y(Q1Qo,
given Y, Ky, Ky, E.

Proposition 3. An algorithm that solves CTCMAP can be used to solve DTCMAP.

Theorem 2. An algorithm that solves DTCMAP can be used to decide the validity of the ciphertexts
of Cryptosystem 1, and an algorithm that decides the validity of the ciphertexts of Cryptosystem 1
can be used to solve DTCMAP.

Proof of Theorem 2. Suppose first that the algorithm .4; can decide whether a decryption
of Cryptosystem 1 is correct. In other words, when given the inputs Y, K, (R, S), M, the
algorithm A; outputs “yes” if M is the decryption of (R, S) and outputs “no” otherwise. Let
us use A; to solve the decisional two-side tropical circular matrix action problem. Suppose
you are given Y, K, (= P;YQ1), Ky(= P,YQ7) and E, and you want to decide whether or
not E = P1P,Y(Q1Qy. Let K, be the public key and R = K}, be the first part of the ciphertext.
Moreover, let S = E be the second part of the ciphertext and M = Oy be the zero matrix in
My (Z). Input all of these into 4. Note that, in the present setup, P;, Q; are the secret keys.
The correct decryption of (R, S) is S — PjRQ; = E — PiP,YQ1 Q5. Therefore, A; outputs
“yes” exactly when M = 0 is the same as E — P; P,YQ1Q», namely, when E = P; P,Y(Q1 Q5.
This solves DTCMAP.

Conversely, suppose an algorithm A, can solve DTCMAP. This means that if you give
Aj inputs Y, K, (= P1YQ1), Ky(= P,YQ,) and E, then A; outputs “yes” if E = PP, YQ1Q>
and outputs “no” if not. Let M be the claimed decryption of the ciphertext (R, S). Input the
public key K, and input R = P,Y(Q; as K;. Input S — M as E.

Note that M is the correct plaintext for the ciphertext (R,S) if and only if
M =S —-PRQ; = S — P1P,YQ1Q, which happens if and only if S — M = PP, YQ1Q».
Therefore, M is the correct plaintext if and only if E = Py P,Y(Q;Q>. Therefore, with these
inputs, A outputs “yes” exactly when M is the correct plaintext. J

4. Security and Parameter Selection

Through Theorem 1, Proposition 3, and Theorem 2, an efficient algorithm for solving
the two-side tropical circular matrix action problem can be used to attack Protocol 1 and
Cryptosystem 1.

Proposition 4. TCMAP can be reduced to the problem of solving a tropical nonlinear system
of equations.

Proof of Proposition 4. Let P € Cj, Q € Cl and Y € M;(Z)\(C; UCL). Suppose that
N = PYQ. Now, we can try to find two matrices, P € S; and Q € Sy, such that N = PY(Q,
given N and Y.

Suppose that P = [xq, x1,- -, x¢_1)° and Q = [yo,y1, - , yk_1]'. Then,

[xo,x1, e 1 Y-[yo,yr, - ye1] =N
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Since Y and N are known, we obtain a tropical nonlinear system of equations about
X0, X1, , Xk—1, Y0, Y1, -+ »Yk—1 With 2k unknowns and k2 equations. [

As we know, the problem of solving a tropical nonlinear system of equations is usually
NP-hard [24]. We present an algorithm for solving the two-side tropical circular matrix
action problem with exponential computational complexity.

Proposition 5. There exists an algorithm for solving the two-side tropical circular matrix action

2
problem with computational complexity O (k4 + 6k <12{k) ) .

Proof of Proposition 5. With Proposition 4, we obtain a tropical nonlinear system of
equations about xq, x1, - -, yx_1 with 2k unknowns and k? equations. Note that every
term of the equations is the form of XiYj (#,j = 0,1,--- ,k—1). Denote zg = xgyo,
Z1 = XoY1,"* ,Z2 = Xk_1Yx—1. Then, we obtain a tropical linear system of equations
with k? unknowns z; and k? equations.

After solving the tropical linear system of equations of z;, we can obtain a system of
nonlinear equations

XoYo = 20, XoY1 = 21, "+ s Xk—1Yk—1 = Zg2

Since multiplication in tropical algebra is an ordinary addition, it is actually a system
of linear equations over an integer ring. The linear equations have 2k unknowns and k?
equations. Generally, the system of linear equations has no solution. However, if the
2k equations in these k2 equations have a solution, it is possible to find xg, x1, - - -, yx_1
such that
[x0,x1, -, 1] Y-[yo, y1, -+, yea)' = N.

