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Abstract: The next-generation intelligent smart factory system that is proposed in this paper could
improve product quality and realize flexible, efficient, and sustainable product manufacturing by
comprehensively improving production and management innovation via its digital network and
intelligent methods that reflect the characteristics of its printed circuit board (PCB) manufacturing
design and on-site implementation. Intelligent manufacturing systems are complex systems that are
composed of humans, cyber systems, and physical systems and aim to achieve specific manufacturing
goals at an optimized level. Advanced manufacturing technology and next-generation artificial
intelligence (AI) are deeply integrated into next-generation intelligent manufacturing (NGIM). Cur-
rently, the majority of PCB manufacturers are firms that specialize in processing orders from leading
semiconductor and related product manufacturers, such as Samsung Electronics, TSMC, Samsung
Electro-Mechanics, and LG Electronics. These top companies have been responsible for all product
innovation, intelligent services, and system integration, with PCB manufacturers primarily playing a
role in intelligent production and system integration. In this study, the main implementation areas
were divided into manufacturing execution system (MES) implementation (which could operate
the system using system integration), data gathering, the Industrial Internet of Things (IIoT) for
production line connection, AI and real-time monitoring, and system implementation that could
visualize the collected data. Finally, the prospects of the design and on-site implementation of the
next-generation intelligent smart factory system that detects and controls the occurrence of quality
and facility abnormalities are presented, based on the implementation system.

Keywords: next-generation intelligent manufacturing; human–cyber–physical system; knowledge
engineering; enabling technology; manufacturing domain technology; next-generation artificial
intelligence; printed circuit board-based smart factory system

1. Introduction

Intelligent manufacturing is a general concept that has continuously evolved along
with the development and integration of information technology and manufacturing tech-
nologies. In general, intelligent manufacturing involves digital manufacturing and digital
network manufacturing and due to its recent rapid development and influential break-
throughs, intelligent manufacturing using the Internet, big data, and artificial intelligence
(AI) [1–3] has also evolved [1–3]. Its fundamental goal is to increase competitiveness via
ceaseless efforts to improve quality, increase efficiency, and reduce costs. Intelligent manu-
facturing systems are always human–cyber–physical systems (HCPSs), which are complex
intelligent systems that are composed of human, cyber, and physical systems and aim to
achieve a specific goal at an optimized level [4–6].

In other words, the essence of intelligent manufacturing is to design, configure, and
apply HCPSs at various levels [7–14]. Currently, there is a trend of promoting the estab-
lishment of smart factories to increase competitiveness between small- and medium-sized
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manufacturing industries worldwide. In addition, we are faced with high demands for
improved product quality and efficient and quick market responses, which significantly
increases the need for innovative upgrades for manufacturing sites. Currently, most printed
circuit board (PCB) manufacturers specialize in processing orders from prominent compa-
nies, such as Samsung Electronics, TSMC, Samsung Electro-Mechanics, and LG Electronics.
From the point of view of NGIM HCPS 2.0 systems, these prominent companies have been
responsible for all product innovation, intelligent services, and system integration, with
PCB manufacturers mainly playing a role in intelligent production and system integration.

Data management that is based on NGIM HCPS 2.0 systems is required, but there
is a limit to the collection, analysis, and tracking management that can occur using only
documentation and simple data management. Currently, quality inspection is conducted
manually and takes a significant amount of time. Because the recording of production times
and the analysis of processing procedures that occur during the manufacturing process is
not happening, the traceability of manufactured products is impossible and a customer’s
ability to respond to quality issues is also reduced.

As a result, PCB manufacturers now efficiently collect and manage various data regard-
ing manufacturing conditions, which are generated during the processing procedures and
quality control using AI, integrated management and control (via MES implementation),
and the automation of task assignment and real-time monitoring using data visualization,
etc. In particular, it is critical to implement AI methods to automate quality inspection,
predict and maintain equipment, and integrate management with MES. To implement a
differentiated smart factory system that is efficient and suitable for PCB manufacturers, a
system that is capable of collecting and accumulating standard manufacturing data must
first be established. It is necessary to increase the efficiency of task assignment (which is
currently inefficient) to remove the heavy workloads that are biased toward manufacturing
managers. Furthermore, real-time data collection, accumulation, analysis, and utilization
are required to support rapid decision-making, such as automatic task assignment. Second,
it is necessary to boost productivity and product quality by implementing an AI method
that is capable of analyzing and utilizing microscopic data for quality inspection. Third,
work efficiency needs to be improved by applying MES functions that are optimized for
individual companies to create web-based smart factory systems that integrate manufac-
turing management, quality management, facility management, and data visualization
to improve data accessibility and operational efficiency by monitoring the progress of
each stage of production, from order to shipment. Fourth, real-time data visualization is
needed to efficiently manage entire manufacturing sites by monitoring and managing work
status, facility management, quality inspection data, and abnormalities in real time. In this
paper, we propose an NGIM HCPS 2.0-based smart factory system comprising an alarm
level-based double verification framework that is applicable to heterogeneous equipment,
a deep learning-based algorithm, a web-based integrated MES, and data visualization for
real-time field management. This paper makes the following specific contributions:

1. The proposal of a cloud–fog–edge distributed network that can connect heterogeneous
devices in industrial sites using fog- and edge-based (rather than cloud-based) central
control in order to address the bottleneck;

2. The proposal of a knowledge distillation-based algorithm that can efficiently apply
deep learning-based algorithms that require a large amount of computing resources;

3. The proposal of an NGIM HCPS 2.0-based MES function that is optimized for PCB
manufacturers to help them grow into world-class small- and medium-sized busi-
nesses by increasing global corporate competitiveness in the twenty-first century.

This paper is organized as follows. The technical framework and core technology are
reviewed in Section 2. The core technology of the smart factory system that was designed
for PCB manufacturers is detailed in Section 3. Section 4 describes the smart factory system
that was implemented and Section 5 presents our conclusion and future challenges.
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2. Related Work
2.1. PCB Manufacturing Status and Characteristics

PCBs are made up of conductors (usually copper) that can transmit electrical sig-
nals and insulating layers (usually phenol/epoxy [15]). The conductors provide electrical
connections and holes in the layers allow for interconnections between the layers.

The manufacturing process of PCBs is divided into a complex configuration, from
computer aided design (CAD) and computer aided manufacture (CAM) to the inspection
process. Figure 1 depicts the general PCB manufacturing process [16].

Figure 1. The general PCB manufacturing process.

