
Citation: Lu, F.; Cai, Z.; Lin, Z.; Bao,

Y.; Tang, M. Research on the

Construction of Malware Variant

Datasets and Their Detection Method.

Appl. Sci. 2022, 12, 7546. https://

doi.org/10.3390/app12157546

Academic Editors: Weipeng Jing,

Xin Wang, Bo Peng and Gang Wang

Received: 25 June 2022

Accepted: 25 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on the Construction of Malware Variant Datasets and
Their Detection Method
Faming Lu, Zhaoyang Cai, Zedong Lin *, Yunxia Bao * and Mengfan Tang

College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; lufaming@sdust.edu.cn (F.L.); touchczy@foxmail.com (Z.C.); tangmf0220@163.com (M.T.)
* Correspondence: jack@sdust.edu.cn (Z.L.); baoyunxia98@163.com (Y.B.)

Abstract: Malware detection is of great significance for maintaining the security of information
systems. Malware obfuscation techniques and malware variants are increasingly emerging, but their
samples and API (application programming interface) sequences are difficult to obtain. This poses
difficulties for the development of malware variant detection models. To address this issue in this
paper, we first generated a malware variant dataset using the obfuscation technique based on the
disassembly and decompilation of malware. Then, an API call dataset of these malware variants was
constructed through sandboxing. Compared to similar work, the malware variants and their obfus-
cated API call sequences generated in this paper were all runnable. After that, taking a public API call
sequence dataset of obfuscation-free malware as input, a BERT (bidirectional encoder representation
from transformers) pretrained model for malware detection was constructed. To enhance the ability
of this pretrained model to handle obfuscation and variants, in this paper, we used adversarial
training to improve the robustness and generalization of the detection model under obfuscation. As
the experimental results show, the proposed scheme can improve the classification performance of
malware variants under obfuscation. The accuracy of the malware variant classification was close to
that of the unobfuscated case.

Keywords: malware detection; bidirectional encoder representation from transformers; adversarial
training; intelligent data analysis; AI for systems

1. Introduction

Malware is a malicious program that is harmful to a computer system. It attempts to
invade, damage or disable computers, networks, tablets and mobile devices. The purpose
is usually to steal, encrypt or delete data, alter or hijack computer core functions, monitor
computer activity, or even damage computer hardware. With the rapid development of
network technology, the automatic attack of large-scale malware has become the main form
of network attack, which not only brings great trouble to ordinary users but also brings
great losses to enterprises and government departments. For example, WannaCry [1],
which began to erupt in 2017, caused a worldwide disaster. In August 2020, the weekly
report on network security information and dynamics released by China’s national Internet
Emergency Center pointed out that the number of hosts infected with network malware in
China had reached 586,000, approximately 527,000 hosts controlled by Trojans or zombies,
and approximately 59,000 hosts infected with flying guest worms [2]. The overall amount
of malware increased by 43.71% over the same period in 2019 [3], which made enterprises,
governments and schools subject to complex and diverse threats.

Generally, malware has symbolic signature features. Therefore, the signature-based
malware detection method is the most widely used method in commercial anti-malware
programs. However, such a method cannot detect emerging malware and its variants [4].
Attackers also attempt to limit the effectiveness of signature-based analysis by imple-
menting techniques such as obfuscation and packing [5]. To solve this problem, malware
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detection technology based on supervised learning technology has been widely studied [6].
These methods can be divided into two categories: static detection and dynamic detection.

The codes of the same malware family usually have a coding similarity. In view of the
above similarities, static detection methods analyze the static features extracted from the bi-
nary files of malware and then detect malware by comparing the similarities and differences
between the static features of malware and normal software. Generally, static methods
usually detect malware based on opcode sequences [7], byte sequences [8], or the generated
image features [9] of malware. For the detection method based on opcode sequences, the
executable PE file can usually obtain the instruction sequence through disassembly and
then classify and count the opcode of the instruction according to arithmetic operations,
data operations, logical operations, etc., as the classification feature or use the n-gram
method to divide the opcode as the classification feature [10]. For the detection method
based on a byte sequence, the instruction sequence part of the opcode is usually taken out
separately and transformed into digital features. On this basis, n-gram and other methods
are used for classification [11]. The malware detection method based on image features
regards every 8 bits of the malware byte sequence as a gray value. In this way, a 256-color
gray image [12,13] can be generated for the malware, or the gray image can be extracted
by processing a variety of byte sequences, and then a three-channel color image [14] can
be constructed through the gray image. Then, the classification methods based on image
features such as convolutional neural networks are used to detect the malware.

