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Abstract: The visualization of geographic vector data is an important premise for spatial analysis
and spatial cognition. Traditional geographic vector data visualization methods are data-driven,
and their computational costs have increased rapidly with the growth of the scale of data used.
Even if the distributed parallel strategy is used, it is still difficult to achieve a real-time response
when dealing with big geographic vector data (BGVD). To solve this problem, this paper proposes a
viewport generalization model and a visualization method for the online interactive visualization of
BGVD. The method takes the viewport display pixel as the analysis unit and synthesizes the existence
or quantity results of geographic vector data in the corresponding spatial range of each viewport
display pixel into the display value of this display pixel; thus, it converts traditional computational
complexity, dependent on the data scale, into computational complexity dependent on the number of
pixels in the viewport. When the number of pixels in the viewport is much smaller than that of the
geographic vector data, the visualization efficiency is greatly improved. In order to realize the above
conversion, the pixel quadtree index (VPQ) structure and the real-time visualization algorithm of
geographic vector data based on VPQ are proposed. Experiments show that the proposed method
can achieve the near-real-time interactive visualization of BGVD, and provides more than a tenfold
performance improvement over the best existing methods.

Keywords: geographic data visualization; geospatial big data; viewport generalization; parallel
computing; interactive visualization

1. Introduction

The geographic vector data model is the core data model of the geographic infor-
mation system (GIS). Usually, geometric features such as points, lines, and polygons are
used to describe the shape and position of geospatial objects, as well as to describe the
scope and distribution of geospatial phenomena in the geographic vector data model. This
constitutes the basic model for the whole spatial information system to describe spatiotem-
poral entities [1], and is also an important component of modern geospatial big data [2].
With the rapid development of location-based services, geospatial data collection in the
Internet of Things, the crowdsourcing of geographic information, and automated process-
ing technologies of geographic data, the scale of geographic vector data has presented an
explosive growth trend. As of June 2022, the number of global spatial vector features on
OpenStreetMap has reached 8.6 billion [3]. According to the main data bulletin of the third
National Land Survey released in 2021, the number of map spots of land use in the third
national land survey reached 295 million, more than double that of the second national
land survey [4].

The rapid growth of geographic vector data scale brings new challenges to the visu-
alization processing of GIS and online map services in supporting applications such as
interactive exploratory data analysis. Statisticians advocating exploratory data analysis call
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for graphing distributions of each and every variable and displaying them in a geographic
space that provides the necessary sense of location and place [5]. Interactive exploratory
visual analysis is even more important for statisticians to study geospatial phenomena
and laws in the domain of big geographic data [6]. If the overview map of a large-scale
complex geographic vector dataset can be quickly presented to users, it can provide strong
support for users to quickly grasp the coverage, density distribution, and general trend
of geographical spatial phenomena reflected by the data. Through continuous interactive
operations, users can probe and analyze the patterns, relationships, and characteristics
hidden within the data [7]. In these application scenarios, users require the system to
provide a near-real-time response, and also desire the online modification of spatial anal-
ysis constraint parameters through the real-time preview of data visualization, so as to
gradually obtain satisfactory results in a progressive and interactive way. In the existing
research on online visualization technology for geographic vector data, the visualization
results of the dataset are mainly organized and expressed in the form of map tiles. The main
technical difficulties when using map tile data are time-consuming generation, high storage
cost, and the difficulty of making style changes. Under the existing visualization methods,
even if the high-performance parallel technology is adopted to improve the generation
speed of the tile dataset, when the scale of the geographic vector data reaches more than
ten million features, the average time delay of visualization will reach the level of minutes,
which struggles to meet the needs of online real-time interactive applications.

In this paper, a processing framework and algorithm supporting online real-time
interactive visualization are proposed to meet the requirements of big geographic vector
data (BGVD) visualization. The major contributions are as follows:

• A visualization model based on the viewport generalization strategy is proposed. The
method takes the display pixels in the viewport area as processing units and analyzes
the distribution of geographic vector data within the spatial range mapped by each
unit; the analysis results are used to generate the display values of the unit. This
model completely changes the traditional processing idea that geographical vector
elements are treated as processing units. In the model, the computational problem
of drawing geographic vector data is transformed into a spatial analysis problem of
judging the distribution of geographic features in a spatial range mapped by the pixel
unit. Furthermore, the computational complexity dependent on vector feature size
is transformed such that it is instead dependent on the viewport display pixel size.
When the pixel size of the viewport is much smaller than that of the geographic vector
data, the visualization efficiency is greatly improved.