2.2. NGIM HCPS 2.0 Systems

NGIM HCPS 2.0 systems have not only introduced revolutionary changes in creating,
accumulating, utilizing, imparting, and inheriting manufacturing knowledge, but they have
also significantly improved the ability of manufacturing systems to deal with uncertain
and complex problems, which has resulted in significant changes in manufacturing system
modeling and decision-making that could lead to progress [4]. The configuration of NGIM
HCPS 2.0 systems is shown in Figure 2.

For example, when using an NGIM HCPS 2.0 system for an intelligent machine tool,
a digital model of the entire machining system can be built through a process of sensing,
learning, and recognition, which results in high machining quality and efficiency, as well as
low energy consumption [17,18] and high-precision machining. This process can be used
to optimize and control the entire machining procedure. NGIM HCPS 2.0 systems should
be used to comprehensively upgrade all manufacturing activities, including research and
development (R&D), production, sales, services, management, and system integration,
in order to substantially increase quality, efficiency, and competitiveness. In other words,
the essence of NGIM is to develop and implement various HCPS 2.0 systems for various
purposes to provide innovative improvements in social productivity and integrate those
improvements into a network of HCPS 2.0 systems. HCPS 2.0 systems can be regarded
as universal solutions that are capable of effectively addressing the challenges that are
associated with manufacturing industry innovation and upgrades as they can be widely
applied to product innovation, production innovation, and service innovation within man-
ufacturing and process-oriented manufacturing. The development of HCPS 2.0 systems
is expected to proceed as follows: the use of HCPS 2.0 systems to enable manufacturing
systems with next-generation AI technologies. There are several approaches to developing
innovation-driven manufacturing engineering, but two stand out in particular. The first
is an original innovation for fundamental and, crucially, manufacturing technology. The
second approach is the use of common supporting technologies to promote manufacturing
technologies, which can lead to the development of innovative manufacturing technologies
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by combining the two types of technologies and can also be used to upgrade various man-
ufacturing systems. This type of innovation is transformative, integrative, and universal.
The common supporting technologies of the last three industrial revolutions were steam
engines, electric motor technology, and digital technology. AI technology has become a
common supporting technology in the fourth industrial revolution [1]. The integration of
these generic technologies with manufacturing technologies can promote innovation and
upgrades within manufacturing. As a result, NGIM that is based on HCPS 2.0 systems
could be a significant driver of innovation-driven development in the manufacturing sector,
as well as a significant roadmap for innovation and upgrades. However, next-generation
AI technologies must be thoroughly integrated with manufacturing technologies to create
NGIM technologies. Because manufacturing technologies are the foundation for upgrad-
ing manufacturing processes and are used to enable technology, supporting technologies
can only provide full scope when they are integrated with manufacturing technologies.
In summary, manufacturing technologies are the basic foundations and supporting tech-
nologies are the devices and systems that make manufacturing possible. As a result, the
dialectal unity and integrated development of these skills are required. From an intelligent
technology standpoint, NGIM can be viewed as a way to promote and apply advanced in-
formation technology. However, from the standpoint of manufacturing technologies, NGIM
can be viewed as a way to promote innovation through the use of supporting technologies
that enable generic technologies and encourage the upgrade of manufacturing systems in
various industries.

Figure 2. The configuration of NGIM HCPS 2.0 systems.

Manufacturing domain technology refers to technologies that are related to the phys-
ical systems within HCPSs. These include general manufacturing skills and specialized
domain skills [19]. Intelligent manufacturing originated from the manufacturing industry.
As a result, manufacturing technologies are the foundation of HCPSs for intelligent man-
ufacturing. Intelligent manufacturing not only encompasses manufacturing and process-
oriented manufacturing but also product life cycles. Therefore, it covers a wide range of
manufacturing domain technologies [20] that can be classified according to their perspec-
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tives. For example, from the standpoint of manufacturing processes, these technologies
include plastic forming technologies, cutting technologies, casting technologies, welding
technologies, heat treatment technologies, and additive technologies, among others [21–25].
Machine intelligence technology is related to HCPS 2.0 cyber systems, which are based
on the integration of AI technologies with manufacturing domain knowledge to achieve
specific HCPS goals. The cyber systems guide the HCPSs by assisting humans with the
necessary awareness, analysis, decision-making, and control for the HCPSs so that the
physical systems can perform optimally. Intelligent sensing, autonomous recognition, intel-
ligent decision-making, and intelligent control are the four major categories of machine
intelligence technology.

Intelligent sensing is a basis and prerequisite of cognitive learning, decision-making,
and control. Its goal is to effectively acquire all types of internal and external information,
including data collection, transmission, and processing. Detection design, high-performance
sensors, and real-time intelligent data collection are all important technologies [26,27].
Autonomous awareness ensures that the systems acquire the knowledge that they need to
achieve their objectives. This task is critical for effective decision-making and management.
Cognitive tasks in HCPS 2.0 systems are generally completed by the collaboration between
cyber systems and humans. As a result, it is necessary to address any issues that concern
intelligent machine autonomy and human–machine collaboration. System modeling is
another important task in the autonomous recognition process of intelligent machines
(including parameter identification). The core skills include the self-learning of model
structures and model parameters, model evaluation, and self-learning optimization [23].
Intelligent decision-making evaluates the state of the systems and determines their optimal
operation. Decision-making tasks in HCPS 2.0 systems are generally completed by the
collaboration between cyber systems and humans. As a result, it is necessary to solve
any problems that are associated with intelligent machine decision-making and human–
machine collaboration. Key intelligent decision-making techniques include accurate system
assessment, decision-making model optimization, and predictive decision risk analysis [28].

Intelligent control adjusts the systems according to their decisions to achieve their
goals. This task is required to solve problems with human–machine cooperation and ma-
chine autonomy. Dealing with the uncertainty of the systems and their environments is
a key challenge in intelligent control, along with developing intelligent control technolo-
gies, such as adaptive control [12,13]. Human–machine collaboration technologies raise
many uncertain and complex issues that intelligent manufacturing cannot solve solely
using human or machine intelligence. A typical feature of next-generation AI is human–
machine hybrid augmented intelligence. The core critical technology of NGIM (i.e., HCPS
2.0) includes human–computer interaction technologies [11,24–28], as well as cognitive,
decision-making, and control-level human–machine collaboration.

2.3. Cloud Manufacturing Technology

Cloud computing is a new service-oriented computing technology that has emerged
in recent years [14,29]. In cloud computing, highly virtualized computing resources are
organized using a cloud computing platform and a large-scale resource pool is formed
to provide unified services. Individuals and enterprises can access computing resources
on-demand through heterogeneous and self-governing Internet services. It is possible
to respond quickly to changes in demand and work remotely within the same system
environment, regardless of time or location. Figure 3 shows the structure of a cloud system.



