
Citation: Kang, J.; Chung, K. HTTP

Adaptive Streaming Framework with

Online Reinforcement Learning. Appl.

Sci. 2022, 12, 7423. https://doi.org/

10.3390/app12157423

Academic Editor: Cheonshik Kim

Received: 23 June 2022

Accepted: 22 July 2022

Published: 24 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

HTTP Adaptive Streaming Framework with Online
Reinforcement Learning
Jeongho Kang and Kwangsue Chung *

Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Korea;
jhkang@cclab.kw.ac.kr
* Correspondence: kchung@kw.ac.kr

Abstract: Dynamic adaptive streaming over HTTP (DASH) is an effective method for improving
video streaming’s quality of experience (QoE). However, the majority of existing schemes rely on
heuristic algorithms, and the learning-based schemes that have recently emerged also have a problem
in that their performance deteriorates in a specific environment. In this study, we propose an adaptive
streaming scheme that applies online reinforcement learning. When QoE degradation is confirmed,
the proposed scheme adapts to changes in the client’s environment by upgrading the ABR model
while performing video streaming. In order to adapt the adaptive bitrate (ABR) model to a changing
network environment while performing video streaming, the neural network model is trained with a
state-of-the-art reinforcement learning algorithm. The proposed scheme’s performance was evaluated
using simulation-based experiments under various network conditions. The experimental results
confirmed that the proposed scheme performed better than the existing schemes.

Keywords: dynamic adaptive streaming over HTTP (DASH); quality of experience (QoE); reinforcement
learning; online learning

1. Introduction

With the proliferation of various smart devices and network development, the number
of users accessing video streaming services via the Internet has recently increased. Accord-
ing to the Cisco Annual Internet Report, the total number of Internet users worldwide will
increase from 51% of the population in 2018 to 66% of the population by 2023 [1]. Video
streaming services such as YouTube and Netflix account for the majority of internet traffic.
With the growing importance of video streaming services, HTTP adaptive streaming is
gaining traction as a technology to provide users with a high quality of experience (QoE) [2].
Dynamic adaptive streaming over HTTP (DASH) was established as a standard for HTTP
adaptive streaming technology in 2011 as a solution to provide efficient and smooth video
streaming [3]. DASH has high reliability and is not restricted by firewalls and network
address translations (NATs) because it uses the existing TCP-based HTTP protocol. In
addition, it has high scalability because it improves QoE by adjusting the quality of video
segments delivered through the network on the client side. Commercialized services in-
clude Microsoft’s Smooth Streaming, Apple’s HTTP Live Streaming, and Adobe’s HTTP
Dynamic Streaming [4–6].

To guarantee user QoE according to the time-varying network conditions between
the client and the server, it is necessary to design an adaptive bitrate (ABR) algorithm for
the DASH system. To prevent QoE degradation, the DASH client requests the next video
segment with the appropriate quality based on the network’s bandwidth and playback
status (buffer length, playback interruption, and requested video quality) using the ABR
algorithm [7]. Therefore, designing an efficient ABR algorithm is a challenge for the
DASH system. In general, ABR algorithms can be classified into two types: model-based
algorithms and learning-based algorithms. A model-based ABR algorithm is a heuristic-
based algorithm that controls ABR decisions based on a model in which the segment request

Appl. Sci. 2022, 12, 7423. https://doi.org/10.3390/app12157423 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157423
https://doi.org/10.3390/app12157423
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4641-567X
https://orcid.org/0000-0002-0283-0900
https://doi.org/10.3390/app12157423
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157423?type=check_update&version=2


Appl. Sci. 2022, 12, 7423 2 of 18

method according to the network bandwidth and playback state is defined in advance.
However, it is difficult to achieve optimal QoE with such a fixed-control rule because video
playback environments and network conditions are different for each user. To overcome
the limitations of model-based ABR algorithms, a learning-based ABR algorithm employs
a learning method such as reinforcement learning (RL) to empirically learn the optimal
ABR determination method in advance using network state data. However, learning-
based ABR algorithms have a limitation in that if the user’s environment changes, the
training must be repeated because performance is degraded if not performed in the targeted
network environment.

In this study, we propose an adaptive streaming scheme based on online reinforcement
learning to solve the problems of the existing learning-based ABR algorithms. The main
contributions of the proposed scheme are as follows:

• We propose an HTTP adaptive streaming framework with online reinforcement learn-
ing. When a decrease in QoE is confirmed, the client updates the ABR model at
the same time as performing video streaming to adapt to the change in the client’s
network status.

• Using a network classification scheme, the network traces used as the dataset and the
current user’s network environment are classified according to characteristics. The
proposed scheme can adapt the ABR model to the time-varying network conditions
using classified network data.

• If a learning-based ABR algorithm is used, it can be extended using the proposed
scheme regardless of the learning method.

• The neural network model is trained with a state-of-the-art RL algorithm to adapt
the ABR model to the network environment that changes simultaneously with video
streaming. Training is performed at high speed because it is asynchronous due to
creating agents in parallel.

• The proposed scheme was compared with the existing schemes through simulation-
based experiments. The experimental results show that the proposed scheme outper-
forms the existing schemes in terms of overall QoE for clients.

The rest of this study is organized as follows. In Section 2, we present the related
work on the operation process of the DASH system and the ABR algorithm. In Section 3,
we describe the design of the framework of the proposed scheme. In Section 4, we show
the simulation-based experiments performed to evaluate the proposed scheme, and we
conclude the study in Section 5.

2. Related Work

In this section, we first describe the DASH-based adaptive streaming method. We then
classify and present the representative model-based ABR algorithms of DASH. Finally, we
illustrate RL-based adaptive streaming and introduce the existing schemes utilizing it.

2.1. DASH-Based Bitrate Adaptation

HTTP adaptive streaming, standardized as DASH, is the main scheme for video
delivery over the Internet today. HTTP-based video delivery allows content providers to
utilize existing content delivery networks at a low cost without additional modifications.
In DASH, video is pre-stored on a server as multiple segments, each segment containing a
portion of the video. A video segment is encoded to have various qualities for the purpose of
performing quality adaptation according to the time-varying network conditions. Figure 1
shows the structure of DASH-based HTTP adaptive streaming. The client requests and
downloads the media presentation description (MPD) file for the video to be transmitted
to the server when video streaming begins. The MPD file describes information, such as
the bitrate, size, playback length, and request address of an encoded segment in eXtensible
Markup Language (XML) format. After that, the client requests the video segment through
the ABR algorithm. This algorithm uses the information described in the MPD file and
contextual information such as measured available bandwidth and current buffer level to



Appl. Sci. 2022, 12, 7423 3 of 18

determine the quality of the next segment. Because DASH-based HTTP adaptive streaming
selects the quality adaptively to suit the network situation, it provides a seamless streaming
service to users and high QoE [8]. To provide a seamless streaming and high QoE to users,
an ABR algorithm should be designed that takes into account the various contextual factors
that affect the user’s QoE. ABR algorithms can be broadly classified into model-based
algorithms and learning-based algorithms. These can be further classified according to
their contexts of use.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 18 
 

segment in eXtensible Markup Language (XML) format. After that, the client requests the 

video segment through the ABR algorithm. This algorithm uses the information described 

in the MPD file and contextual information such as measured available bandwidth and 

current buffer level to determine the quality of the next segment. Because DASH-based 

HTTP adaptive streaming selects the quality adaptively to suit the network situation, it 

provides a seamless streaming service to users and high QoE [8]. To provide a seamless 

streaming and high QoE to users, an ABR algorithm should be designed that takes into 

account the various contextual factors that affect the user’s QoE. ABR algorithms can be 

broadly classified into model-based algorithms and learning-based algorithms. These can 

be further classified according to their contexts of use. 

 

Figure 1. Structure of DASH-based HTTP Adaptive Streaming. 