• The index structure supporting the viewport generalization visualization model—
viewport pixel quadtree (VPQ)—is designed. The structure takes viewports and their
display pixels as index objects, records the distribution of geographic vector data in
the pixel-mapping space, and accelerates the analysis and calculation of the display
values of each pixel in the viewport region by a pruning strategy. The structure takes
the viewport display pixel containing vector elements in the mapping spatial range as
the index object, records the distribution of geographic vector data in the mapping
spatial range of the pixel, and accelerates the analysis and calculation of the display
value of each pixel in the viewport region by a pruning strategy.

• Based on the computational characteristics of the viewport generalization model, a
parallel algorithm for the online interactive visualization of geographic vector data
based on the VPQ index is proposed. Compared with the existing methods, it has an
obvious speed advantage and can better support the needs of BGVD interactive visual-
ization in the network environment. At the same time, due to the high computational
speed of the proposed method, the visualization results of geographic vector data at
all scales can be calculated in real time, without the need to generate a cache picture
through predictive calculation. Therefore, compared with the existing visualization
methods based on the physical tile cache, it has the obvious advantage of saving cache
storage space.
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2. Related Work

In the era of big data, massive geospatial data are widely used in various spatiotem-
poral information applications, especially to solve complex geospatial analysis problems,
among which the visualization of spatial data has become an important means of spatial
analysis [8]. Geospatial data visualization helps users to summarize and analyze geospatial
data more intuitively. Visual analysis has become the most promising direction, integrating
human knowledge and experience into the whole process of data analysis and decision
reasoning through a visual interactive interface [9].

In the field of cartography, many mature commercial map services, such as Google
Maps, MapBox, Mapnik, GeoServer, MapServer, etc., allow users to visualize small-scale
spatial data. These tools have rich data visualization styles for users to choose from, and are
used to generate a wide variety of customized map products. Some stand-alone solutions
allow users to visualize geographic data online by reducing the size of spatial data [10].
However, when users need to understand the details of multilevel maps of large-scale
geospatial datasets from the whole to the local scale, these solutions often require a great
deal of processing time to ensure the quality of map visualization.

Facing the growing and complex structure of geographic vector data, traditional
methods such as vector mapping generalization and serial raster slicing techniques are
increasingly struggling to meet visualization needs such as seamless data browsing and
efficient real-time rendering [11,12], which are reflected in the following points: (1) When
the size of geographic vector data increases, the time required to generate tiles increases,
and in extreme cases, the drawing cannot even be completed. (2) As the tile pyramid
hierarchy of geographic data deepens in online applications, the number of tiles required
to navigate high-definition data grows exponentially, posing a huge challenge to storage
organization. (3) The tile pyramid technology directly converts geographic vector data into
static images that cannot be changed, and when the geographic vector data change, the tile
dataset must be regenerated, which causes additional latency that further affects the user
experience when it comes to the exploratory visualization of large-scale spatial data.

In order to improve the performance of tile generation, some studies have introduced
high-performance parallel computing techniques, which are designed on the grounds that
each map tile generation task is independent from the others. How to decompose the
overall task of tile generation into multiple subtasks is one of the key issues for the parallel
visualization of vector data [13]. Li et al. proposed an octree-based multiresolution data
structure and visualization strategy to visualize 3D geospatial data with time series [14].
Laura et al. implemented a parallel contour map classification algorithm based on the
spatial analysis library PySAL [15]. Tang et al. used a graphics processing unit to accelerate
the division of the visualization task into a large number of fine-grained subtasks and
achieved a more significant acceleration performance in their experiments [16]. Guo et al.
proposed an adaptive decomposition method for vector line and polygon features, which
makes the computational intensity more balanced and facilitates parallel visualization by
constructing computational intensity transformation functions and computational intensity
grids, and improves the computational speed nearly linearly, especially in the case of
an extremely uneven data spatial distribution [13]. Eldawy et al. proposed SHAHED, a
MapReduce-based system for querying and visualizing large-scale spatiotemporal data [17],
and experimentally showed that SHAHED could generate a global heat map of 450 million
geographic vector points in three minutes. Eldawy et al. further proposed HadoopViz [18],
a MapReduce-based framework for large-scale spatial data visualization, in which six
examples are implemented in HadoopViz through five abstract functions: scatterplots,
road networks, frequency heat maps, satellite heat maps, vectorized maps, and country
boundaries. Experiments have shown that HadoopViz can support the billion-scale visual-
ization of spatial point data. Yu et al. proposed and further refined GeoSparkViz [19,20], a
distributed spatial data management and visualization framework, which encapsulates the
main steps of the map visualization process into a set of massively parallel map building
operations and provides native support for spatial data map visualization. Experiments in-
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dicate that GeoSparkViz performs substantially better than HadoopViz. Ma et al. proposed
a display-driven BGVD visualization method, HiVision [21], which takes pixels as the
computational unit and generates pixel values by querying the geographic vector elements
affecting the pixel. Experiments have shown that the tile-generation performance of this
method is stronger than that of HadoopViz and GeoSparkViz, and can be used to support
the real-time visualization of BGVD.