Using the algorithm in [33], the complexity of solving the tropical linear system
of equations with k?> unknowns z; and k? equations is O(k*). The number of possible

2
choices for selecting 2k equations from k? equations is (lzck

integer linear equations with 2k equations and 2k unknowns is O((2k)?). Therefore, the

2
computational complexity of the above algorithm is O (k4 + 6Kk (k ) ) .0

) . The complexity of solving

2k
An example of solving TMCAP with small parameters is given in Appendix B.

4.1. KU Attack

Because the commutative semiring used in our cryptosystems is the semiring
of all t-circular matrices, this is different from that of Grigoriev and Shpilrain’s
public-key cryptosystem I [24]. They used two public tropical matrices M;, M and
(MiM; # Mp;M;) and then adopted the commutative semiring Z[M;], Z[M;]. Let
p1(M1) € Z[Mi], p2(Mp) € Z[M;] and p1(M1)Yp2(Mz) = U. The security of their
cryptosystem relies on the difficulty of the problem of finding S; € Z[M;] and S, € Z[My]
such that 51YS; = U. (Note that S; may not be equal to p;(M;) and S, may not be equal to
p2(Myz).) Because the secret matrix can be represented by a polynomial of M;, M, Kotov
and Ushakov [25] designed an efficient algorithm to attack the key exchange protocol

in [24]. Suppose that
D . D .
S1 =) xMj, S =) yMp,
i=0 i=0
where unknowns x;,y; € Z, and D is the upper bound for the degree of polynomials.

D L
51YS; = U gives ), x,-ijiYM]z = U. This translates to
i=0

min(x; +y; + T;é) =0,Vl1<rs<k
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where T = M’l YM]é — U. A specific description of KU attack is presented as Algorithm 1.

Algorithm 1: KU Attack algorithm
Input: My, My, U(= p1(M1)Yp2(Mz)).
D . D .
Output: x1,---,xp,y1, - ,yp,such that 5;YS, = U, where S; = Y x;M], So = ¥ y;M5.
i=0 i=0

(1) Compute m;; = rr}}n(T;]) and P;j = {(r,s)

T = mzj};
(2) Among all minimal covers of {1,2,---,k} x {1,2,- -+, k} by P;j, that s, all minimal subsets
cc{o,1,---,D} x{0,1,---,D} such that
U P.={1,2-,k} x{1,2,--,k
P b )

find a cover for which the system

{ X; +y] = —mjj, if (l,]) eC

X +y]‘ > —mjj, if (i,j) ¢ C

is solvable.

Experimental results show that the attack algorithm can succeed in a short amount of
time when the parameters are small (k < 40, D < 40, and the entries of matrices and the
coefficients of polynomials are integers in [—-10'?, 101]).

Since tropical f-circular matrices cannot be represented by a known matrix, our cryp-
tosystem can resist KU attacks.

4.2. RM Attacks

Grigoriev and Shpilrain [26] improved the original scheme and proposed a public-
key cryptosystem based on the semidirect product of the tropical matrix semiring. Let
S = (My(Z),®, ®) be the tropical semiring of k x k tropical matrices over Z. It can be seen
that S x S is a semigroup under the operation o given as

(V(My, Hy), (Ma, Hy) € S % S)
(My, Hy) o (My, Hy) = ((My & Hy & My ® Hp) & My, Hy @ Hy & Hy ® Hp).

Using the semigroup (S x S, o), Grigoriev and Shpilrain proposed an improved tropi-
cal public-key cryptosystem. However, cryptanalysis of the improved tropical public-key
cryptosystem was successfully implemented using a simple binary search by Rudy and
Monico [27]. A partial order on S is defined as

(VX,Y € S)X < Yifxij < Yij Vi,j S {1,' .. ,k}

It can be easily observed that for the operations o, if (M, H)" is denoted by (M,, H,),
then the sequence {Mp} is monotonically decreasing, i.e., M1 > My > M3 > - -+ and so
on. Algorithm 2 gives the pseudocode description of RM attack.

Algorithm 2: RM Attack algorithm

Input: M, H, A € S, where (M, H)" = (A, H™), for some positive integer m (1 < m < 7).
Output: m.
(1) Letleft =1 and right =r;
(2) Execute the following loop when left < right.
(i) mid = left 4 (right — left)/2
(ii) Compute (M, H)" = (P, Q).
If P < A, right = mid — 1,
IfP> A, left =mid+1;
If P = A, output m = mid.

In our cryptosystems, there is no tropical matrix addition operation @ and the partial
order cannot be used. Thus, our cryptosystems can resist RM attacks. We compare the
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security among relevant cryptosystems in [24,26] and our proposed cryptosystem. The
comparison results are depicted in Table 1.