2.2. Model-Based ABR Algorithms 

A model-based ABR algorithm focuses on building a segment request method in 

advance based on network bandwidth and playback conditions and makes ABR decisions 

based on that algorithm. This type of algorithm is also called a heuristic-based algorithm 

because it defines and uses a policy for optimizing the quality selection of the segment to 

be requested in the form of a fixed algorithm. Model-based ABR algorithms can be 

subdivided into three types: throughput-based models, buffer-based models, and hybrid 

models. 

A throughput-based model estimates the available bandwidth using the time taken 

to download the segment, and the DASH client requests the segment with the maximum 

quality lower than the expected available bandwidth. Representative throughput-based 

models include conventional and adaptive streaming of audiovisual content (ASAC) 

[9,10]. The conventional method measures and flattens the next bandwidth using the 

exponentially weighted moving average (EWMA). The EWMA can minimize the error 

due to noise because it flattens the sudden change in bandwidth by simultaneously 

reflecting the previous bandwidth and the currently measured bandwidth. When 

measuring the current bandwidth, the size of the downloaded segment and the time taken 

to download it are used. The ASAC technique dynamically determines the flattening 

coefficient to adaptively determine the quality according to the bandwidth change. The 

flattening coefficient is increased when the difference between the measured and flattened 

bandwidth is large, and it is decreased when the difference is small. The throughput-

based model, on the other hand, has the disadvantage of causing unnecessary quality 

changes and average quality degradation due to incorrect bandwidth measurement in an 

environment where network bandwidth changes rapidly. 

The buffer-based model uses buffer-related data such as the current remaining buffer 

amount or predicted future buffer amount to determine the quality of the segment to be 

Figure 1. Structure of DASH-based HTTP Adaptive Streaming.

2.2. Model-Based ABR Algorithms

A model-based ABR algorithm focuses on building a segment request method in
advance based on network bandwidth and playback conditions and makes ABR decisions
based on that algorithm. This type of algorithm is also called a heuristic-based algorithm
because it defines and uses a policy for optimizing the quality selection of the segment to be
requested in the form of a fixed algorithm. Model-based ABR algorithms can be subdivided
into three types: throughput-based models, buffer-based models, and hybrid models.

A throughput-based model estimates the available bandwidth using the time taken
to download the segment, and the DASH client requests the segment with the maximum
quality lower than the expected available bandwidth. Representative throughput-based
models include conventional and adaptive streaming of audiovisual content (ASAC) [9,10].
The conventional method measures and flattens the next bandwidth using the exponentially
weighted moving average (EWMA). The EWMA can minimize the error due to noise
because it flattens the sudden change in bandwidth by simultaneously reflecting the
previous bandwidth and the currently measured bandwidth. When measuring the current
bandwidth, the size of the downloaded segment and the time taken to download it are
used. The ASAC technique dynamically determines the flattening coefficient to adaptively
determine the quality according to the bandwidth change. The flattening coefficient is
increased when the difference between the measured and flattened bandwidth is large, and
it is decreased when the difference is small. The throughput-based model, on the other
hand, has the disadvantage of causing unnecessary quality changes and average quality
degradation due to incorrect bandwidth measurement in an environment where network
bandwidth changes rapidly.

The buffer-based model uses buffer-related data such as the current remaining buffer
amount or predicted future buffer amount to determine the quality of the segment to be
requested. Representative buffer-based models are buffer-based approach to rate adaptation
(BBA) and buffer-based adaptation for adaptive HTTP streaming (BAHS) [11,12]. The BBA
method divides the area of the buffer occupancy and maps the video quality to the area
to determine the quality of the segment to be requested according to the current buffer
occupancy. The BAHS technique adjusts the number of selectable qualities according to the



Appl. Sci. 2022, 12, 7423 4 of 18

buffer occupancy. When the buffer occupancy is high, the number of selectable qualities
is increased, and when the buffer occupancy is low, the number of selectable qualities
is decreased. The quality to be requested is determined using the buffer occupancy, the
number of selectable qualities, and a fixed buffer threshold. Buffer-occupancy-based quality
adaptation techniques have the advantage of minimizing playback interruption even when
bandwidth is rapidly reduced. However, there is a disadvantage in that QoE deteriorates
due to frequent quality changes when the buffer occupancy is changed in the fixed buffer
critical region.

To compensate for the shortcomings of the throughput-based model and the buffer-
based model, a hybrid model approach that further improves the ABR algorithm was
proposed. Representative hybrid models include adaptive rate-based intelligent HTTP
streaming+ (ARBITER+) and model predictive control (MPC) [13,14]. ARBITER+ guaran-
tees QoE by integrating the available bandwidth estimation method using the harmonic
average, the hybrid method bandwidth sampling, the proportional integral controller,
and the short-term actual bitrate meter to determine the quality of the next segment. An
MPC uses an algorithm that combines throughput and buffer information for optimal
quality selection. MPC uses the throughput predictor to select the optimal quality for
the next five segments. In an environment with large network fluctuations, the through-
put predictor does not work properly, and if the number of encoded quality segments is
large, the computational complexity becomes very large when determining the segment to
be requested.

A model-based ABR algorithm determines the quality of the segment to be requested
through a fixed-control rule based on the observed information. In other words, in the
short term, only the optimal quality at the current time is selected. However, since the
ABR method of DASH is a kind of dynamic knapsack problem in which the maximum
overall long-term reward must be obtained through a series of selections in a dynamic
high-dimensional state space, it is difficult to achieve optimal QoE with a fixed-control rule.

2.3. Learning-Based ABR Algorithms

To overcome the shortcomings of existing model-based ABR algorithms, several
learning-based ABR algorithms such as RL-based approaches have been proposed in recent
years. RL is an appropriate learning method for achieving optimal QoE because it aims to
maximize the expected cumulative reward for a given environment [15].

An RL-based ABR algorithm should be designed in consideration of the following
issues: First, the network state fluctuates over time and has a large deviation depending
on the client’s environment. A high bitrate must be maintained even when the amount of
remaining buffer is reduced to achieve optimal QoE in a link with a high and stable average
bandwidth. In the opposite case, the client should consider the remaining buffer amount
as a priority when determining the quality of a video segment to minimize playback
interruption. Second, adaptive streaming must balance multiple goals, such as maximizing
average quality, minimizing playback interruption, and minimizing quality fluctuations.
Streaming by requesting only high-quality segments increases the average quality but
increases the risk of playback interruption. Also, changing the quality of a segment
whenever the bandwidth of the network fluctuates leads to frequent quality fluctuations,
which is a cause of QoE degradation. Finally, the factors that affect QoE can vary greatly
from user to user [16,17]. High QoE cannot be achieved when users who value maximum
quality as the most important element of video streaming use an algorithm that aims to
minimize playback interruption. Therefore, it is necessary to optimize QoE for various
network conditions.

An RL-based ABR algorithm helps the agent experience various network conditions
through learning. The goal of RL is to learn a policy suitable for the agent through trial and
error, using the feedback from the actions as experience. After finding the optimal policy,
the agent can dynamically adapt to various environmental conditions to maximize the
predicted cumulative reward. In order to apply RL to the DASH system, ABR algorithms



Appl. Sci. 2022, 12, 7423 5 of 18

applying the deep-Q learning (DQN) method and the actor–critic algorithm have been
proposed [18,19]. However, the existing RL-based ABR algorithms have a disadvantage
in that their performance is degraded when they are not used in the targeted network
environment [20]. To address this shortcoming, we propose an online learning-based HTTP
adaptive streaming technique that can update the learned neural network based on the
network environment of a specific user.