To sum up, the current mainstream visualization methods all take vector features
as computing units. In order to obtain visualization images of BGVD, it is necessary to
convert the geographical coordinates of vector features into pixel coordinates one by one to
calculate pixel values. When the number of vector features increases sharply, the calculation
cost of the traditional methods increases significantly. On the contrary, from the perspective
of directly calculating pixel values, it is more advantageous to generate visualization effects
by taking image pixels as computing units and directly calculating pixel values. In the
field of geographic time series data visualization, some experts have also proposed using
data aggregation and generalization strategies to compress information and reduce the
number of variables that need to be displayed [5]. Based on the analysis of the above
research ideas, in our previous work [22–24], we designed a series of methods including the
computing framework, data index, and visualization tool for BGVD visualization, which
achieved a greater performance improvement compared with traditional mainstream
methods. Furthermore, in this paper, we carry out theoretical abstraction and modeling
analysis on the research ideas and processing flow, and obtain the viewport generalization
visualization model, which provides a stronger theoretical support for the method.

3. Materials and Methods
3.1. Viewport Generalization Visualization Model

The key ideas of the viewport generalization visualization model (VGVM) of geo-
graphic vector data are introduced in this section. Traditional geographic vector data
visualization methods generally adopt a data-driven model—that is, starting from each
geographic vector feature, the visualization results under a given resolution viewport are
analyzed and calculated; then, the visualization results of all geographic vector features
are superimposed, combined, and outputted. By summarizing the process of traditional
methods, we propose a general processing model of traditional geographic vector data
visualization methods, which can be expressed by Equation (1). In the equation, di is a
vector feature of the geographic vector dataset D within the viewport, N is the number of
features, V(D) is the result of the visualization processing of D, M(.) is a plotting function
of vector features, and F1 ⊗ F2 ⊗ · · · ⊗ Fk represents the K-connected analytical processing
functions. The meaning of the equation is as follows: For each vector feature in the dataset,
K analysis processing operations are executed in sequence and associated to obtain the
analysis processing result of the feature, and then the results are plotted. Finally, the plotted
results of all vector features are aggregated to obtain the final visualization result V(D).

V(D) = ∑N
i=1 M[F1 ⊗ F2 ⊗ · · · ⊗ Fk(di)], D = (di|i = (1, . . . , N)) (1)

Assuming that the average cost of analyzing each vector feature is A and the average
number of drawn pixels for visualizing the analysis results of each vector feature is P, the
computational complexity of Equation (1) can be expressed as Equation (2).

O[N × (A× K + P)] (2)

We observe that the visualization of geographic vector data is achieved by calculating
the display value of each pixel within the viewport. According to Equation (1), when a
pixel is hit by multiple geographic vector features, its display value may be computed
several times; thus, a large number of redundant calculations are generated.
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Therefore, this paper designs a visualization model from the viewport perspective,
whereby the display values of image pixels are quickly calculated by combining multiple
geographic vector features within the viewport pixel range, as shown in Equation (3). In
the equation, D is the geographic vector data, pi is the pixel with the viewport, C is the total
number of viewport pixels, and R(pi) is a general calculation function of geographic vector
features that can be designed in different forms. In Equation (4), a binarization design of
R(Pi) is shown, the core of which is the comprehensive calculation of the geographic vector
features in the spatial range corresponding to image pixel pi; when there are no geographic
vector features in the spatial range corresponding to image pixel pi, the pixel value is 0.
Conversely, when there are geographic vector features in the spatial range, the pixel value
is 1. At the same time, as in Equation (5), R(pi) can also be designed as a function of the
number of vector features in the corresponding spatial range of pi—that is, a function
related to the density distribution of geographic vector data.