Dynamic malware detection methods mainly record the behavior characteristics of
malware by executing malware samples in a virtual environment and determine whether
it is malware through the analysis of behavior characteristics. The behavior information
includes the behavior log, system call name, context parameters, environment variables,
etc. The system API is the interface used to implement the operating system, and malware
usually destroys the operating system by calling the system level API. Therefore, the
mainstream dynamic detection scheme mainly identifies malware based on the system
API call sequence of malware [15]. It usually places the executable PE file in a sandbox
such as the Cuckoo Sandbox. Then, a running PE program is monitored, and an API call
sequence is obtained. API instructions usually include NtReadFile, CreateDirectory, and
NtWriteFile. Based on the API call sequences, malware is classified using methods such as
n-gram sequence analysis [16] or behavior diagram analysis [17].

Both static and dynamic methods play an important role in malware detection, but
attackers often circumvent malware detection by creating malware variants through pack-
aging or obfuscation. To address the impact of various malware obfuscation techniques
on malware detection, in this paper, we first constructed a dataset of unobfuscated and
obfuscated malware variants, as well as their API sequences. Then, a malware detection
method based on BERT and TextCNN was proposed. Finally, an experimental evaluation
on the proposed method was made.

The paper is organized as follows. Section 2 discusses related work in obfuscation
technology of static detection and dynamic detection. Section 3 provides a construction
method of malware variants and API sequence dataset. Section 4 offers a pretrained model
of malware detection based on BERT. Section 5 presents a malware variant detection model
based on adversarial training. Section 6 discusses the Experimental evaluation. Finally,
Section 7 summarizes this paper.

2. Related Work

There has been a lot of related work on malware static and dynamic detection, which
has played an important role in malware detection. Most of the modern anti-malware
engines, such as Windows Defender6, Avast7, Deep Instinct D-Client8 and Cylance Smart
Antivirus9, are powered by machine learning, making them robust against emerging
variants and polymorphic malware [6]. Malware detection also has important applications
in Cloud Infrastructure as a Service (IaaS). IaaS is more vulnerable to malware attacks due
to exposure to external adversaries [18]. In IaaS, dynamic online malware detection is also
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an important application by detecting the fine-grained process system characteristics of the
process runtime [19,20].

Meanwhile, to avoid detection, malware manufacturers have developed many mal-
ware obfuscation methods, including packing [21], encryption, invalid instruction insertion,
instruction replacement and instruction reordering. Since obfuscation methods such as
packing and encryption usually do not change malware behavior, they have no impact
on the dynamic detection method. This is one of the reasons why dynamic detection has
been widely studied. However, instruction insertion, replacement and rearrangement in
the malware API call sequences may lead to the failure of dynamic malware detection
methods. For example, Rosenberg et al. [22] presented a black-box attack against API call-
based machine learning malware classifiers, focusing on generating adversarial sequences
combining API calls and static features. It is shown that such an attack is effective against
many traditional machine learning classifiers.

To reduce the impact of obfuscation techniques on malware detection, Sihag et al. [23]
constructed the document feature table of operation code segments for Android malware,
which makes the operation code feature flexible to obfuscation and enhances the flexibility
of malware classification by simplifying the semantics of the Dalvik operation code. Yaz
et al. [24] used Cuckoo Sandbox to extract the API call sequence of the malware family,
constructed a public dataset [25], and classified the malware family through a deep learning
model. Oliveira et al. [26] extracted the API call sequence by running benign software
and malignant software in the sandbox and processing the API call sequence into a graph
structure. On this basis, they proposed a malware detection method based on a depth
graph convolution neural network (DGCNN).

The set of obfuscated API sequences is the basis for the abovementioned malware
detection methods. However, it is difficult to obtain enough obfuscated API sequences of
real malware. To obtain obfuscated samples of API sequences, Banescu et al. [27] carried
out the operations of system call insertion, reordering and replacement when running a
malware in a sandbox. However, since the altered objects are API sequences, they cannot
be restored to the original program. In other words, these sequences are not necessarily the
real behavior of malware. They cannot reflect the real behavior of malware variants after
obfuscation. Meanwhile, deep learning techniques such as BERT and adversarial training
have obvious advantages in dealing with noise problems. However, they have not been
used to handle obfuscation problems in the malware detection field.