3. Framework Design

This section describes the basic assumptions and framework of the proposed scheme.
Because video content consists of scenes with exponentially distributed duration, the ABR
algorithm of DASH can be modeled as a Markov decision process (MDP) problem, which
is mainly used as a basic optimization method. Figure 2 shows how RL is applied to
adaptive streaming. After receiving the state, the ABR agent decides the quality of the
next requested segment through the neural network. The result after playing the requested
segment (quality of the requested segment, playback interruption time, etc.) is reflected in
the reward through the defined QoE model. The information related to the network and
playback state after video playback is used as the state in making the next ABR decision.
To design the framework of the proposed scheme, the state, action, reward, and neural
network models should be specified, and the operation process of the framework should
be configured in an algorithmic form.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18 
 

algorithm that aims to minimize playback interruption. Therefore, it is necessary to 

optimize QoE for various network conditions. 

An RL-based ABR algorithm helps the agent experience various network conditions 

through learning. The goal of RL is to learn a policy suitable for the agent through trial 

and error, using the feedback from the actions as experience. After finding the optimal 

policy, the agent can dynamically adapt to various environmental conditions to maximize 

the predicted cumulative reward. In order to apply RL to the DASH system, ABR 

algorithms applying the deep-Q learning (DQN) method and the actor–critic algorithm 

have been proposed [18,19]. However, the existing RL-based ABR algorithms have a 

disadvantage in that their performance is degraded when they are not used in the targeted 

network environment [20]. To address this shortcoming, we propose an online learning-

based HTTP adaptive streaming technique that can update the learned neural network 

based on the network environment of a specific user. 

3. Framework Design 

This section describes the basic assumptions and framework of the proposed scheme. 

Because video content consists of scenes with exponentially distributed duration, the ABR 

algorithm of DASH can be modeled as a Markov decision process (MDP) problem, which 

is mainly used as a basic optimization method. Figure 2 shows how RL is applied to 

adaptive streaming. After receiving the state, the ABR agent decides the quality of the 

next requested segment through the neural network. The result after playing the 

requested segment (quality of the requested segment, playback interruption time, etc.) is 

reflected in the reward through the defined QoE model. The information related to the 

network and playback state after video playback is used as the state in making the next 

ABR decision. To design the framework of the proposed scheme, the state, action, reward, 

and neural network models should be specified, and the operation process of the 

framework should be configured in an algorithmic form. 

 

Figure 2. Adaptive streaming with reinforcement learning. 

3.1. Basic Assumptions 

The basic assumptions of the proposed scheme are as follows. First, the client has a 

criteria neural network model for performing early-stage adaptive streaming. The 

framework of the proposed scheme is intended to improve the performance degradation 

that occurs when an already trained neural network model operates in a non-targeted 

network environment through online learning. In this study, Pensieve is used as a criteria 

neural network model in the initial stage [21]. The model used does not necessarily have 

to be Pensieve, and content providers can choose arbitrarily according to the environment 

they want to apply. Second, during video streaming, the client’s network status is 

collected and stored in real time. This is to improve the neural network model by 

Figure 2. Adaptive streaming with reinforcement learning.

3.1. Basic Assumptions

The basic assumptions of the proposed scheme are as follows. First, the client has
a criteria neural network model for performing early-stage adaptive streaming. The
framework of the proposed scheme is intended to improve the performance degradation
that occurs when an already trained neural network model operates in a non-targeted
network environment through online learning. In this study, Pensieve is used as a criteria
neural network model in the initial stage [21]. The model used does not necessarily have to
be Pensieve, and content providers can choose arbitrarily according to the environment they
want to apply. Second, during video streaming, the client’s network status is collected and
stored in real time. This is to improve the neural network model by identifying the network
state when performance degradation occurs and performing additional online learning in a
similar network environment. Finally, the client calculates the actual QoE according to the
QoE model defined during video streaming and, at the same time, calculates the maximum
QoE obtained in the current network environment. The two calculated values are used to
fairly compare the QoE values obtained in different network environments.



Appl. Sci. 2022, 12, 7423 6 of 18

3.2. MDP Problem Formulation

The MDP problem for modeling DASH’s ABR algorithm consists of five elements as
shown in Equation (1).

M = < S ,A,P ,R, γ > (1)

S is the set of states as the state space, A is the set of actions as the action space, P is the
transition probability function,R is the reward function, and γ is the discount factor for
the future reward.

3.2.1. State Space

The agent creates and improves the policy π for selecting an action in the action space
considering the input state. Therefore, it is important to decide which observation to use as
the state to be used as an input. Because the input required for policy learning is insufficient
when the state space is small, the optimal policy cannot be learned. When the size of the
state space is large, the deviation greatly increases in the policy-learning process, which can
lead to a local optimum, and the load according to the amount of computation increases.
So as to quickly reach the global optimum and reduce the amount of computation, the
trade-off according to the state space should be considered, and a state suitable for the
optimization goal should be selected. The proposed scheme’s optimization goal is to create
a policy to improve the QoE value, and to do so, the state must use the observations related
to the adaptive streaming QoE metric. We configured the state for time step t as shown in
Equation (2).

S =

{
→
x t,
→
d t
→
n t, bt, ft, st

}
(2)

→
x t is a vector of the throughput of previously requested segments,

→
d t is a vector of

download times for previously requested segments,
→
n t is a vector of the size of the next

available video segment, bt is the client’s current remaining buffer, ft is the predicted buffer
occupancy, and st is the size of the last requested segment.

Unlike Pensieve, we use the predicted future buffer state as the state rather than
the number of remaining segments. Since general RL-based adaptive streaming aims to
maximize the expected cumulative reward, QoE can be improved when the remaining
number of segments is used as the state. In particular, Pensieve tends to request more
high-quality segments at the end of video streaming. This means that there is a situation in
which a higher quality segment can be requested, but a lower quality segment is requested
to maximize the expected cumulative reward. Therefore, the predicted buffer occupancy
is used as the state to request the highest quality segment that does not cause playback
interruption within the available bandwidth. The predicted buffer occupancy is calculated
using Equation (3), where τ means the playback length of the segment.

ft = bt − dt + τ (3)

3.2.2. Action Space

When the requested segment is completely downloaded, the client determines the
size of the next requested segment in the action space according to the learned policy,
considering the obtained state. We constructed the action space as in Equation (4).

A = {q1, q2, . . . , qL} (4)

L is the number of encoded segment qualities, and qk means video segments of quality level
k. We simplify the action space by assuming that the number of encoded segment qualities
is fixed. There are several neurons in the output layer of the neural network model, and
each neuron represents a selection probability of qk.



Appl. Sci. 2022, 12, 7423 7 of 18

3.2.3. Reward Space

Setting the reward in reinforcement learning is a very important task for learning
the optimal policy. As mentioned in Section 3.2.1, the optimization goal of the proposed
scheme is to create a policy to improve the QoE value. Therefore, in order to define the
reward function, QoE should be modeled and reflected. Factors such as video quality,
quality variations, and playback interruption affect a client’s QoE. The existing method for
modeling the client’s QoE function linearly combines factors that generally affect the QoE
value, as shown in Equation (5)

QoE =
K

∑
k=1

rk + λ
K−1

∑
k=1
|rk+1 − rk|+ ρTn (5)

rk denotes a bitrate of the selected quality, Tn denotes a reproduction interruption time,
and λ and ρ denote weights used to control the effects of quality change and playback
interruption, respectively.

In the existing RL-based adaptive streaming techniques, a situation of requesting a
low-quality segment occurs in a situation where a higher-quality segment can be requested
to maximize the expected cumulative reward. Therefore, if these techniques don’t operate
in the targeted network environment, performance degradation occurs. To solve this
problem, we extend the QoE function by considering the bandwidth usage rate when
designing the reward function. The reward function is designed using Equation (6).

r = µqq(Ri) + µSTi + µQS
∣∣q(Ri)− q(Ri−1)

∣∣+µGG (6)

q(Ri) means the quality of the i-th video segment with bitrate Ri, G is the bandwidth usage
rate, and µq, µS, µQS, and µG represent the normalization weights for reward used to scale
between each QoE metric. In adaptive streaming, if a client requests a higher quality than
the measured bandwidth, the probability of playback interruption increases due to the
decreased buffer occupancy. If the difference between the bitrate of the requested quality
and the measured bandwidth is large, the QoE is degraded because the bandwidth is not
fully utilized. Therefore, in order to check whether high quality can be requested without
any playback interruption, G is defined as shown in Equation (7).