Appl. Sci. 2022, 12, 7645 6 of 31

Figure 3. The structure of a cloud manufacturing system.

A cloud manufacturing system consists of manufacturing resources and capabilities.
Those manufacturing resources and capabilities are virtualized and oriented toward service
provision. In cloud manufacturing, the pervasive and efficient sharing and coordination
of resources and capabilities can be achieved using unified and centralized intelligent
management and operation. Cloud manufacturing system also analyze and divide service
requests and automatically search the cloud for the best-matched services. Using a series of
processes (including scheduling, optimization, and combination), a solution is generated
and sent back to the client. The user does not need to communicate directly with every
service node, nor find the specific locations and situation of the service nodes. Through the
cloud manufacturing platform, manufacturing resources and capabilities can be used in
the same way as water, gas, electricity, etc. [30].

2.4. Data Visualization

The visualization layer handles a variety of tasks, such as operational dashboards,
control and governance, data analytics, portal and mobile usage, and application pro-
gramming interface (API) gateways. Operational dashboards display all of the relevant
sensors, devices, and machinery in real time. They also include the basic standard operating
functions of the manufacturing units. Control and governance are controlled from the
command center, based on the real-time monitoring or anomaly detection of machines and
sensors [31]. Data analysis is the process of examining data to identify patterns or trends.
Data analysis and machine learning algorithms are also used to perform predictive and
preventative actions. Analytics and metrics for portal and mobile usage are presented on
graphical user interfaces on consumer applications or mobile devices. The API gateways
display enterprise applications for demand forecasting, inventory management, traceabil-
ity, and other purposes and they also participate in the orchestration of business process
management (BPM).

3. HCPS-Based Smart Factory Model
3.1. System Architecture

Intelligent manufacturing systems are complex intelligent systems that are made up
of humans, cyber systems, and physical systems, which work together to achieve specific
manufacturing goals with high levels of efficiency. This type of intelligent system is known
as an HCPS. HCPSs can be used as technological principles and architecture designs for
intelligent manufacturing. It is possible to conclude that the essence of intelligent manufac-
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turing is to design, configure, and apply HCPSs in a variety of situations and at various
levels [28,32–34]. With the development of information technology, intelligent manufac-
turing has progressed through the stages of digital manufacturing and digital network
manufacturing and has evolved into NGIM. NGIM incorporates advanced manufacturing
technologies (i.e., root technologies) with next-generation AI technologies (i.e., enabling
technologies). It is the primary driver of the new industrial revolution. Figure 4 depicts the
structure of our PCB smart factory system, which was based on an NGIM HCPS system.

Figure 4. The architecture of our HCPS-based PCB smart factory system.

In this paper, the raw data were from a more advanced system, which is currently
required at the manufacturing sites of most PCB manufacturing companies following
the fourth industrial revolution. We discuss the core technology that was designed and
implemented from the standpoint of HCPSs and the intelligent manufacturing system that
was implemented to make it digitized.

3.2. Data Gathering

Data gathering refers to the collection and management of data that were generated
by Internet of Things (IoT) devices and AI methods at an advanced level through an IoT
platform. IoT platforms consist of several layers and components. These platforms are
critical for transforming factories into smart factories. At a high level, IoT platforms must
have the ability to extract data from equipment, sensors, devices, and AI methods, examine
large amounts of data using edge analytics in real-time, and grow with minimal costs. They
also need to store large amounts of data.

Secure industrial demilitarized zone networks (IDMZs) [35] for manufacturing and
enterprise applications, in which sensors and devices are typically connected in factories,
house IoT gateways. The devices are IP-capable and can be uniquely identified on the



Appl. Sci. 2022, 12, 7645 8 of 31

networks. As the costs of sensors and wireless protocols rapidly decrease, sensors become
more affordable and ubiquitous, thereby allowing wireless mesh networks [36] to flourish.
The establishment of continuous connections between the sensors and equipment is critical
to these networks, so the sensors in factories are typically wired using Ethernet cables
(TCP/IP) or connected wirelessly (RFID/ZigBee/Bluetooth).

Edge computing consists of gateway servers or router services that perform the real-
time computing that is necessary to make fast local decisions about data streams for
low-latency control. Edge computing configures machines so that they are closer to devices
for low-latency operations and does not wait for decisions from the subsequent layers of
the data lakes. The decision services also work with the device managers to send control
parameters to programmable logic controllers (PLCs) or open platform communications
(OPCs) for system control and optimization.

Data ingestion refers to a data ingestion layer in which data are processed and further
transformed either by being streamed in real time or in batches from multiple source appli-
cations. Data from multiple sources in various formats (e.g., time series, event streams, log
streams, structured, semi-structured, unstructured, etc.) can be converted into the standard
format for individual enterprises. The data serialization format (for example, Protobuf,
Avro or thrift) is chosen for its speed and consistency. Data quality and harmonization must
be considered, depending on how the data are maintained in the original application. To
receive massive amounts of data, reusable data pipelines can be installed using either an
Apache Kafka cluster or a waterway.

Data lakes are stored in Hadoop distributed file system (HDFS) clusters, relational
database management systems (RDBMSs) (e.g., Oracle, MySQL, MS SQL, etc.), and NoSQL
databases (e.g., Cassandra, Mongo, etc.), depending on the data and usage type. Apache
Spark is used for real-time analytics and is several times faster than MapReduce. For struc-
tured data processing, data are stored in relational format using Spark SQL. Spark scripts
that are written in Scala, Python or Java process and analyze semi-structured or unstruc-
tured data. Spark includes a fundamental machine learning (ML) library that trains and
tests datasets, creates reusable pipelines, and applies prediction or clustering algorithms.

Data integration, enterprise applications, and manufacturing applications are typically
connected using middleware and extract, transform, load (ETL) tools. Data from these
various enterprise systems are extracted into a data lake or data ingestion layer using
middleware or ETL tools. Data are then typically processed using a series of steps that are
called data preparation areas, in which the data are enhanced, transformed, and enriched
into a standardized and sharable form. Before being fed into the lake, the data are typically
combined with multiple IT applications within the realm of data staging. There are several
commercial and open-source ETL products that are available for data integration, which
can migrate and transform massive amounts of data. When the information technology (IT)
application environment is primarily cloud- or SaaS-based, commercial integrated platform
as a service (iPaaS) products are more appropriate.