Based on the above observations, this paper aims to carry out the following work:
(1) construction of malware variants and their real API call sequence sets; (2) a malware
variant detection method based on BERT and adversarial training; and (3) experimental
evaluation of the proposed malware detection method toward malware with and without
obfuscation.

3. Construction of the Malware Variant and Its API Call Sequence Dataset

Section 3.1 gives the construction scheme of real and operable malware variants, and
Section 3.2 extracts its API sequence to build an API call dataset that can reflect the real
behavior of malware variants.

3.1. Construction of Malware Variants

At present, the construction methods of malware variants include packing, encryption,
instruction insertion/replacement/disorder, etc. A commonly used packing scheme is to
implant a piece of code in the PE program, and the implanted code will be run first at
runtime, which is equivalent to hiding the real OEP entry point of the program. Then,
the control is returned to the original code so that the original instruction information can
be affected, and the malware variant samples can be obtained. Instruction replacement
usually refers to the equivalent replacement of instructions, that is, replacing one or more
instructions with one or more equivalent instructions. During replacement, it also needs to
ensure that it does not affect the normal logic of the program. In this way, it can interfere
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with the detection scheme and obtain malware variant samples. The packing scheme
usually does not affect the effect of dynamic detection. The malware variant scheme
for dynamic detection is more complex, in which the function reference of the IAT table,
exception handling during function call and stack balance during API call need to be
considered.

To construct a runnable malware variant sample, in this paper, we used x86 disas-
sembly to reverse the target malware, convert the machine code into assembly language,
insert the API call sequence into the assembly code, complete the binary rewriting of the
PE file, and then obtain the obfuscated sample. This obfuscation scheme maintained the
original code execution structure by inserting code rather than obfuscation by inserting
after extracting the API sequence so that each malware can be used as a variant of the
original malware, which is more in line with the actual application scenario.

Specifically, a binary rewriting obfuscation scheme for the PE program was designed
and implemented. The scheme flow is shown in Figure 1. First, a certain number of
malware samples were collected through VirusShare [28]. During statistics, it was found
that the dataset contained a large number of PDF, HTML and other files. Python-magic was
used to filter out the files with PE32 characteristics. After filtering, some C/C++ compiled
exe files and some C# compiled exe files could be obtained.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 16 
 

usually refers to the equivalent replacement of instructions, that is, replacing one or more 
instructions with one or more equivalent instructions. During replacement, it also needs 
to ensure that it does not affect the normal logic of the program. In this way, it can interfere 
with the detection scheme and obtain malware variant samples. The packing scheme usu-
ally does not affect the effect of dynamic detection. The malware variant scheme for dy-
namic detection is more complex, in which the function reference of the IAT table, excep-
tion handling during function call and stack balance during API call need to be consid-
ered. 

To construct a runnable malware variant sample, in this paper, we used x86 disas-
sembly to reverse the target malware, convert the machine code into assembly language, 
insert the API call sequence into the assembly code, complete the binary rewriting of the 
PE file, and then obtain the obfuscated sample. This obfuscation scheme maintained the 
original code execution structure by inserting code rather than obfuscation by inserting 
after extracting the API sequence so that each malware can be used as a variant of the 
original malware, which is more in line with the actual application scenario. 

Specifically, a binary rewriting obfuscation scheme for the PE program was designed 
and implemented. The scheme flow is shown in Figure 1. First, a certain number of mal-
ware samples were collected through VirusShare [28]. During statistics, it was found that 
the dataset contained a large number of PDF, HTML and other files. Python-magic was 
used to filter out the files with PE32 characteristics. After filtering, some C/C++ compiled 
exe files and some C# compiled exe files could be obtained. 

 
Figure 1. Malware variant construction process. 