G = |
BW − Rq,i

Rq+1,i − Rq,i
| (7)

Rq,i means the size of the i-th segment corresponding to the quality level q, and BW means
the measured bandwidth. That is, G is a value obtained by normalizing the measured
bandwidth based on the segment size of the requested quality and the segment size of
a higher quality than the requested quality. When the G approaches 1, it means that the
bandwidth utilization rate is small, and a penalty is given accordingly.

3.3. Neural Network Model

To learn the optimal policy, the neural network model must be properly configured.
Neural network models should be large enough to generate optimal policies and low
in complexity to minimize the load from training. We added a dropout layer and an
early stopping technique to a simple structure using only a convolution layer and a fully-
connected layer to increase the convergence speed of the model and reduce the variance of
training [22,23]. The proposed scheme uses a learning algorithm based on the actor–critic
algorithm. This method trains the actor network and the critic network simultaneously. The
actor network plays a role in determining the action given a state, and the critic network
evaluates the current value of the state and passes this information to the actor network
to help update the weights. The existing RL algorithm takes a large amount of time to
learn and has a problem in that the training result does not converge. This is due to the
fact that when training episodes are long or the optimization target is complex, training



Appl. Sci. 2022, 12, 7423 8 of 18

becomes more distributed. On the other hand, the actor–critic algorithm has the advantage
of reducing the variance of training through a complementary training process.

Whenever a video segment is downloaded, the agent passes the state to the neural
network model. Figure 3 shows how the state is passed to the neural network model, as well
as the structure and output of the actor–critic network. A non-vector state is transmitted to a
normal neuron, and a vector-type state is transmitted to a 1D-convolutional neural network
(1D-CNN) neuron. The 1D-CNN layer is effective in extracting features for multiple inputs.
The extracted features are transferred to the fully connected layer and used in the hidden
layer. According to the parameters calculated in the hidden layer, the output layer of
the actor network calculates the selection probability for video quality. As the calculated
probability value selects a higher quality, the reward value increases, and a policy is created
and trained based on it. The output layer of the critic network computes the current value
of the state. This value is expressed as an integer and is used to update parameters in the
actor network.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18 
 

of training [22,23]. The proposed scheme uses a learning algorithm based on the actor–

critic algorithm. This method trains the actor network and the critic network 

simultaneously. The actor network plays a role in determining the action given a state, 

and the critic network evaluates the current value of the state and passes this information 

to the actor network to help update the weights. The existing RL algorithm takes a large 

amount of time to learn and has a problem in that the training result does not converge. 

This is due to the fact that when training episodes are long or the optimization target is 

complex, training becomes more distributed. On the other hand, the actor–critic algorithm 

has the advantage of reducing the variance of training through a complementary training 

process. 

Whenever a video segment is downloaded, the agent passes the state to the neural 

network model. Figure 3 shows how the state is passed to the neural network model, as 

well as the structure and output of the actor–critic network. A non-vector state is 

transmitted to a normal neuron, and a vector-type state is transmitted to a 1D-

convolutional neural network (1D-CNN) neuron. The 1D-CNN layer is effective in 

extracting features for multiple inputs. The extracted features are transferred to the fully 

connected layer and used in the hidden layer. According to the parameters calculated in 

the hidden layer, the output layer of the actor network calculates the selection probability 

for video quality. As the calculated probability value selects a higher quality, the reward 

value increases, and a policy is created and trained based on it. The output layer of the 

critic network computes the current value of the state. This value is expressed as an integer 

and is used to update parameters in the actor network. 

 

Figure 3. Architecture of actor network and critic network. 

The proposed scheme trains the policy using the policy gradient method. The policy 

gradient method estimates the gradient of the expected total reward by observing the 

actions taken in accordance with the policy [24]. By updating the parameters of the neural 

network model, the agent adjusts the neural network model to select high-reward tasks 

more frequently. The slope of the expected cumulative reward is calculated as in Equation 

(8) by considering the policy parameters. 

 ∇𝜃Ε𝜋𝜃
[∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

] = Ε𝜋𝜃
[∇𝜃 log  𝜋𝜃 (𝑠, 𝑎)𝐴𝜋𝜃(𝑠, 𝑎)] (8) 

Figure 3. Architecture of actor network and critic network.

The proposed scheme trains the policy using the policy gradient method. The policy
gradient method estimates the gradient of the expected total reward by observing the
actions taken in accordance with the policy [24]. By updating the parameters of the
neural network model, the agent adjusts the neural network model to select high-reward
tasks more frequently. The slope of the expected cumulative reward is calculated as in
Equation (8) by considering the policy parameters.

∇θEπθ

[
∞

∑
t=0

γtrt

]
= Eπθ [∇θ log πθ(s, a)Aπθ (s, a)] (8)

γ is a discount factor to control the effect of future reward, and rt is the reward value at
time step t. θ means policy parameters, πθ(s, a) is a policy that performs action a according
to state s, and Aπθ (s, a) is an advantage function, meaning the difference between the
predicted reward when selecting action a in state s and the predicted reward from the
policy πθ . That is, the advantage function compares how much better a specific action is
compared to the average action taken according to the policy.



Appl. Sci. 2022, 12, 7423 9 of 18

For the purpose of maximizing the agent’s predicted cumulative reward, it is important
to update the parameters for the actor network and the critic network. The expression for
updating the parameters in the actor network is shown in Equation (9).

θ ← θ + α ∑
t
∇θ log πθ(st, at)A(st, at) (9)

α denotes the learning rate, and st and at denote the state and action, respectively, at time
step t. ∇θ log πθ(st, at) specifies how to change the policy parameters to increase the
probability of πθ(st, at).

To calculate the advantage function A(st, at), we need to calculate the value function
vπθ (s). vπθ (s) means the total reward expected according to the policy πθ starting from the
state s. The main role of the critic network is to learn how to predict the value function from
the calculated reward values. In this study, unlike Pensieve, which uses the Monte Carlo
method to quickly update the parameters of the critic network, the temporal difference
(TD) method is used as shown in Equation (10) [25,26].

θv ← θv + α′∑
t
∇θv

(
rt + γV πθ (st+1; θv)−V πθ (st; θv)

)2
(10)

Vπθ (st; θv) is the output of the critic network, meaning the estimated value of the value
function, and α′ means the learning rate of the critic network. If the TD method is used, the
difference between the calculated value functions can be used as an advantage function. The
critic network only participates in parameter updates of the actor network. After training on
the actor network and the critic network is finished, the agent performs adaptive streaming
using only the actor network.

Finally, in order for the agent to learn the optimal policy, it needs to properly navigate
the action space during training. To this end, we added an entropy regularization term to
Equation (9), which is an updated method of the actor network, as shown in Equation (11).

θ ← θ + α ∑
t
∇θ log πθ(st, at)A(st, at) + β∇θ H(πθ(·|st)) (11)

H(πθ(·|st)) means the probability distribution for the action of the policy at each time step
t. By adding this entropy regularization term, we update θ in the direction of increasing
entropy so that the search for the action space occurs more actively. β is the entropy weight,
which is set to a large value at the beginning of learning and gradually decreases with time.