3.3. AI Method

Currently, the majority of PCB manufacturing companies that perform hole processing
using CO2 laser equipment on packages, F-PCB, and non-memory semiconductor sub-
strates capture images of hole units using high-magnification microscopes and hole size
measurement programs and then manually (visually) inspect and measure the states and
sizes of the holes. The upper and lower circles that are produced by PCB hole processing
range in size from 40 µm to 100 µm (about 0.04 mm to 0.1 mm). One PCB panel can contain
700 million to 8 million holes, which were made during the hole processing. However, hu-
man visual inspection only covers a small portion of the holes and it is anticipated that hole
sizes will continue to shrink in the future, which would limit the success of human visual
inspection. The AI method that we applied to implement our NGIM HCPS-based smart
factory system could be managed in real time to overcome these limitations and improve
productivity due to reduced inspection times and facility utilization rates, the systematic
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image storage management and measurement information, and its integration with an
MES system. This study considered that preprocessing to remove noise was essential for
computers to recognize circle shapes accurately because the human visual inspection of
images that were collected with high-magnification microscopes can identify circle shapes
but computers cannot. Therefore, we intended to maximize the efficiency of our system by
using an algorithm to detect circles and a deep learning-based algorithm to analyze and
learn the detected images.

Current algorithms for detecting circles include the Hough circle transform (HCT),
the histogram of gradient and texture segmentation using the Gabor filter, and random
sample consensus (RANSAC). Of these, RANSAC was able to accurately detect circles even
in noisy parts of the original images.

A semantic segmentation model was introduced to train this process. Segmentation
methods that are based on upsampling or deconvolution mainly include FCN, U-Net,
and SegNet. U-Net is a semantic segmentation network that is based on FCN, which
can be trained using very few images and can outperform the previous best networks
using the ISBI database of cell image segmentation by electron microscopy [37]. The U-Net
network was designed for biomedical images and has been widely used in medical image
segmentation since it was first proposed [38].

Our primary focus when selecting an algorithm to use was addressing "speed, context,
and localization" issues. The U-Net structure has no fully connected layers (only convolu-
tional and downsampling layers) and the network can simultaneously combine low-level
and high-level information (Liu et al., 2021). Due to this feature, although the current
segmentation models create a type of computational waste that slows down the process,
U-Net increases the speed because of the low overlap ratio of the unit that identifies the
images. There are currently few cases in which this AI solution has been implemented
in PCB hole processing. Therefore, by using U-Net (which is a deep learning network
that is renowned for its efficiency in semantic segmentation within the field of medical
artificial intelligence), this study became the first case of integrated medical AI and PCB
manufacturing engineering. The U-Net approach was employed in this study and the
accuracy increased to 96.7% (when utilizing the AI method) from 87% (when utilizing
on-site human visual inspection). This meant that U-Net adequately fulfilled its function in
our NGIM HCPS 2.0 system, so we used it as the algorithm for the "AI technique", among
other methods that utilized different residual 3D CNN networks.

Our future study will compare these different methods, including PSP-NET, RES-
NET, etc., with the aim of achieving 99% accuracy. An algorithm from the classification
field could be used to recognize the different types of defects on PCB substrates. Instead
of concentrating on the AI method, this study concentrated on demonstrating our new
NGIM HCPS 2.0-based smart factory system that could be used by PCB manufacturers by
successfully integrating the modules of each layer, as depicted in Figure 4. The development
of new algorithms and the advancement of U-net utilization via parameter adjustments are
two areas of additional research for the AI approach that could be explored in the future.

The structure of our data gathering processor is depicted in Figure 5. Following
construction, the retrieved original images were stored according to LOT and date. The pre-
processed images were kept once the preprocessed images and the AI measurement images
were combined. After creating a measurement directory for each date, the measurement
images were saved and the analysis information (such as positive/non-determination infor-
mation and size information) was updated in the database by analyzing the LOT reference
information (MES integration) and measurement sizes. Separate AI preprocessing, hole
size measurement and learning, and analysis data were needed in addition to the original
images that were captured by the microscope. The findings from our image information
analysis using the AI method were linked with reference data for each LOT using the MES
and the results were recorded in the database once the data consistency was verified.
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Figure 5. The architecture of our data gathering processor.

Figure 6 depicts the structure of our image inspection system, which employed the AI
method to transmit data from the microscope in the field to the data collection server to
generate the image files and transcripts and collect the data. It continuously monitored the
image files and transcripts and transmitted them to the AI algorithm’s file transfer protocol
(FTP) server while also storing the data in the database. Holes in the image files for which
the hole sizes were not measured using data in the database were measured using the AI
algorithm. The images were then divided into "preprocessed images" and "AI measurement
images" and stored on the FTP server. The algorithm provided the analysis data on the
monitoring screen by combining data from the image files and the database.

Figure 6. The structure of our inspection system when using the AI method.

3.4. Manufacturing Applications

Manufacturing execution systems (MESs) are online transaction processing (OLTP)
systems that record all transactions in the field, such as material movement, input, rework,
scrap, etc. They also provide information. Manufacturing applications can create their own
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in-house MESs to meet the needs of the individual companies. They offer ready-to-use
systems for critical functions, such as LOT traceability and LOT lineage, serial number
traceability, test data capture, label printing, etc. However, when specific companies have
very specific requirements, they must weigh up the distinct advantages and disadvantages
of the two methods to determine which would be best for them [39]. An overall business
process flow diagram is depicted in Figure 7.

Figure 7. A flow diagram of an overall business process.

Programmed logic controllers (PLCs) manage the coordination between equipment,
process steps, and operators to produce finished products. There is usually more than
one PLC in pieces of production equipment. The equipment suppliers program the PLCs
when they supply the equipment [40–43]. Open platform communication (OPC) is a middle
layer that allows for communication between MESs and PLCs. As previously stated, MESs
record all transactions that are performed in the field while PLCs control the equipment
that is used to carry out the process steps. To record the transactions in real time, MESs
must constantly communicate with the PLCs and work closely with the equipment and
other systems to act as “supervisors” in the field. They are also used to control devices
remotely [44].