Table 1. Comparison among relevant tropical schemes.

Schemes Mathematical Problems KU Attack RM Attack
Grigoriev et al. [24] Two-side matrix action problem X Vv
Grigoriev et al. [26] Semidirect product problem v X

Our scheme Two-side tropical circular matrix action problem Vv Vv

Note that / means that the scheme can resist the corresponding attack, while x means it does not.

4.3. Parameter Selection

Table 2 shows the performance comparison of the cryptosystem under some different
parameters, where the entries of the matrices are integers in [0,2%4).

Table 2. Performance comparison under some different parameters.

k Size of sk (kB)  Size of pk (kB) Complexity of Solving TCMAP
10 0.0781 0.7813 0(281)
20 0.1563 3.1250 0(2'%)
30 0.2344 7.0313 0(2331)
40 0.3125 12.5000 0(2472)
50 0.3906 19.5313 0(2620)
60 0.4688 28.1250 0(277%)

Note that “sk” means secret key and “pk” means public key.

In Table 3, we list the computation time for related cryptographic operations in our
cryptosystem on different platforms, where k = 50, s = = 100101, and the entries of the
matrices are integers in [0,264).

Table 3. Timings for cryptographic operations in our cryptosystem.

Experimental Platform Key Generation Encryption Decryption
Intel (R) i7-8550 1.80 GHz 0.984 s 1.018 s 0.513 s
Intel (R) i5-5200 2.20GHz 0.624 s 0.59%4 s 0.297 s
Intel (R) i7-4700 2.40GHz 0.363 s 0.346 s 0.187 s

We recommend using the parameters k > 50, s, € (0,2%2), and the entries of the
matrices of integers in [0,2%*) to avoid potential heuristic attacks similar to KU attacks.

5. Conclusions and Further Research

In this paper, we present a new key exchange protocol and a new public-key encryption
scheme based on tropical matrices. We use a class of tropical commuting matrix, that is, the
tropical t-circular matrix, other than matrix powers or matrix polynomials. The security of
new public-key cryptosystems relies on a two-side tropical circular matrix action problem
(TCMAP). The use of t-circular matrices allows us to share less information with the
attacker. Since tropical circular matrices cannot be represented by a known matrix, our
public-key cryptosystems can resist KU attacks. There is no addition of tropical matrices
in our schemes. So, the attack method proposed by Rudy and Monico does not work for
our public-key cryptosystems. Our public-key cryptosystem can resist all known attacks.
As we know, the best way to solve TCMAP is to solve a tropical nonlinear system of
equations, which is NP-hard. So, the new cryptosystems can be considered as a potential
post-quantum cryptosystem.

Future works worth studying include the following:
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(1) A possible algorithm for solving TCMAP. If we can find some algorithms for solv-
ing the systems of min-plus polynomial equations, then they can be used to attack
our schemes.

(2)  Other cryptographic applications of TCMAP. For example, we can try to design digital
signature schemes and identity authentication schemes based on TCMAP.
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Notations

In this paper, the matrix is generally denoted by capital letters. Frequently used notations are
listed below with their meanings:

Z set of integers;

Z tropical semiring of integers Z U {co};

M (2) set of all k x k tropical matrices over Z;

C set of all k x k tropical upper t-circular matrices over Z;
TCMAP two-side tropical circular matrix action problem;

CTCMAP  computational two-side tropical circular matrix action problem;
DTCMAP  decisional two-side tropical circular matrix action problem.

Appendix A. An Example of Protocol 1 with Small Parameters

We choose the parameters k = 5 and s = t = 9361 and the entries of the matrices in
[0,215). The public matrix Y is as follows:

8630 29,391 21,921 18,968 25,014
15,306 5461 18,973 800 1786
Y=| 7986 27,430 22,510 11,233 30,900 (,
2398 6071 25,269 27,186 4328
18,306 10,527 16,873 11,565 9569

(1)  Alice selects at random two f-circular matrices Py, Qq as follows:
P, = [297,21,730, 15,290, 10,135, 19,522]%¢!

Q1 = [21,654, 19,077, 27,810, 23,876, 1267)7¢!
Alice computes K, = P;YQ;. She sends the matrix K, to Bob.

26,578 19,555 38,342 32,846 29,893

3350 25,959 16,386 21,160 11,725

K, =|24,783 18,911 30,607 33,184 22,158
5892 13,323 16,996 23,702 26,279

11,133 29,231 21,452 27,798 21,563
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Bob selects at random two t-circular matrices P, Q> as follows:

P, = [1059 4901 20, 575 21,400 4378] ¢!