3.4. Operation of Framework
3.4.1. Framework Workflow

In this study, we propose an HTTP adaptive streaming framework with online rein-
forcement learning to address the disadvantage that existing RL-based ABR algorithms
degrade in performance when not employed in the target network environment. If the QoE
of the client decreases, the proposed scheme adapts the ABR algorithm to changes in the
network environment by updating the ABR neural network model while video streaming
is performed. Here, the network environment change does not mean network fluctuations
in the DASH environment but a case in which the ABR neural network model operates
in an environment different from the environment in which the learning is performed.
Because the proposed scheme is a framework for improving the previously trained model,
it is assumed that the client has a pre-trained model when video streaming starts. We
use Pensieve as a pre-trained reference model. The operational structure of the proposed
scheme is shown in Figure 4, and the pseudocode to describe the complete algorithm in
detail is presented in Algorithm 1. The client performs adaptive video streaming using
the criteria model. At the same time, the state of the network is stored, and the network is
classified using the average and deviation of the bandwidth. At this time, the QoE value
calculated during video streaming and the maximum QoE value obtained from the current



Appl. Sci. 2022, 12, 7423 10 of 18

network state are calculated to normalize the QoE value. The network state and normalized
QoE values are stored in a first-in-first-out (FIFO) manner, with a video of length of 2 min.
When the normalized QoE value is lower than the threshold set by the algorithm, the client
creates an agent and updates the model through reinforcement learning. The network trace
data has been classified in the same way that the current network is classified. The client
uses a network trace similar to the current network state for training. How to calculate the
normalized QoE and how to classify networks will be described in detail later. If a training
agent is created based only on the normalized QoE value, the risk of overfitting increases
because an agent that conducts training using the same network trace data is generated.
Therefore, we make the created agents learn by using different network trace data. Each
agent uses an early stopping technique to terminate training early when the increase in
validation accuracy becomes small. The neural network model is updated whenever each
created agent’s training ends. The proposed scheme uses an asynchronous advantage
actor–critic (A3C) network because there is no central network, and the model needs to be
updated asynchronously every time an agent completes training [27].

Algorithm 1 HTTP Adaptive Streaming with Online Reinforcement Learning

〈N 〉 : classified network trace data
QoEnom : normalized QoE
th : threshold for normalized QoE
Bw : network bandwidth
〈S〉 : streaming trace data
〈D〉 : duplicate trace check vector
〈A〉 : waiting agent
〈T 〉 : each agent’s trace data
1 : Initialize the k = 0, i = 1
2 : While Streaming session
3 : Compute Network bandwidth Bwi
4 : Compute Normalized QoE QoEnomi
5 : If 〈S〉’s length < 2−minutes
6 : Enqueue 〈Bwi , QoEnomi〉 to 〈S〉
7 : Else
8 : Dequeue S1
9 : Enqueue 〈Bwi , QoEnomi〉 to 〈S〉
10 : Compute Average and variance of S(Bwi) in the form of Bwavgi and Bwvari

11 : Leveling the Bwavgi and Bwvari to
〈

B̂wavgi , B̂wvari

〉
12 : If Average of S(QoEnom) < th &

〈
B̂wavgi , B̂wvari

〉
is not in D

13 : Enqueue
〈

B̂wavgi , B̂wvari

〉
to D

14 : If A′s length is less than # of thread that can be used
15 : Training Agent using N that matches

〈
B̂wavgi , B̂wvari

〉
16 : Else
17 : Enqueue

〈
B̂wavgi , B̂wvari

〉
to T

18 : Enqueue Agent to A
19 : Dequeue A(1) and T (1) & training A(1) using T (1)



Appl. Sci. 2022, 12, 7423 11 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18 
 

which the learning is performed. Because the proposed scheme is a framework for 

improving the previously trained model, it is assumed that the client has a pre-trained 

model when video streaming starts. We use Pensieve as a pre-trained reference model. 

The operational structure of the proposed scheme is shown in Figure 4, and the 

pseudocode to describe the complete algorithm in detail is presented in Algorithm 1. The 

client performs adaptive video streaming using the criteria model. At the same time, the 

state of the network is stored, and the network is classified using the average and 

deviation of the bandwidth. At this time, the QoE value calculated during video streaming 

and the maximum QoE value obtained from the current network state are calculated to 

normalize the QoE value. The network state and normalized QoE values are stored in a 

first-in-first-out (FIFO) manner, with a video of length of 2 min. When the normalized 

QoE value is lower than the threshold set by the algorithm, the client creates an agent and 

updates the model through reinforcement learning. The network trace data has been 

classified in the same way that the current network is classified. The client uses a network 

trace similar to the current network state for training. How to calculate the normalized 

QoE and how to classify networks will be described in detail later. If a training agent is 

created based only on the normalized QoE value, the risk of overfitting increases because 

an agent that conducts training using the same network trace data is generated. Therefore, 

we make the created agents learn by using different network trace data. Each agent uses 

an early stopping technique to terminate training early when the increase in validation 

accuracy becomes small. The neural network model is updated whenever each created 

agent’s training ends. The proposed scheme uses an asynchronous advantage actor–critic 

(A3C) network because there is no central network, and the model needs to be updated 

asynchronously every time an agent completes training [27]. 

 

Figure 4. Operation of the proposed scheme. 

  

Figure 4. Operation of the proposed scheme.

3.4.2. QoE Normalization

When comparing algorithm performance in various network environments, there is
a limit to using the actual QoE value. When comparing the performance of algorithms
operating in a rich network environment and in a poor network environment, the actual
QoE is lower in a poor network environment. Therefore, to use the QoE value as a threshold
in a changing network environment, it is necessary to normalize the QoE value. QoE
normalization is performed using the actual QoE value calculated using the QoE function
of Equation (5) and the maximum QoE value obtained from the current network state. The
formula for QoE normalization is expressed as Equations (12) and (13).

Qmax =
K

∑
k=1

r̂k − λ
K−1

∑
k=1
|r̂k+1 − r̂k| (12)

Qnom =
Q

Qmax
100 (13)

Qmax means the maximum QoE value in the current network state, and Qnom means the
normalized QoE value. Since Qmax means the maximum QoE value only at the current
time in the short term, it is calculated using the maximum quality r̂k of the segment k that
can be requested in the available bandwidth without considering the metric related to
playback interruption.

3.4.3. Network Classification

If the client’s performance is degraded in a specific network environment, the perfor-
mance should be improved by intensive learning in the network environment. Therefore,
the proposed scheme should classify networks by characteristics. The network characteris-
tics include the capacity of the network and the degree of fluctuation. Network classification

is performed using the average (
∑n

i=1 b∆i
n ) and variance (

∑n
i=1(b∆i

−BWe )̂2
n ) of the bandwidth.

The average and variance of the bandwidth are calculated by quantizing the network
traces collected over a 2 min length video into time steps (∆1 . . . ∆n). We used a total of
eight levels, from 0 Mbps to 7 Mbps, based on the rounded-down value of the average
bandwidth. This classification level can be set variably according to the environment in
which the learning is performed. We further classify the networks in more detail based on
their fluctuation levels. As a result, we classified the networks into a total of 80 classes (an
average of 8 levels and a variance of 10 levels).



Appl. Sci. 2022, 12, 7423 12 of 18

4. Performance Evaluation

In this section, we first describe the implementation details of our neural network
model and then show the network datasets used for training and testing the neural network
model, the existing schemes for performance comparison, and the evaluation metrics. The
evaluation result compares the normalized QoE values of the proposed scheme with those
of the existing schemes.

4.1. Implementation

In this study, TensorFlow is used to implement the neural network model of the pro-
posed scheme, and the TFLearn deep learning library is used for training and testing [28,29].
There are 128 filters in the 1D-CNN layer of each neural network model. The size of each
filter is 4, and the size of the stride is 1. The features of the state extracted through the 1D-
CNN layer are transferred to the hidden layer using 128 neurons. In the actor network, the
number of output layers equals the number of available video qualities. Table 1 describes
the parameters used in the proposed scheme.

Table 1. Parameters and their values used in the proposed scheme.

Parameters Description Value

γ Discount factor 0.99

λ, ρ
Weight parameters used in the

QoE function 1.0, 4.3

α, α′ Learning rate for the actor-critic network 10−4, 10−3

β Entropy weight 1 to 0.1
(over 106 iterations)

The ideal way to train a neural network model is to learn by using real video data and
network environments. To perform training in a real environment, the agent must update
the parameters of the neural network model after video streaming is fully completed.
However, since reinforcement learning requires many iterations, there is a limit to learning
in a real environment. Therefore, a simulator based on the DASH system is implemented
and used to train the reinforcement-learning-based ABR algorithm. The neural network
model of the proposed scheme can perform adaptive streaming for hundreds of hours of
video in a short time using this simulator.