For C/C++ compiled samples, they first require preprocessing. If the malware has a 
shell, it needs to be unpacked. If ASLR is enabled in the PE file header, DYNAMIC_BASE 
needs to be disabled to avoid processing relocations, and NX_COMPAT protection needs 
to be disabled. This step can be performed using Python’s lief library [29] or dnSpy. After 
that, a new 00 code segment needs to be added by modifying the PE header or using the 
existing 00 code segment. Usually, a 00 segment of a part of the area will be reserved after 
each code segment in the PE file. After finding the 00 segment that can be written, one 
must give RWX permission in this part of the code segment. Through the preprocessing 
of the PE sample, a segment 00 with executable permission can be obtained, and the as-
sembly code can be written in this part to realize the hook. Since the goal to be achieved 
is to achieve random calls, it is not guaranteed that these are all the functions that need to 
be introduced in the IAT table, as well as enough address space for writing, so in this 
paper we built a general externally imported dll. A function called random API in this dll 
file was built. RegOpenKeyEx, RegCreateKeyEx, etc., were selected in the API sequence 
to be inserted. When calling these APIs, it was necessary not to affect the operation of the 
original program. By dynamically loading this dll into the assembly code, it can prevent 

Figure 1. Malware variant construction process.

For C/C++ compiled samples, they first require preprocessing. If the malware has a
shell, it needs to be unpacked. If ASLR is enabled in the PE file header, DYNAMIC_BASE
needs to be disabled to avoid processing relocations, and NX_COMPAT protection needs
to be disabled. This step can be performed using Python’s lief library [29] or dnSpy. After
that, a new 00 code segment needs to be added by modifying the PE header or using the
existing 00 code segment. Usually, a 00 segment of a part of the area will be reserved after
each code segment in the PE file. After finding the 00 segment that can be written, one
must give RWX permission in this part of the code segment. Through the preprocessing of
the PE sample, a segment 00 with executable permission can be obtained, and the assembly
code can be written in this part to realize the hook. Since the goal to be achieved is to
achieve random calls, it is not guaranteed that these are all the functions that need to be
introduced in the IAT table, as well as enough address space for writing, so in this paper
we built a general externally imported dll. A function called random API in this dll file
was built. RegOpenKeyEx, RegCreateKeyEx, etc., were selected in the API sequence to
be inserted. When calling these APIs, it was necessary not to affect the operation of the
original program. By dynamically loading this dll into the assembly code, it can prevent
the need to rebuild the IAT table to realize dynamic import because there is no relevant
API introduced and the number of rewriting 00 segments in the original malware sample is
reduced. The functions related to dynamically loading dll are in KERNEL32.dll, which is a
dll file that must be referenced to build an application. You only need to use KERNEL32.dll.
LoadLibrary and KERNEL32.dll. GetProcAddress two functions to load dll. The specific
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hook logic is shown in Figures 2 and 3. Figure 2 shows an assembly instruction sequence,
assuming that it is the instruction sequence of the original malware sample and requires
an instruction with the address hook 0 × 01. Figure 3 shows the implementation of the
hook. Supposing an API call is implemented at function h_message_box, and Figure 3
shows the API that calls the pop-up window. In the specific implementation in this paper,
we moved these function declarations into dll for implementation. Then, a hook function
h_0 × 30 was implemented. The purpose of this function is to (1) call the API call function
h_message_box completed; (2) execute the instruction of the original hook position; and
(3) jump back to the position of the next instruction of the hook instruction. Then, a jump
will be made at the position of 0 × 01, jump to h_0 × 30 and execute the function call.
Through the above implementation, we can obtain C/C++ malware variants.
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For C# compiled samples, the same unpacking process is carried out first, and C# runs
in the.Net framework, so there is a runtime environment, so it will not be directly compiled
into assembly code; just use C# decompilation software such as dnspy to disassemble it.
Then, select the same API call as above, use C# to complete an API call function, insert the
relevant function call in a random position, and recompile it into exe. Through the above
implementation, we obtained the C# malware variant.

The logic of the hook function for both approaches is shown in Figure 4. Firstly, a
function pointer declaration is defined, and then the relevant API calls are implemented
through the function. After that, a caller function is exported in the DLL, in which all the
API calls are stored by vector. Both the number of API function calls, and the number
of repeated function calls are generated with a uniformly distributed random number
generator. The index value of the API function is generated with a uniformly distributed
random number generator as well. Finally, the function calls are completed by looping.
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Based on the above scheme, the malware variant sample set used in this experiment
was constructed. We generated a variant for each malware sample and a total of 1113 mal-
ware samples and their variants were obtained. Making malware variants may cause some
damage to the program and prevent the malware variants from running properly. In our
experiments, there were three hooked malware that caused exceptions during sandbox
operation, while most of the malware variants were able to run successfully. In this reposi-
tory [30], all original malware and malware variants for the experiment are available, as
well as the API sequences generated through the sandbox.