3.5. Enterprise Applications

Enterprise applications consist of the various IT applications that are used to support
and run businesses [45]. They are primarily made up of applications for PLM, enterprise
resource planning (ERP), and supply chain management (SCM), as well as other custom
applications. ERP provides an integrated platform for running multiple business processes,
such as manufacturing, purchase to pay, order to cash, planning, accounting, costing,
integration, inter-company transfers, etc. Product life cycle management (PLM) is the
process of consistently manages the entire life cycle of a product, from product design to
the production of the final product, in order to increase the added value of the product
and reduce costs. product life cycle management (PLM) systems provide product data,
management server systems, and network systems for multiple client systems. SCM is a



Appl. Sci. 2022, 12, 7645 12 of 31

packaged application that focuses on supply chain planning, predictive management, and
production planning.

3.6. Data Visualization

We developed a system that could collect and monitor production results in real time
by connecting ERP systems, MESs, sensors that are attached to equipment, PLCs, and
machine log files using data visualization. Figure 8 shows a structural diagram of the smart
factory monitoring system.

Figure 8. The structure of our smart factory monitoring system.

Monitoring systems in smart factories connect equipment and machine log files to
transmit the collected information to database servers via intermediary collection devices,
such as tablets. Before beginning work, operators select work orders using tablets and then
start production. The production performance data that are collected from the produc-
tion facility are matched with the work orders and are then transmitted to the database
servers through the tablets. The production performance data are stored in ERP systems in
conjunction with in-house MESs. Managers can monitor the real-time production status
through the monitoring systems and when abnormalities occur, the managers can see that
information in real time.

4. Implementation and Results
4.1. Implementation Environment

The structure of our PCB smart factory system was defined and Figure 9 depicts the
configuration of the hardware (H/W) system that was and the H/W system architecture.
The configuration was broadly classified as follows: server operations; office or field oper-
ations; manufacturing application operations for workers; IoT operations; and real-time
feedback operations.
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Figure 9. The hardware configuration.

The hardware was set up to build and run an MES on a cloud platform that was
simple to secure, use, and manage. Keyed in data were automatically collected and sent to
the MES or data acquisition (DAQ) server via a monitor or a manufacturing application
that was run using this information. In addition, it was configured to enable real-time
monitoring and to manage abnormal occurrences and support real-time decision-making.
The smart factory software was created by integrating all manufacturing-related processes,
from product order to shipment. It integrated all aspects of factory operations, not only
including application systems but also field automation and control automation. Figure 10
depicts the software (S/W) configuration with these characteristics.

Various IoT data from different devices, such as PLCs, barcode readers, temperature
and pressure sensors, machine logs, etc. were automatically collected using OPC-UA, FTP,
and TCP/IP by the edge computer. The smart factory software is created by integrating
all manufacturing-related processes, from product order to shipment. It will integrate
all aspects of factory operations, including not only application systems but also field
automation and control automation [42,43,46–48]. Figure 11 depicts the S/W configuration
diagram with these characteristics in mind.
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Figure 10. The software configuration.

Figure 11. The configuration of the data gathering system.

4.2. Evaluation Metrics

By implementing our integrated manufacturing application that was based on HCPS
2.0, improvements in the productivity, quality, sales, and profit growth of a company were
realized using the evaluation indicators to measure whether each goal was achieved. Target
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values were presented in the first half of 2021 and the improved indicators were set and
managed for each year or specific period. Table 1 shows the KPIs that were presented in
the first half of 2021 and the facility utilization rate represents the increase/decrease in the
number of operating hours for production equipment, based on there being 24 h in a day.
Excluding downtime due to decreases in order volume, the operation rate was calculated
as (actual facility operating time/worksite working hours) × 100. The actual operating
time refers to the time that the equipment spent emitting laser beams and the working
hours are based on there being 24 h in a day. When unprocessed downtime occurred due
to insufficient order volumes, the unprocessed downtime was calculated separately and
managed as a key performance indicator for the sales department, which was the time that
was registered on the production calendar but excluded downtime due to unavoidable
external events or when there were no products to be processed. The process defect rate
represents the number of defects in relation to the production input per process unit and
was calculated as the number of generated defects/process input. The unit of production is
the production scale meter and the unit of defective quantity is the defective square meter.

Table 1. The KPIs of facility utilization rate and process defect rate.

Field
Key

Performance
Indicator (KPI)

Unit Current Target Weight Remarks

P Facility
Utilization Rate % 70 82 0.7

Laser drilling
process, based

on 24 h in a day

Q Process Defect
Rate PPM 1100 900 0.3

To store the facility’s performance data in the form of machine log files in real time, the
IoT platform communicated with the PC that was installed in the facility in real time and
successfully transmitted the data to the designated manufacturing management data server
(DAQ, MES or edge computer) using IP communication. To analyze the outcomes, real-
time monitoring was carried out using data visualization, which consisted of inspection
progress by unit, LOT status by process, progress status by LOT, and facility operation/non-
operation status items. The log file status by facility, log transmission status by facility,
and facility data management were all aspects of IoT data management. Each abnormal
occurrence and quality inspection data point used the prediction/maintenance status and a
real-time decision support system was designed and developed to implement a production
site prediction/maintenance system by linking the task assignment status with the work
order by facility item, as well as abnormal occurrence management. We then checked that
it worked properly.

4.3. Implementation Results

The MES was largely divided into the management, field, production monitoring, mo-
bile, OPC, and AI methods, according to function. Figure 12 shows the MES when divided
by function. All processes, such as product production, equipment, quality, manufacturing
conditions, outsourcing, and management, were covered by the MES for managers. The
on-site MES used an MES in the field to perform certain functions, such as performance
processing and conditions management, and monitoring is carried out so that the collected
information, such as production status and processing status, could be checked in real time.
The mobile MES improved user access to the MES by using a personal digital assistant
(PDA). It used OPC to collect equipment data and then ran a series of processes to control
the equipment. The AI method performed a non-destructive quality inspection function by
measuring the PCB hole sizes.
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Figure 12. A functional diagram of the MES.

A flow chart for each major process is shown in Figure 13. The order information was
received via phone, messenger, and text and order confirmation entailed photographing
and registering customers they entered the customer warehouse.