4.2. Experimental Settings

To evaluate the performance of the proposed scheme and the existing schemes, a real
network dataset and a dataset generated by adjusting the network capacity and seed value
with Network Simulator 3 (NS3) were used [30]. For the real network dataset, a broadband
dataset provided by the FCC, a 3G/HSDPA mobile dataset from Norway, and a 4G/LTE
mobile dataset from Belgium were used [31–33]. The real network dataset was used as the
agent’s training data, and the dataset created using NS3 was used to operate the algorithm
of the proposed scheme. Table 2 shows the characteristics of the network dataset used for
the test, and Table 3 shows the characteristics of the existing schemes to be compared with
the proposed scheme.

Before presenting the experimental results of the proposed scheme and the existing
schemes, the video used, the evaluation scenario, and other factors are described. The video
is constructed based on the real video of the DASH-246 JavaScript reference player [34]. The
video is encoded with {240p, 360p, 480p, 720p, 1080p} resolution and the H.264/MPEG-4
codec. The segment playback length is set to 2 s. Clients can experience different network
environments by randomly choosing a bandwidth from the test set. The maximum buffer
level of the client is set to 60 s, and online learning is performed using a 24 h dataset. The
experimental results are derived based on the model after the online learning is completed.



Appl. Sci. 2022, 12, 7423 13 of 18

Table 2. Throughput information of network datasets.

Trace Dataset

Characteristics #1 #2 #3 #4 #5 #6 #7

Mean Throughput (Mbps) 0.98 1.57 2.62 3.23 4.75 5.79 6.52

Max Throughput (Mbps) 3.45 3.38 6.54 8.97 8.23 9.65 11.53

Min Throughput (Mbps) 0.09 0.23 0.21 0.38 0.26 0.36 0.39

Coefficient of Variation 0.76 0.44 0.56 0.72 0.35 0.39 0.37

Table 3. Analysis of existing video adaptation schemes for performance evaluation.

Scheme Characteristics

robustMPC 1. Model predictive control-based adaptation
2. Traditional video adaptation scheme

Pensieve
1. Reinforcement learning (Server-side)
2. QoE model with perceptual quality
3. QoE degradation for specific network

4.3. Results

First, according to the evaluation scenario described in Section 4.2, normalized QoE
values and target reward values for the proposed scheme and the existing schemes were
measured. Figure 5 shows the normalized QoE values and target reward values measured
for each test dataset. The proposed scheme has the highest normalized QoE and reward
values compared to the existing schemes. This shows the effectiveness of the method
of updating the neural network model according to the network environment of the
proposed scheme. In particular, when the proposed scheme and Pensieve are compared
using Dataset #1 and Dataset #2 with low average bandwidth values, a more pronounced
performance improvement is shown. Through this, we show that the proposed scheme
effectively improves QoE in an environment where the performance of the existing schemes
has deteriorated.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 

Figure 5. Normalized QoE and reward according to the dataset, (a) normalized QoE, (b) normalized 

reward. 

Figure 6 shows how much performance improvement occurs and when it converges 

with time from the time online learning is started. This experiment was conducted based 

on Dataset #2, in which the performance improved most clearly by about 21%. The 

proposed scheme uses the A3C network to update the model. As a result, it can be 

confirmed that the performance increases linearly according to the time step despite the 

asynchronous model updating of each agent. Also, through the experimental results, it 

can be confirmed that the performance improvement converges after about 18 h. This is 

due to the time it takes for each agent’s online learning to complete and the model to 

update, implying that additional techniques are required to improve the learning rate. 

 

Figure 6. The degree of performance improvement over time in online learning. 

Figure 7 shows the results of experiments in the same environment after increasing 

the number of threads used by each agent to improve the training speed of each agent. As 

the number of threads increases, the degree of performance improvement increases with 

time. In particular, when four threads are used, the degree of performance improvement 

converges after about 12 h has elapsed. If more threads are used, the performance 

improvement is predicted to occur faster, but when several agents are training at the same 

time, the risk of an agent that cannot use multi-threading increases depending on the 

computing power. In addition, for the model to be updated, the normalized QoE value 

must fall below the threshold, and the state of the network must also change. As a result, 

even if more threads are used, performance cannot be improved beyond a certain point 

unless the network has very high bandwidth fluctuations. 

Figure 5. Normalized QoE and reward according to the dataset, (a) normalized QoE, (b) normal-
ized reward.

Figure 6 shows how much performance improvement occurs and when it converges
with time from the time online learning is started. This experiment was conducted based on
Dataset #2, in which the performance improved most clearly by about 21%. The proposed
scheme uses the A3C network to update the model. As a result, it can be confirmed that the
performance increases linearly according to the time step despite the asynchronous model
updating of each agent. Also, through the experimental results, it can be confirmed that the
performance improvement converges after about 18 h. This is due to the time it takes for
each agent’s online learning to complete and the model to update, implying that additional
techniques are required to improve the learning rate.



Appl. Sci. 2022, 12, 7423 14 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 

Figure 5. Normalized QoE and reward according to the dataset, (a) normalized QoE, (b) normalized 

reward. 

Figure 6 shows how much performance improvement occurs and when it converges 

with time from the time online learning is started. This experiment was conducted based 

on Dataset #2, in which the performance improved most clearly by about 21%. The 

proposed scheme uses the A3C network to update the model. As a result, it can be 

confirmed that the performance increases linearly according to the time step despite the 

asynchronous model updating of each agent. Also, through the experimental results, it 

can be confirmed that the performance improvement converges after about 18 h. This is 

due to the time it takes for each agent’s online learning to complete and the model to 

update, implying that additional techniques are required to improve the learning rate. 

 

Figure 6. The degree of performance improvement over time in online learning. 

Figure 7 shows the results of experiments in the same environment after increasing 

the number of threads used by each agent to improve the training speed of each agent. As 

the number of threads increases, the degree of performance improvement increases with 

time. In particular, when four threads are used, the degree of performance improvement 

converges after about 12 h has elapsed. If more threads are used, the performance 

improvement is predicted to occur faster, but when several agents are training at the same 

time, the risk of an agent that cannot use multi-threading increases depending on the 

computing power. In addition, for the model to be updated, the normalized QoE value 

must fall below the threshold, and the state of the network must also change. As a result, 

even if more threads are used, performance cannot be improved beyond a certain point 

unless the network has very high bandwidth fluctuations. 

Figure 6. The degree of performance improvement over time in online learning.

Figure 7 shows the results of experiments in the same environment after increasing
the number of threads used by each agent to improve the training speed of each agent. As
the number of threads increases, the degree of performance improvement increases with
time. In particular, when four threads are used, the degree of performance improvement
converges after about 12 h has elapsed. If more threads are used, the performance improve-
ment is predicted to occur faster, but when several agents are training at the same time, the
risk of an agent that cannot use multi-threading increases depending on the computing
power. In addition, for the model to be updated, the normalized QoE value must fall
below the threshold, and the state of the network must also change. As a result, even if
more threads are used, performance cannot be improved beyond a certain point unless the
network has very high bandwidth fluctuations.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

Figure 7. The degree of performance improvement according to time and number of threads in 

online learning. 

Figure 8 shows the results of an experiment using a dataset with a very wide 

bandwidth fluctuation to check the degree of performance improvement according to an 

increase in the number of threads in a rapidly changing network environment. The 

performance improvement is more pronounced when two threads are used than when 

one thread is used. This is due to the rate at which the model is updated becoming faster 

as a large number of agents are created in accordance with occurring QoE degradation 

and network fluctuations rapidly in the early stage of online learning (0 to 10 h) and the 

number of threads increases. 