3.2. Construction of the Malware Variant API Call Sequence Dataset

Section 3.1 constructed the executable PE file of malware and its variants. This section
extracts its API call sequence, constructs an API call sequence set that can truly reflect the
behavior of malware after obfuscation, and partially preprocesses the malware tag and
sequence set. The extraction of API call sequences depends on automatic testing tools.
Cuckoo Sandbox is an open-source automatic malware analysis system that can capture
information such as the system API call and its parameter transmission and return value,
network traffic data, memory usage records and so on. The overall process of building the
API sequence dataset is shown in Figure 5. For a malware, in order to make its variant,
the two malware were placed in the sandbox and their call sequences extracted to obtain
an original malware API call sequence set and a variant malware API call sequence set.
By comparing the classification effects of the two datasets, we could detect whether the
variant had a certain interference ability with the classification and how to deal with the
interference of the variant malware with the detection.
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For the tag of malware, considering that the existing detection mechanisms are tags for
static behavior and that there is no good tag mechanism for the behavior of malware, in this
paper, we intended to use more information to construct the tag of malware. Specifically,
based on the classification tags of AVClass2 [31], we further combined the information in the
malware engine report to generate more accurate tags. AVClass2 was used to analyze the
malware sample report of VirusTotal, which is divided into five categories as the multiclass
classification labels of malware: normal, downloader, backdoor, keylogger and grayware.
For the obfuscated variant malware, the corresponding original malware label is used
as the variant malware label. In addition, in the API call sequence extracted by Cuckoo
Sandbox, malware will often call the same API repeatedly. Some API calls are expected
behavior. For example, WannaCry blackmail malware will repeatedly call the API to read
and delete files, and some are unexpected behaviors. For example, exceptions are discarded
during the execution of malware, read again and call the relevant API again. To counteract
the problem of repeated calls on the dataset and enhance the generalization ability of the
model, it was necessary to duplicate the repeated continuous API call sequence.

Finally, since different malware performs different operations, and different operations
take different lengths of time, the length of the API sequences we extracted from the
different malware in the same time duration was usually different. The longest sequence
can contain 30,000 API calls, while the shortest sequence contains only 50. For this problem,
the authors of [24] only intercept the front part of the sequence for detection, which may
omit the information related to the malicious behavior of malware because the sequence of
relevant malicious behavior is not executed. Therefore, in this paper, we adopted a method
of subsequence extraction. Every 200 API calls were extracted as a sequence. At the same
time, to minimize the lack of semantics, the last 50 API calls of the previous sequence were
taken as the first 50 API calls of the next sequence. The principle of dataset entry division
is shown in Figure 6. Compared with the method of extracting the first N API calls, the
method of constructing subsequences can detect as many sequences as possible to obtain a
more complete detection effect. However, this also has some disadvantages because some
of the obtained sequences may not have malicious behavior, which may lead to a reduction
in detection accuracy.
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After the above processing, the unobfuscated dataset and obfuscated dataset were ob-
tained, and a total of 9123 unobfuscated API sequences and 8264 obfuscated API sequences
were obtained [30].

4. Pretrained Model of Malware Detection Based on BERT
4.1. Construction of the BERT Pretrained Model

A pretrained model is an application of transfer learning. It can use as much training
data as possible to extract as much common information as possible so that the commonness
can be transferred to the model of specific tasks and then fine-tuned with a relatively small
amount of annotation data in relevant specific fields so that the downstream tasks can start
from commonness. Furthermore, the model only needs to learn the characteristics of the
task itself and the knowledge of a specific task. In deep learning models, the dependence
on the amount of data is usually high, and a large number of parameters need to be
learned. If the amount of data is small, it will inevitably lead to poor model overfitting
and generalization. This pretrained model can make full use of a wide range of network
resources and does not need to manually mark the data to obtain general knowledge after
a large amount of data pretraining. Then, a small amount of annotation data on the target
task is used for fine tuning so that the fine-tuned model can deal with the target task well.

BERT is a pretrained language expression model that is trained on a large-scale un-
labeled corpus through a two-way transformer encoder to integrate the deep two-way
expression of left and right context information to realize the deep two-way representation
of sentences to obtain the text vector containing a large amount of semantic information.