Q, = [8556 14,895 30,549 31,378 15, 257] ¢!

Bob computes K, = P,Y(QJ>. He sends the matrix K; to Alice.

18,245 27,756 29,434 23,095 24,081
18,102 15,076 16,754 10,415 11,401
Ky, = 117,601 18,918 20,596 14,257 15,243
12,013 15,686 31,029 20,282 13,943
15,855 19,528 26,488 21,180 17,785

Alice computes K = P;K; Q1. Bob computes K = P K;Q».

25,645 29,170 38,681 40,359 34,020
12,965 29,027 26,001 27,679 21,340
K= 116,807 28,526 29,843 31,521 25,182
15,507 22,938 26,611 33,317 31,207
19,349 26,780 30,453 37,159 31,178

Appendix B. An Example of Solving TMCAP with Small Parameters

We choose the parameters k = 3 and s = ¢ = 23 and the entries of the matrices in
[0,100]. The public matrix Y is as follows:

81 24 82
Y=1|5 52 98],
3 2 69

Alice selects at random two t-circular matrices P;, Q7 as follows:
P, = [0831]%, Q; = [6806]%.
Alice computes K; = P;Y(Q;. She sends the matrix K, to Bob.
24 63 53
K,=132 34 28|,
2 32 26

The attacker knows k, t, Y and obtains K. They try to find P; and Q.
Let Py = [xg x; x2]” and Q1 = [yoy1 ¥2)”. Then,

81 24 82 24 63 53
oxixa]® [ 5 52 98 |[yoyaval® = (32 34 28] (4).
3 2 69 2 32 26

From it, they can obtain the tropical linear equations,
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81xpyo @ 24xpy1 @ 82xpy2 @ 26x1Yp D 25x1Yy1 D 92x1Yy2 @ 28x2y0 D 75x2y1 D 121xy, = 24
24x0y0 © 82x0y1 D 124x0y2 D 25x1y0 D 92x1y1 D 49x1y2 B 75x2y0 ® 121x2y7 & 51xoy2 = 63
82xgyo D 124x0y1 D 47x0Yy2 D 92x1Yy0 D 49x1y1 © 48x1y2 ® 121xy9 B Slxoy; B 9I8x2y2 = 53

5X0y0 ) 523(0]/1 b 98x0y2 [e2) 81X1y0 (&) 243(1]/1 ) 82x1y2 (o) 26XZ}/0 (&) 253(2y1 ) 92)(2y2 = 32

52xp10 @ 98xpy1 @ 28x0y2 @ 24x1Yy0 D 82x1Yy1 © 124x1y2 B 25xy0 B 92x2211 ©49x0y2 = 34
98xp10 @ 28x011 D 75x0y2 D 82x1Yy0 D 124x1y1 D 47x1y2 B 92x0y0 B 49x2,1y7 ©48x2y2 = 28

3x0Y0 @ 2x0y1 D 69x0Yy2 B Sx1yo D 52x1y1 D 98x1Yy2 D 82x210 D 24x2,y1 D 82x2Y> = 2
2x0Y0 P 69x0y1 D 26x0Y2 D 52x1y @ I8x1y1 @ 28x1y2 @ 24x2Y0 @ 82x2y1 D 125xy, = 32
69x0y0 P 26x0y1 D 25x9y2 @ 98x1Y0 D 28x1Y1 D 75x1Yy2 B 82x2y0 D 125x2,11 ©47x2y2 = 26

where ax;y; denotes a ® x; ® y;. After solving the tropical linear equations, the attacker
can obtain a solution, for example:

xo®yo = 39 (Al)
x®y1 = 0 (A2)
@y, = 6 (A3)
X1 Q®Yo = 38 (A4)
x1®y = 8 (AS)
X1 R®Y2 = 14 (A6)
0y = 9 (A7)
Xy = 7 (AS)
X2 ®y: = 12 (A9)

where “+” denotes the ordinary addition.
It is easy to verify that (A1)—(A6) have no solution. (A2)—(A7) also have no solution.
The attacker keeps looking for a combination that may have a solution until they find
a combination that has a solution. For example, they find that combinations (A1)—-(A3),
(A5), (A6), and (A8) have a solution xg = 0,x1 = 8,x2 = 7,y9 = 39,y1 = 0,y = 6. The
attacker substitutes this solution into (f) to verify that it is a true solution of (f). An attacker

can find a solution by trying, at most, (2) cases.
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