LOT warehousing referred to LOT warehousing registration that used the PDA to
register the customer management number and the LOT number using an optical character
reader (OCR) function after the LOT check operation, in which the manager could visually
confirm whether the customer registration, product, LOT number, and customer manage-
ment number match was complete. For a product to be issued, the company management
number needed to be confirmed, the preprepared items needed to be checked, and the
company management number needed to be generated. Import inspection was classified
into two types: the visual inspection of defective items to register defect quantity; the
measurement inspection of items to register, compare, and confirm product. There were
also two types of LOT assignment: C-side assignment, which performed unit assignment
after checking the preliminary items but before registering the C-side assignment unit;
S-side assignment unit, which performed unit assignment after checking the preliminary
items but before registering the S-side assigned unit. When there were no problems after
comparing the product, size, and customer size, the C-side preparation for product loading,
machining conditions, machining data confirmation, and machining registration was initi-
ated using the PDA. For the C-side process inspection, there were three types of inspection:
the first inspection, heavy inspection, and final inspection. Microscopic inspection (visual
inspection), surface size measurement inspection, floor size measurement inspection, defect
input, and inspections of the PNL display were all performed in each case.
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After the initial inspection, heavy inspection, and final inspection, the quantity of PNL
that was being sent out after inspection was checked and, after re-inspection, the completion
of C-side processing and the inspection confirmation of the unloaded C-side products were
registered using the PDA. When there were no problems after comparing the product,
size, and customer size, the S-side preparation for product loading, machining conditions,
machining data confirmation, and machining registration was initiated using the PDA.
For the S-side process inspection, there were three types of inspection: first inspection,
heavy inspection, and final inspection. After the initial inspection, heavy inspection, and
final inspection, there were also S-side inspection confirmations to check the quantity of
PNL and the PDA was used to register the S-side processing completion and to unload
the S-side products. Shipment inspection included C-side, S-side, and PNL re-inspection.
The PNL re-inspection continued with the processing status confirmation and inspection
of the PNL quantity, but the process inspection confirmation was defective. Work on re-
confirming the PNL and measurement data is currently underway. Following the LOT
registration, the LOT number/customer management number/product match confirmation,
the creation of inspection reports by type, and final LOT work were completed using
machines and humans to insert separators and check the quantities. There were two types
of waiting for shipment: packing, which involved waiting for delivery after banding;
shipment, which included delivery registration, product boarding, and the registration
of delivery completion. There were also two types of shipment completion: shipment
with registered customer with receiving registration completed; shipment waiting for
customer completion, i.e., waiting for the customer company to complete their stocking
after the shipment.

Figure 13. A flow chart for each major process.

4.4. Implementation of the NGIM HCPS 2.0-Based MES

The facility operation rate improved, as did worker awareness, by using the real-time
facility allocation status analysis. The goal was to increase the facility uptime by preparing
LOT and minimizing facility downtime. Figure 14 shows the status of the facility operation.
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Figure 14. The status of the facility operation.

The qualitative target of the process defect rate was measured once a quarter and
surveys and usage status interviews were conducted. This aimed to improve satisfaction
by generating and improving improvement items. The quantitative performance analysis
was executed once a quarter and the targets were managed by providing comparative data
on the quantitative performance before and after implementation in each quarter. Figure 15
shows the status of a process inspection.

Figure 15. The status of a process inspection.

There was an OPC agent as a component of the IoT platform, which was installed in the
processing machine. It detected changes in the log files that were targeted by the processing
machine and when a change was detected, the relevant file was sent to the server. Because
the machine’s hardware requirements were low, it tried to use as few resources as possible.
The essential requirements of the agent were Windows XP, Windows 7 or Windows 10,
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Java 7 or Java 8, at least 32 MB (but recommended 128 MB) of memory, and a network
environment that could communicate with the server. The agent status and transmitted
log files were collected and stored on a disk by the OPC server. Figure 16 depicts the log
file status for each facility, which were gathered in this manner. The OPC agent compared
the collected files to those in the database and saved the differences. Tomcat 8.5, Java 8,
Microsoft SQL Server 2019, and a network environment that was capable of communicating
with the agent were all required for this process.

Figure 16. Log file status by facility.

In this study, we tried a traditional image processing method to detect holes in images.
At first, when a circle was detected using the existing circle detection algorithm, the correct
circle could not be detected when there was a lot of noise in the image. In addition, after
applying preprocessing technology that separated the color and texture of the area in which
the circle should be detected, an attempt was made to detect approximate circles using the
RANSAC algorithm, but the boundary of the circles was not clear. The reasons that it was
difficult to apply these traditional image processing techniques were as follows.

1. The PCB board was processed using a laser, so there were numerous heat-scorched
marks around the holes; therefore, in order to detect accurate circles by excluding all
of these numerous instances of noise, it was judged that the traditional algorithms for
detecting images that conformed to specific ruled were not suitable;

2. The images of holes were divided into two types: TOP, in which the boundaries of the
holes were clear enough to be identified with the naked eye; and BOTTOM, in which
the boundaries of the holes were not easily distinguished, even by the naked eye;

3. Only the size of the hole was measured to determine whether or not it was acceptable;
in the future, the goal would be to detect various types of defects, such images that
contain foreign substances, images that are tilted to one side or over-processed images.

For this reason, we wanted to measure the hole sizes using the AI method. Therefore,
in this study, our microscopic image analysis that was based on deep learning vision
technology for real-time quality inspection used U-Net, which is a deep learning algorithm
that is effective in the image segmentation of medical images. Figure 17 shows the U-
Net training process. The contour detection algorithm detected an area in the image and
measured the diameter after masking in the hole image. A total of 144 data points were used:
100 training data points, 28 validation data points, and 16 test data points. Figure 17A We
then proceeded with the labeling to designate the holes in the original images. Figure 17B
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shows a list of data points that were displayed in this way. The images in Figure 17C show
the labeling data in the first row, the epoch 25 data in the second row, and the epoch 100
data in the third row. Figure 17D shows the original images, the resulting images, and the
resulting images overlaid onto the original images.

Figure 17. The U-Net training process.

Figure 18 shows detailed information about the hole images that were measured using
the AI method. The table on the left shows the image names, LOT numbers, processing
control numbers, and other detailed information about the holes. The four photos on the
right show an example of an original image, the corresponding preprocessed image that
measured the hole in the original image, the image that was measured by the operator, and
the image and measurement values that were measured by the AI method. These images
allowed the workers to monitor what the AI method was measuring.

Using data visualization, a real-time monitoring program was implemented to view
the status of inspection progress by unit, the LOT status for each process, and the progress
status for each LOT. Figure 19 depicts the inspection process of the HCPS unit, which
calculated and displayed in real time the scheduled inspection time, inspection completion
time, and remaining time for each unit inspection, including the first inspection, heavy
inspection, and final inspection. This allowed the workers to keep track of whether the
inspections were being completed on time.
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Figure 18. Information about an example hole that was measured using the AI method.

Figure 19. The inspection process of the HCPS unit.

Figure 20 shows the LOT status for each process. It was possible to check which LOT
was in each progress by monitoring the LOT status of all of the processes, from order receipt
to shipment.
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Figure 20. The LOT status for each process.