When building the BERT pretrained model, it is necessary to establish a word table
through word pieces. One of the main implementation methods of word piece is called BPE
(byte pair encoding). Generally, the process of BPE can be understood as the re-splitting
of a word, which makes the expression of the word more concise and the meaning clearer
to reduce the size of the word list without losing semantic features. The word splitting
process is shown in Figure 7.
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The essence of the BERT pretrained model is unsupervised training, so an index is
needed to quantify the training effect. BERT will randomly mask out part of the data
when initializing the data, then predict the masked language model, and select sentence A
and sentence B to predict whether the two sentences are connected, that is, next sentence
prediction, to quantify the effect. The specific training process is shown in Figure 8. First,
the thesaurus is built through word pieces and API sequences. After building the input
vector, it is input into the transformer encoder layer of the BERT model for training, and
then the pretrained model is obtained.
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4.2. Construction of the BERT Pretrained Model

With the recent development of natural language processing (NLP) techniques, print-
able strings became more effective to detect malware [32]. Considering the outstanding
performance of the BERT model in the NLP field, in this paper, we used BERT to detect
malware.

The classification task based on BERT needs a pretrained model based on a malware
API sequence, but there is no public BERT model in the malware field, so the pretraining of
the model is needed. In this paper, the open malware API call sequence dataset provided
by reference [25] was used for unsupervised training of the pretrained model. The main
work was divided into two parts.

The first is to build a thesaurus. When processing pretraining data, many API se-
quences end with A, W, ExA and ExW. A means using ANSI coding as the text coding
of standard input and output streams, W means using Unicode as the coding, Ex means
the expansion of parameters and functions, and ExA and ExW are the combination of
A, W and Ex. This part of the data can be regarded as the suffix of API call words. The
functional semantics represented by relevant APIs are similar, so word pieces can be used
to split them. For API words similar to DnsQuery_W, BERT will think _ is the link symbol
of a word to represent a phrase, so the relevant underlying information should also be
removed. Finally, a thesaurus with a size of 258 is obtained. Then, the representation of
token embedding, segment embedding and position embedding is constructed through the
thesaurus construction, and the output is the word vector matrix encoded by BERT. The
detailed input and output modules are shown in Figure 9.
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Next, returning to the API sequence, remove various special symbols from the se-
quence, and use spaces as segmentation labels between APIs. Due to the long length of
the API sequence, it is necessary to first duplicate the API sequence and then adopt the
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method of fixed sequence length. Every 100 APIs are used as a sentence, and each malware
sequence is used as the content of an article. Fill the shorter sequence with [PAD] to a fixed
length. Finally, [CLS] and [SEP] tags are added at the beginning and end for model training
to input the processed sequence into the matching model, and then the input module
is built to start input into the pretraining part. Input the constructed input information
into the transformer encoder layer for training. Here, six encoder layers were selected
for training, and 500,000 iterations were carried out. The final pretrained model had an
accuracy of 0.975 in MAS evaluation. BERT is essentially realized through the encoder stack
of a transformer, and the core part of the transformer is self-attention. In Figure 10, some
API words were randomly selected to represent the weight information of the self-attention
of the trained BERT model.
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5. Malware Variant Detection Model Based on Adversarial Training
5.1. BERT-TextCNN Classification Model

TextCNN obtains the feature representation of n-grams in sentences through one-
dimensional convolution. Its structure is simple. It is an efficient text convolution algorithm
that can capture the local structural relationship between adjacent texts. At the same time,
the characteristics of convolution make it support parallel operation. In TextCNN, first,
the embedded representation of the input statement is obtained through an embedding
layer, then the characteristics of the statement are extracted through a revolution layer, and
finally the final output is obtained through a fully connected layer.

After obtaining the BERT pretrained model in Section 4.2, this pretrained model could
be used for classification. Because the BERT pretrained model is essentially the encode part
of the transformer, classification as a downstream task needs to be connected to the decoder
part. The common practice is to take the first token position output by the last layer of
BERT, that is, the CLS position, as the representation of the sentence, followed by the full
connection layer for classification. Because TextCNN can effectively capture the n-gram
information in the text sequence, TextCNN is used here as the decoder layer of BERT for
classification. The specific classification process of BERT-TextCNN is shown in Figure 11.