 

Figure 8. The degree of performance improvement according to time and number of threads of 

online learning in the dynamic network environment. 

Figure 9 shows the results of the experiment by changing the threshold value, which 

is the criterion in generating the agent, from 0.3 to 0.9 by comparing the normalized QoE. 

Experimental results show that the normalized QoE value increases as the threshold 

increases. However, if the threshold value increases, the performance evaluation criteria 

for the neural network model decrease, and the number of agents generated accordingly 

also increases. Since the increase in the number of agents leads to serious computational 

load, it is necessary to solve the trade-off between QoE improvement and load. To this 

end, we set the threshold at 0.7. 

Figure 7. The degree of performance improvement according to time and number of threads in
online learning.

Figure 8 shows the results of an experiment using a dataset with a very wide band-
width fluctuation to check the degree of performance improvement according to an increase
in the number of threads in a rapidly changing network environment. The performance
improvement is more pronounced when two threads are used than when one thread is
used. This is due to the rate at which the model is updated becoming faster as a large
number of agents are created in accordance with occurring QoE degradation and network
fluctuations rapidly in the early stage of online learning (0 to 10 h) and the number of
threads increases.



Appl. Sci. 2022, 12, 7423 15 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

Figure 7. The degree of performance improvement according to time and number of threads in 

online learning. 

Figure 8 shows the results of an experiment using a dataset with a very wide 

bandwidth fluctuation to check the degree of performance improvement according to an 

increase in the number of threads in a rapidly changing network environment. The 

performance improvement is more pronounced when two threads are used than when 

one thread is used. This is due to the rate at which the model is updated becoming faster 

as a large number of agents are created in accordance with occurring QoE degradation 

and network fluctuations rapidly in the early stage of online learning (0 to 10 h) and the 

number of threads increases. 

 

Figure 8. The degree of performance improvement according to time and number of threads of 

online learning in the dynamic network environment. 

Figure 9 shows the results of the experiment by changing the threshold value, which 

is the criterion in generating the agent, from 0.3 to 0.9 by comparing the normalized QoE. 

Experimental results show that the normalized QoE value increases as the threshold 

increases. However, if the threshold value increases, the performance evaluation criteria 

for the neural network model decrease, and the number of agents generated accordingly 

also increases. Since the increase in the number of agents leads to serious computational 

load, it is necessary to solve the trade-off between QoE improvement and load. To this 

end, we set the threshold at 0.7. 

Figure 8. The degree of performance improvement according to time and number of threads of online
learning in the dynamic network environment.

Figure 9 shows the results of the experiment by changing the threshold value, which
is the criterion in generating the agent, from 0.3 to 0.9 by comparing the normalized
QoE. Experimental results show that the normalized QoE value increases as the threshold
increases. However, if the threshold value increases, the performance evaluation criteria
for the neural network model decrease, and the number of agents generated accordingly
also increases. Since the increase in the number of agents leads to serious computational
load, it is necessary to solve the trade-off between QoE improvement and load. To this end,
we set the threshold at 0.7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 18 
 

 

Figure 9. Change of the normalized QoE according to change of threshold value, (a) Dataset #2, (b) 

Dataset #4, (c) Dataset #7. 

4.4. Discussions 

From the experimental results, it can be confirmed that the proposed scheme has 

better performance than the existing schemes used as the reference model. In particular, 

we see a noticeable performance improvement of about 21% in Dataset #1 and Dataset #2 

in low-bandwidth environments of the network. This is due to the mechanism of adapting 

neural network models to network environments by detecting QoE degradation in the 

proposed scheme. 

However, considerable time is required for performance improvement to adapt the 

neural network model to the network environment. Therefore, to increase the efficiency 

of the proposed scheme, it is necessary to shorten the learning time. Experimental results 

confirm that the proposed scheme reduced the performance improvement rate of neural 

network models by regulating the number of threads used for training. Users can expect 

better performance by appropriately adjusting the number of threads according to the 

computing power and the characteristics of the network environment in which streaming 

is performed. 

5. Conclusions 

In this study, we present an adaptive streaming scheme based on online 

reinforcement learning. The proposed scheme aims to provide a network-aware adaptive 

streaming scheme by improving the performance of the existing learning-based adaptive 

streaming scheme from being degraded according to the network environment. The 

proposed scheme uses a state-of-the-art RL algorithm, trains the neural network model by 

improving the state and reward, and adapts the neural network model to the changing 

network environment by introducing network classification and QoE regularization. 

Because it is a framework that improves its performance based on the existing learning-

based adaptive streaming technique, the proposed scheme can be used to extend learning-

based ABR algorithms regardless of the learning method. Through the experimental 

results, we confirmed that the proposed scheme successfully improves QoE according to 

the changing network environment. In future research, we plan to study how to further 

increase the convergence speed of the model and how to allow the model to have 

Figure 9. Change of the normalized QoE according to change of threshold value, (a) Dataset #2,
(b) Dataset #4, (c) Dataset #7.

4.4. Discussions

From the experimental results, it can be confirmed that the proposed scheme has
better performance than the existing schemes used as the reference model. In particular,
we see a noticeable performance improvement of about 21% in Dataset #1 and Dataset #2
in low-bandwidth environments of the network. This is due to the mechanism of adapting
neural network models to network environments by detecting QoE degradation in the
proposed scheme.



Appl. Sci. 2022, 12, 7423 16 of 18

However, considerable time is required for performance improvement to adapt the
neural network model to the network environment. Therefore, to increase the efficiency
of the proposed scheme, it is necessary to shorten the learning time. Experimental results
confirm that the proposed scheme reduced the performance improvement rate of neural
network models by regulating the number of threads used for training. Users can expect
better performance by appropriately adjusting the number of threads according to the
computing power and the characteristics of the network environment in which streaming
is performed.

5. Conclusions

In this study, we present an adaptive streaming scheme based on online reinforcement
learning. The proposed scheme aims to provide a network-aware adaptive streaming
scheme by improving the performance of the existing learning-based adaptive streaming
scheme from being degraded according to the network environment. The proposed scheme
uses a state-of-the-art RL algorithm, trains the neural network model by improving the state
and reward, and adapts the neural network model to the changing network environment
by introducing network classification and QoE regularization. Because it is a framework
that improves its performance based on the existing learning-based adaptive streaming
technique, the proposed scheme can be used to extend learning-based ABR algorithms
regardless of the learning method. Through the experimental results, we confirmed that
the proposed scheme successfully improves QoE according to the changing network en-
vironment. In future research, we plan to study how to further increase the convergence
speed of the model and how to allow the model to have generality by sharing parameters
between updated models in different network environments.

Author Contributions: Conceptualization, J.K. and K.C.; methodology, J.K.; simulation, J.K.; valida-
tion, J.K. and K.C.; formal analysis, J.K.; investigation, J.K.; resources, J.K. and K.C.; data curation,
J.K.; writing—original draft preparation, J.K.; writing—review and editing, J.K. and K.C.; visualiza-
tion, J.K. and K.C.; supervision, K.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korea Government (MSIT) (No. 2020R1F1A1048627, Collaborative Media Streaming Model
Based on Mobile Edge Computing). It was also supported by the Kwangwoon University Excellent
Researcher Support Program in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco Public. Cisco Annual Internet Report (2018–2023) White Paper. Available online: https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 15 March 2022).
2. Kua, J.; Armitage, G.; Branch, P. A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming over HTTP. In IEEE

Communication Surveys & Tutorials; IEEE: Piscataway, NJ, USA, 2017; pp. 1842–1866.
3. Timmerer, C.; Sodogar, I. Ad Hoc on HTTP Streaming of MPEG Media; ISO/IEC JTC1/SC29/WG11/M176 57; ISO: Geneva,

Switzerland, 2010.
4. Zambelli, A. IIS Smooth Streaming Technical Overview; Microsoft Corporation: Redmond, WA, USA, 2009.
5. Pantos, R.; May, W.; HTTP Live Streaming. IETF Draft. August 2017. Available online: https://datatracker.ietf.org/doc/html/

rfc8-216 (accessed on 20 April 2022).
6. Adobe HTTP Dynamic Streaming. Available online: http://www.adobe.com/products/httpdynamicstreaming/ (accessed on

20 April 2022).
7. Petrangeli, S.; Hooft, J.V.D.; Wauters, T.; Turck, F.D. Quality of Experience-Centric Management of Adaptive Video Streaming

Services: Status and Challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2018, 14, 1–29. [CrossRef]

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://datatracker.ietf.org/doc/html/rfc8-216
https://datatracker.ietf.org/doc/html/rfc8-216
http://www.adobe.com/products/httpdynamicstreaming/
http://doi.org/10.1145/3165266


Appl. Sci. 2022, 12, 7423 17 of 18

8. Bae, S.; Jang, D.; Park, K. Why is HTTP Adaptive Streaming So Hard? In Proceedings of the Asia-Pacific Workshop on Systems,
Tokyo, Japan, 27–28 July 2015; pp. 1–8.

9. Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Began, A.C.; Oran, D. Probe and Adapt: Rate Adaptation for HTTP Video Streaming at
Scale. IEEE J. Sel. Areas Commun. 2014, 32, 719–733.

10. Thang, T.; Ho, Q.; Kang, J.; Pham, A. Adaptive Streaming of Audiovisual Content Using MPEG DASH. IEEE Trans. Consum.
Electron. 2012, 58, 78–85.

11. Huang, T.; Johari, R.; McKeown, N.; Trunnell, M.; Waston, M. A Buffer-based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proceedings of the ACM Conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014;
pp. 187–198.

12. Le, H.; Nguyen, D.; Ngoc, N.; Pham, A.; Thang, T.C. Buffer-based Bitrate Adaptation for Adaptive HTTP Streaming. In
Proceedings of the IEEE International Conference on Advanced Technologies for Communications, Ho Chi Minh, Vietnam,
16–18 October 2013; pp. 33–38.

13. Zahran, A.H.; Raca, D.; Sreenan, C.J. Arbiter+: Adaptive Rate-based Intelligent HTTP Streaming Algorithm for Mobile Networks.
IEEE Trans. Mob. Comput. 2018, 17, 2716–2728. [CrossRef]

14. Yin, X.; Jindal, A.; Sekar, V.; Sinopoli, B. A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, New York, NY, USA, 22–26 August 2015;
pp. 325–338.

15. Huang, T.; Zhang, R.X.; Zhou, C.; Sun, L. Video Quality Aware Rate Control for Real-time Video Streaming based on Deep
Reinforcement Learning. In Proceedings of the 26th ACM International Conference on Multimedia, New York, NY, USA,
22–26 October 2018; pp. 1208–1216.

16. Mok, R.K.P.; Chan, E.W.W.; Luo, X.; Chang, R.K.C. Inferring the QoE of HTTP Video Streaming from User-Viewing Activities.
In Proceedings of the First ACM SIGCOMM Workshop on Measurements up the Stack, Toronto, ON, Canada, 19 August 2011;
pp. 31–36.

17. Mok, R.K.P.; Chen, E.W.W.; Chang, R.K.C. Measuring the Quality of Experience of HTTP Video Streaming. In Proceedings of the
12th IFIP/IEEE International Symposium on Integrated Network Management and Workshops, Dublin, Ireland, 23–27 May 2011;
pp. 485–492.

18. Gadaleta, M.; Chiariotti, F.; Rossi, M.; Zanella, A. D-DASH: A Deep Q-Learning Framework for DASH Video Streaming. IEEE
Trans. Cogn. Commun. Netw. 2017, 20, 703–718. [CrossRef]

19. Konda, V.R.; Tsitsiklis, J.N. Actor-Critic Algorithms. In Advances in Neural Information Processing Systems; MIT Press: Cambridge,
MA, USA, 2000; pp. 1008–1014. Available online: https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde8-48669bdd9
eb6b76fa-Paper.pdf (accessed on 9 April 2022).

20. Zhang, G.; Lee, J.Y. Ensemble Adaptive Streaming–A New Paradigm to Generate Streaming Algorithms via Specializations. IEEE
Trans. Mob. Comput. 2020, 19, 1346–1358. [CrossRef]

21. Mao, H.; Netravali, R.; Alizadeh, M. Neural Adaptive Video Streaming with Pensieve. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 197–210.

22. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

23. Duvenaud, D.; Maclaurin, D.; Adams, R. Early Stopping as Nonparametric Variational Inference. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1070–1077.

24. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function Approx-
imation. In Proceedings of the 12th International Conference on Neural Information Processing Systems, Denver, CO, USA,
29 November–4 December 1999; pp. 1057–1063.

25. Lazaric, A.; Restelli, M.; Bonarini, A. Reinforcement Learning in Continuous Action Spaces Through Sequential Monte Carlo
Methods. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2007.

26. Kurth-Nelson, Z.; Redish, A.D. Temporal-Difference Reinforcement Learning with Distributed Representations. PLoS ONE 2009,
4, e7362. [CrossRef]

27. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA,
19–24 June 2016; pp. 1928–1937.

28. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

29. TFLearn. TFLearn: Deep Learning Library Featuring a Higher-Level API for TensorFlow. Available online: http://tflearn.org/
(accessed on 23 February 2022).

30. The Network Simulator NS-3. Available online: http://www.nsnam.org (accessed on 29 December 2021).
31. Federal Communications Commission (FCC). Raw Data-Measuring Broadband America Mobile Data. Available online: https:

//www.fcc.gov/reports-research/reports (accessed on 17 March 2022).
32. Riiser, H.; Vigmostad, P.; Griwodz, C.; Halvorsen, P. Commute Path Bandwidth Traces from 3G Networks: Analysis and

Applications. In Proceedings of the 4th ACM Multimedia Systems Conference, Oslo, Norway, 28 February 2013; pp. 114–118.

http://doi.org/10.1109/TMC.2018.2825384
http://doi.org/10.1109/TCCN.2017.2755007
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde8-48669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde8-48669bdd9eb6b76fa-Paper.pdf
http://doi.org/10.1109/TMC.2019.2909202
http://doi.org/10.1371/annotation/4a24a185-3eff-454f-9061-af0bf22c83eb
http://tflearn.org/
http://www.nsnam.org
https://www.fcc.gov/reports-research/reports
https://www.fcc.gov/reports-research/reports


Appl. Sci. 2022, 12, 7423 18 of 18

33. Hooft, J.V.D.; Petrangeli, S.; Wauters, T.; Huysegems, R.; Alface, P.R.; Bostoen, T.; Turck, F.D. HTTP/2-Based Adaptive Streaming
of HEVC Video over 4G/LTE Networks. IEEE Commun. Lett. 2016, 20, 2177–2180. [CrossRef]

34. DASH Industry Forum. Reference Client 2.4.0. Available online: https://reference.dashif.org/dash.js/v2.4.0/samples/dash-
ifreference-player/index.html (accessed on 15 May 2021).

http://doi.org/10.1109/LCOMM.2016.2601087
https://reference.dashif.org/dash.js/v2.4.0/samples/dash-ifreference-player/index.html
https://reference.dashif.org/dash.js/v2.4.0/samples/dash-ifreference-player/index.html

	Introduction 
	Related Work 
	DASH-Based Bitrate Adaptation 
	Model-Based ABR Algorithms 
	Learning-Based ABR Algorithms 

	Framework Design 
	Basic Assumptions 
	MDP Problem Formulation 
	State Space 
	Action Space 
	Reward Space 

	Neural Network Model 
	Operation of Framework 
	Framework Workflow 
	QoE Normalization 
	Network Classification 


	Performance Evaluation 
	Implementation 
	Experimental Settings 
	Results 
	Discussions 

	Conclusions 
	References