Figure 21 shows the progress status of each LOT. The LOTs could be searched according
to date in order to monitor the status and current progress of each LOT.

Figure 21. The progress status of each LOT.

Figure 22 shows the log file status for each facility and the log transmission status
for each facility, which were implemented by the IoT data management. All of the data
for the log file status of each facility and the log transmission status for each facility were
expressed in table format so that workers could check the data by date, facility, log file,
and LOT.
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Figure 22. The log file status for each facility.

Figure 23 shows the operation/non-operation status and abnormal occurrence man-
agement by facility. Both operation/non-operation status and abnormal occurrence man-
agement were included so that the operation and non-operation status of all facilities could
be checked at the same time to deal with abnormal occurrence management when the
causes of non-operation were abnormal.

Figure 23. The operation/non-operation and abnormal occurrence management by facility.

Figure 24 shows the task assignment status and link to work orders by facility. The
task assignment status and link to work order for each facility acted as a real-time decision
support system to assist in determining which facility to assign to by checking which tasks
were assigned to the current stand-by or production facilities.
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Figure 24. Task assignment status and link to work order by facility.

The proposed service implemented the MES system of the company, which was based
on the laser process and collected real-time production results via the facility interface.
The management of the real-time manufacturing conditions used the data for the facility
PLC linkage, operation time/production performance/manufacturing conditions (time
and processing cycles, etc.) for each facility and database, log file analysis, and statistical
work. It aimed to improve corporate competitiveness by innovating the processes and
quality control using statistical data. To that end, we developed an MES system that could
reduce manufacturing lead times, process defect rates, and delivery times, among other
KPIs, through the facility operation processes, log file collection and analysis, and data
analysis for each facility.

4.5. Evaluation Results

Figure 25 shows the structure of the facility log file transmission and management
system for data gathering. The facility log file transmission and management system was
integrated into the actual implementation environment to operate three laser processing
machines (GTW4, GTW5, and GTW6). Each processor had to have a DV agent installed.

The DV agents were installed in the processors. They detected changes in the log files
that were targeted by each processing machine and when there was a change in a log file,
that file was transmitted to the server. Because the machine’s hardware requirements were
low, it tried to use as few resources as possible. The server collected and saved the log files
that were sent by the agent. It compared the collected files to those in the database and
saved the differences. The database structure was identical to that shown in Table 2, which
shows the information about the DV agents and 61 log files.

Using this, it was possible to extract the processing data from the log files of 24 laser
processing machines, as shown in Table 3.

The inspection accuracy of the AI method was measured by comparing it to the
accuracy of human visual inspection:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

where TP is the number of true positives, FP is the number of false positives, FN is the
number of false negatives, and TN is the number of true negatives. Figure 26 shows a
diagram that contrasts the accuracy of human visual inspection and the accuracy of the
AI results. In order to compare the results from the two methods, 1000 data points were
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randomly selected and the accuracy of the methods was measured. The accuracy improved
to 96.7% when the AI method was applied compared to 87% when human visual inspection
was used.

Figure 25. The structure of the facility log file transmission and management system.

Table 2. The structure of the database.

DV Agent Information

File Data Type Explanation

DEVICE_NAME VARCHAR(10) Device name

DEVICE_TYPE VARCHAR(10) Device type

DEVICE_IP_ARR VARCHAR(10) Device IP list

DEVICE_DT DATETIME2 Heartbeat date

MOD_DT DATETIME2 Update date

REG_DT DATETIME2 Registration date

Figure 26. The ROC and AUC values for the results from the two methods (AI and human visual
inspection).
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Table 3. The data from the log files of 24 laser processing machines.

File Path GTW4 GTW5 GTW6

C:/pban/LOG/aaa.log O O O

C:/pban/LOG/aaaGosa.log O O O

C:/pban/LOG/Almlog.log O O O

C:/pban/LOG/cndselct.log O O O

C:/pban/LOG/length.log O O O

C:/pban/LOG/m370data.log O O O

C:/pban/LOG/M377data.log O O O

C:/pban/LOG/mainte1.log O O O

C:/pban/LOG/maskGosa.log O O O

C:/pban/LOG/PcDirect.log O O O

C:/pban/LOG/pwrdata.log O O O

C:/pban/LOG/sensor.log O O O

C:/pban/LOG/Sinstatis.log O O O

C:/pban/LOG/sinsyuku.log O O O

C:/pban/LOG/table.log O O O

C:/pban/LOG/Zaxis.log O O O

C:/pban/LOG/Sensor/SensorHistory.log O O O

C:/pban/LOG/ProcState.log O O O

C:/pban/LOG/EnergyMeasure.log O O O

C:/pban/LOG/GalvMaskMeasure.log O O O

C:/pban/LOG/PulseEnergy.log O O O

C:/pban/LOG/GlvCndSend.log O O O

C:/pban/LOG/TwinScaleDsp.log O O O

C:/pban/LOG/Marking.log O O O

Table 4 shows KPI evaluation results, in which the facility operation rate refers to the
increase/decrease rate (%) of the operation time of the production equipment compared to
2021 (based on there being 24 h in a day and excluding downtime due to reduced order
volumes) and the process defect rate refers to the increase/decrease in the process defect
rate compared to 2021 (PPM, laser drill processing standards). For the overall achievement
rate, the overall improvement rate was calculated as 26.7 × 0.7 + 40.6 × 0.3% = 30.87% and
the overall goal achievement rate was calculated as 155.8 × 0.7 + 122 × 0.3% = 145.66%. In
the improvement rate calculation method, the increase characteristics were calculated using
(performance − present)/current × 100 (%) and the decrease characteristics were calculated
using (current − performance)/current × 100 (%). In the goal achievement rate calculation
method, the increase characteristics were calculated using (performance − current)/(target
− present) × 100 (%) and the decrease characteristics were calculated using (current −
performance)/(current − goal) × 100 (%). In the improvement/goal achievement average
rate calculation method, the improvement rate was calculated using (index 1 improvement
rate × weight) + (index 2 improvement rate × weight) + (index 3 improvement rate ×
weight). The achievement rate was calculated using (index 1 achievement rate × weight) +
(index 2 achievement weight) + (index 3 achievement rate × weight).
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Table 4. The KPI evaluation results.