In classification, first, the representation of token embedding, segment embedding
and position embedding is obtained, and then they are input into the BERT pretrained
model. Then, the word vector matrix encoded by BERT can be obtained, where n is the
input length and d is the word vector dimension (d = 768). In this paper, three convolution
kernels were set, namely, (h = 3, d = 768), (h = 4, d = 768), and (h = 5, d = 768), where h
is the height of the convolution kernel, d is the width of the convolution kernel, and the
output channel of the convolution kernel is 256. Relu was used as the activation function.
After convolution, the maximum pooling operation was carried out through the pooling
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layer of TextCNN; that is, for the features obtained after convolution, only the maximum
value is taken, the feature information is compressed and retained, and then the pooling
results of three convolution cores are connected to obtain a new feature matrix. Finally, the
vectors were obtained in the full connection layer for classification.
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5.2. BERT’s Adversarial Training

Adversarial training is an important way to enhance the robustness of neural networks.
In the process of adversarial training, the samples are mixed with some small disturbances,
and then the neural network adapts to this change to have stronger robustness to the origi-
nal samples. Adversarial attacks are equivalent to finding ways to create more adversarial
samples. Malware variants are similar situations. Malware manufacturers fight detection
by building more noise or changing some behaviors. Adversarial defense is equivalent to
finding ways to enable the model to correctly identify more adversarial samples. Adver-
sarial training is a method of defense. Its basic principle is to construct some adversarial
samples by adding disturbances and putting them into the model for training. With the
addition of random disturbances, the loss of the sample becomes larger, and training needs
to make the loss of the model as small as possible. Thus, the model has stronger robustness
and can improve the generalization ability to a certain extent.

The method of constructing adversarial training samples by adding disturbances is
easy to realize in the CV field because in the CV field, a continuous RGB value is usually
input, that is, the image matrix can be regarded as an ordinary continuous real number
vector, while in the NLP related field, the input is usually a discrete word sequence. If the
disturbance is directly carried out on the original word text, then the size and direction
of the disturbance are of little significance, so the calculated disturbance can be added to
the embedding layer [33]. The specific implementation is to find the embedding layer in
the defined model in each step of training, obtain the embedding gradient, calculate the
disturbance, inject the disturbance into the embedding layer parameter matrix, then let the
model train, and delete the disturbance after training. In the adversarial training method,
the FGM fast gradient [34] method is used to calculate the disturbance (1):

δ = ε · (g/ || g ||2) (1)

among:
g = ∇X(L( fθ(X), y)) (2)

In other words, let the direction of the disturbance rise along the gradient, which
means that the loss increases the most.
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6. Experimental Evaluation and Discussion
6.1. Experimental Dataset

According to the construction method of malware variants and the API call sequence
dataset in Section 3, taking the malware provided in VirusShare as the original sample,
we finally obtained the malware API call dataset in obfuscated and unobfuscated cases.
Due to the scattered types of malware in VirusShare, the amount of data in the dataset was
unbalanced. To balance the dataset during training, the maximum number of data for each
type in the unobfuscated dataset was 1500, and the maximum number of data for each type
in the obfuscated dataset was 1000. The number of sequence samples contained in different
types of malware is shown in Table 1.

Table 1. Number of API sequence samples of various malware in the dataset.

Type Unobfuscated Dataset Obfuscated Dataset

normal 820 350
downloader 1500 1000

backdoor 1060 1000
keylogger 768 835
grayware 1500 1000

Next, binary classification experiments of various kinds of malware were carried out
on these two datasets.

6.2. Comparison of Malware Detection Results without Obfuscation

The pretrained model based on BERT was obtained in Section 4.2. Next, a comparative
experiment was carried out using random forest, CNN, LSTM and BERT. Table 2 shows the
classification effect of the unobfuscated dataset. The behavior of the normal software was
relatively fixed. Usually, some system API calls are just generated by user operations. So the
normal behavior is relatively fixed and the sequence is relatively short. The classification
accuracy was relatively high, as expected. For downloaders, the classification accuracy
was relatively low. A possible reason is that it usually performs only some downloading
tasks, which are also common operations of ordinary software. Backdoors are relatively
easy to recognize, as they usually perform a large number of API calls in the background to
steal user data or take control of the user’s machine when the user is inactive. Keyloggers
usually record user input only after gaining access to a computer’s external devices. The
classification accuracy is usually higher because the behavior is relatively fixed. Graywares
are a collection of Spyware, Adware, Dialer, and other malware. One possible reason for
the relatively low classification accuracy is that their behavior is diverse making it difficult
for the classifier to determine. By comparing the classification effect in random forest, CNN,
LSTM and BERT, it can be seen that BERT had relatively good performance in the various
classification methods.