Number Field Key Performance Indicator Unit Current Target Performance Improvement
Rate (%)

Goal
Achievement Rate (%) Weight

1 P
Facility Rate

(Increase Characteristics) % 70 82 88.7 26.7 115.8 0.7

2 Q Process Defect Rate PPM 300 200 178 40.6 122 0.3

Total Achievement 33.65 138.9 1

The benefits for production were gained from the effects of increasing worker aware-
ness using real-time facility allocation status identification. Minimizing LOT preparation
and the non-operation time of equipment by identifying equipment in a non-operational
state and LOT non-assignment status improved facility operation rates and shortened facil-
ity operation times. Using systematic defect history management, process inspections could
be performed by the system to identify the causes of defects, improve worker awareness,
prevent unnecessary losses, and reduce defects by establishing accurate work plans and
instructions and by accumulating data for each defect type. The reductions in the number
of defects were identical to those that were found in the analysis.

5. Conclusions

NGIM, the core technology of the fourth industrial revolution, is an unprecedented
technology that can be used for research tasks and overcoming challenges. NGIM faces
three major challenges: system modeling, knowledge engineering, and human–machine
collaboration. Smart factory systems that are designed for the PCB manufacturing industry
must be consistent with the integrated control and optimization management theory,
methods, and technology of processing services within the context of NGIM. To this end, a
smart factory model that was based on an NGIM HCPS system that was suitable for the PCB
manufacturing industry was developed. We redeployed worker roles within production
site management and proposed a management method for product design, production,
resource management, and smart factory utilization. A feedback mechanism was built
at each stage by integrating and applying the collected data and knowledge. Finally,
a “human-centric” production and management technology architecture was proposed
to guide the coordination and optimization of the entire product life cycle, including
design, manufacturing, operation, and maintenance. This work could provide guidelines
for effective collaboration and value sharing, resource scheduling, knowledge services
optimization, and guidance management methods that could adapt to dynamic market
demands. The relationship between humans and cyber systems has qualitatively changed.
Because of our analytical and decision-making abilities, humans can participate in the
operation of cyber systems. Workers also have cognitive and learning capabilities, which
can be taught to cyber systems. The primary role of machines in physical systems is to
reduce specific human and cyber system resources. It is expected that this work could
help to guide technical methods in the three aspects of product design and production
management, resource management, and knowledge discovery and management and
realize the cooperation and optimization of entire product life cycles. Smart factory systems
are essentially real-time loop feedback systems. The operation and maintenance of human–
cyber–physical systems are driven by information and the three systems are interconnected
by high efficiency and quality.

In this study, AI technology was used as a means to realize manufacturing intelli-
gence by creating a smart factory system that was dedicated for the next-generation PCB
manufacturing industry using on an NGIM HCPS. However, operator intervention was
unavoidable in the AI technology that was used in this paper and the operators had to
provide high-quality data to obtain high-quality results. It was not suitable for systems in
which operators directly adjust the magnification, focus, and brightness of microscopes.
However, in future research, it could be possible to reduce operator intervention by pre-



Appl. Sci. 2022, 12, 7645 28 of 31

training the inspection system using data that were collected from various situations, such
as magnification, focus, brightness, etc. In the future, we plan to study the application of
a model that can incorporate image processing technology to restore focus. Furthermore,
automated optical inspection (AOI) equipment could be used to automatically measure
and store images that are manually measured by operators in order to locate and capture
specific holes on PCBs, thereby further reducing inspection times. As a result, we intend to
investigate these issues in future studies to improve the use of manufacturing intelligence
within the PCB manufacturing industry.

6. Study Strengths and Limitations
6.1. Strengths

The digital transformation (DT) of printed circuit board (PCB) manufacturers could
benefit from the findings of this study. South Korea is the only country in which the
top-down management of innovative manufacturing technology has been envisioned as
a concept called "smart factories". In order to conceptualize innovative manufacturing
technologies and develop empirical cases, it is expected that the documentation of the
technologies that emerge as a result of this concept and the encouragement for follow-up
research will be beneficial, not only for South Korea but also for other nations that attempt
digital transformation within manufacturing industries. The field of artificial intelligence
(AI) is incredibly broad and it is becoming a popular issue in many industries. Currently,
there are few examples of AI solutions that are appropriate for Korean manufacturers in the
PCB industry. Therefore, it is challenging to identify cases that could be systemized with
research methodology since it is a relatively new attempt and there are extensive numbers
of AI solutions to be considered. As a result, attempts to integrate AI technology from
other fields into smart manufacturing technology (i.e., smart factories) may inspire future
academic research to combine AI approaches from other manufacturing-related domains.

6.2. Limitations

There have not been any cases of integrated systems that can gather and analyze data
that are generated from various sources at production sites (such as workers, processing
equipment, quality inspection equipment, environmental facilities, and power devices) in
real time, even though PCB manufacturing sites in Korea require more advanced smart
factory systems. Due to this, building and implementing AI methods that are optimized for
quality inspection, facility prediction/maintenance, and the detection of anomalies in pro-
duction equipment, equipment control, and process control present numerous challenges.
As a result, this study aimed to be the first step toward systematization research within
this field by utilizing empirical technology that was directly applied to the field rather
than using current research techniques, which is anticipated to have a favorable impact on
future research.

Although U-Net, etc. were chosen for this study to intellectualize and advance thee
quality testing for hole processing, future research should aim to achieve better perfor-
mances and conduct in-depth research by adopting other algorithms, modifying parameters
or developing new algorithms. It is hoped that more research and debates will be conducted
in the future to develop architectures that can improve intelligent system structures and
the use of AI techniques for anomaly management, facility prediction/maintenance, and
process, as discussed in this paper. Additionally, the foundations and knowledge base of
research within this industry will become further enriched as additional innovations are
derived and published as a result of this study. Through this, we hope that more academic
researchers will explore the use of AI technology in smart factories and that this paper will
inspire more academic studies. The authors of this study will also contribute to this future
research through their ongoing experiments.
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6.3. Opportunities

Research on the application of OPC servers and UA that is utilized by processing man-
ufacturers should be taken into consideration so that the work status and state of processing
machines can be easily gathered and evaluated in real time. When developing intelligent
smart factory systems with real-time feedback that is sent to production sites using AI
methods, intelligent methods that facilitate facility prediction/preservation, abnormal
occurrence management, and automatic task allocation should also be considered.

Additionally, the precise inspection of processing holes could be carried out using the
AI method that was derived from the additional research methods that were mentioned in
this text. Panel quality inspections could also be carried out using AOI (automatic optical
inspection) systems. Through this, it is also conceivable that fresh approaches could be
developed to enable the collaboration of AOI and AI solutions to create integrated smart
quality inspection systems.
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