Table 2. Classification effect of the unobfuscated dataset.

Method Normal Downloader Backdoor Keylogger Grayware Average

Random forest 0.92 0.71 0.89 0.90 0.82 0.848
CNN 0.95 0.74 0.89 0.91 0.80 0.858
LSTM 0.91 0.74 0.89 0.89 0.81 0.848
BERT 0.94 0.81 0.87 0.90 0.84 0.872

6.3. Comparison of Malware Detection Results with Obfuscation

Table 3 shows the classification effect of the obfuscated dataset. It can be seen that
BERT still performed relatively well in various classification methods. By comparing the
effects of various classification schemes in Tables 3 and 4 on the unobfuscated dataset
and obfuscated dataset, it can be seen that the obfuscated dataset could indeed affect
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the classification effect of malware families to a certain extent. Specifically, for decision
tree-based random forest methods, the effect of adding obfuscation was relatively low. The
classification effect is not strongly related to semantics, so adding confounding factors in
semantics has relatively little effect on them. For CNN, the features extracted in the same
size window may be biased after adding obfuscation because the window for extracting
features was not large. For LSTM and BERT, the classification effect was closely related to
the semantics. After adding obfuscation, the semantic dependency became longer, leading
to the reduction of classification effectiveness.

Table 3. Classification effect of the obfuscated dataset.

Method Normal Downloader Backdoor Keylogger Grayware Average

Random forest 0.93 0.76 0.86 0.86 0.78 0.838
CNN 0.92 0.76 0.83 0.86 0.79 0.832
LSTM 0.92 0.77 0.83 0.87 0.74 0.826
BERT 0.93 0.78 0.84 0.87 0.80 0.844

Table 4. Effect of BERT-TextCNN joining adversarial training.

Method Normal Downloader Backdoor Keylogger Grayware Average

Adversarial
training 0.93 0.78 0.86 0.89 0.82 0.856

To reduce the impact caused by the obfuscation of malware variants, in this paper,
we improved the detection effect in the obfuscated dataset of malware variants by adding
adversarial training. In Section 5.2, the adversarial training model of BERT-TextCNN was
constructed. Table 4 shows the classification effect of this model on various types of malware
on the obfuscated dataset. It can be seen that in the classification effect, the malicious family
classification of backdoor, keylogger and grayware had improved, and by the average
value of classification effect, it can be seen that it had a certain effect on the obfuscated
dataset. The classification accuracy of malware is close to that of unobfuscated dataset.

7. Conclusions

To address the impact of various malware obfuscation techniques on malware detec-
tion, in this paper, we first constructed a dataset of unobfuscated and obfuscated malware
variants, as well as their API sequences. Then, we proposed a malware detection method
based on BERT and TextCNN. Finally, an experimental evaluation on the proposed method
was made. Specifically, a real and operable malware variant dataset was constructed by
binary rewriting first. Then, the original malware and variant malware were placed in
the sandbox, and their API call sequences were dynamically extracted to construct the
API sequence dataset with and without obfuscation. After that, BERT’s pretrained model
was trained through a public malware API call sequence dataset. By combining BERT and
TextCNN, a new malware detection method was used to perform malware classification.
Finally, to improve the malware detection accuracy under obfuscation, adversarial training
techniques were adopted in the proposed malware detection schema. The experimental
results show that the malware variant with obfuscation constructed in this paper can re-
duce the classification accuracy of traditional malware detection methods. Meanwhile, the
proposed BERT-TextCNN-based malware detection methods combined with adversarial
training can eliminate the impact of obfuscation.

There are still many deficiencies in this paper. The input feature information currently
considered is only the API sequence part, which is relatively simple. Considering that
the parameters, timestamp, API category, call times and other information passed during
API call are also important features, we have considered combining these features into our
next detection scheme. In addition, FGM computes adversarial interference directly by
parameter ε, which may not be the best way to generate adversarial samples. Therefore,
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a better method for adversarial sample generation needs to be developed in the future.
Finally, the method of slicing API call sequences in this paper also needs to be optimized.
For example, one may slice the API sequences using the method of concept drift detection
in the process mining field [35].
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