V(D) = ∑C
i=1 R(pi) (3)

R(pi) =

{
0 S(pi) ∩ D = φ

1 S(pi) ∩ D 6= φ
(4)

R(pi) = F(|S(pi) ∩ D|) (5)

As can be seen from the above equation, the visualization result V(D) of the dataset D
has been converted from relying on the plotted value of each vector feature di (Equation (1))
to relying on the intersection result of the corresponding spatial range of the image pixel pi
with D (Equation (3)). Meanwhile, the computational complexity of Equation (3) mainly
comes from the computational complexity of R(pi). From Equation (4), R(pi) can be
regarded as a spatial topology intersection operation. Then, tree indexing can be used,
and the computational complexity of R(pi) in Equations (4) and (5) is generally O(log N).
The overall complexity of VGVM is shown as Equation (6). It can be seen that the cost
is related to C and N. C is the total number of pixels within the viewport, which can be
regarded as a constant, and its value is related to the size of the viewport. In currently used
visualization devices, C is generally no more than a million in magnitude. N is the total
number of vector features.

O(C× log N) (6)

Compared with Equation (2), the VGVM has performance advantages. First, when N
is large, the total calculation time of VGVM, as shown in Equation (6), is less than that of
the data-driven model. Second, as N increases, the complexity of Equation (2) increases
linearly, while the complexity of Equation (6) increases by O(1/N). When N is very large,
the growth tends to zero. Furthermore, if we design a reasonable index structure to further
improve the solving speed of S(pi) ∩ D in Equation (4), it will have better performance
for BGVD visualization. In this process, in order to further improve the solving speed in
Equation (4), a specific spatial index structure can be designed to rapidly generate pixel
display values. The basic flow of the visualization strategy supporting VGVM is shown in
Figure 1.
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Figure 1. Viewport generalization visualization model of geographic vector data.

3.2. Viewport Pixel Quadtree Index Structure

In VGVM, the issue of plotting geographic vector features is transformed to the issue
of querying hit vector features in the spatial range corresponding to display pixels; then, the
display values of pixels are calculated according to the query results. The time-consuming
part mainly comes from the process of querying vector features according to the spatial
range of the pixel. To accelerate this process, we design a viewport pixel quadtree (VPQ)
for display pixels.

3.2.1. Structure Design of VPQ

Quadtree divides spatial regions from two spatial dimensions into four equal rectan-
gular subregions; then, it divides each subregion into four recursive subregions until the
set depth is reached [25]. In order to be compatible with online geographic information
applications, we take the Web Mercator projection [26] of global geographic space as the
description space of geographic vector data, and perform the recursive decomposition of
the spatial range based on quadtree. The projection takes the equator as the central latitude,
the prime meridian as the central longitude, and the intersection of the two lines as the
origin, and the longitude lines are parallel to each other and equally spaced. The projection
does not include part of the north and south poles, and the overall projection area is square
to facilitate the use of quadtree organization.

In the design of index structure, if the spatial range of the index node is aligned with
the spatial range represented by the pixel, the spatial range that affects the pixel value can
be quickly retrieved and the value generated. Accordingly, the index structure of VPQ is
shown in Figure 2. The whole VPQ is composed of isomorphic index nodes. Each index
node contains five parts:

(1) GeoCoding: The unique identification coding of the node. In order to speed up the
spatial intersection calculation efficiency, the node coding adopts Geohash coding.

(2) BBOX: The spatial range of the node.
(3) Count: The number of geographical vector features contained in the node.
(4) Cnodes: Pointers to the four children of the node.
(5) Level: The depth of the node in VPQ.
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Figure 2. Structure of viewport pixel quadtree.

The index range of the root node of VPQ is the global geographic spatial range, and
also serves as the general entrance of spatial range queries corresponding to the pixel. For
branch nodes, if the four subregions of the node spatial range contain geographic vector
features, the left-upper node (LUNode), right-upper node (RUNode), left-bottom node
(LBNode), and right-bottom node (RBNode) pointing to the upper left, upper right, lower
left, and lower right regions, respectively, of the spatial range of the parent node are created
after division, and are arranged in accordance with the z-order spatial filling curve. For
leaf nodes, if the node exists, this means that the node contains geographic vector features.

3.2.2. Construction Method of VPQ

The core of the VPQ index is to analyze the intersection between geographic vector
features and the spatial range corresponding to the VPQ index node, so as to determine the
visual mode of the viewport pixels corresponding to the index node. Geographic vector
data can be geometrically divided into three types: point, line, and polygon. According to
the characteristics of these three features, we design a judgment algorithm to determine
the relationship between geographical vector features and index nodes in Algorithm 1. In
the algorithm, p.type is the type of the geographic vector feature, BBox is the spatial range
represented by a rectangle containing two diagonal points, and intersect and contain are
spatial topology judgment operations.
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Algorithm 1: BBOXIntersectedGeometry: determine the intersection relationship
between spatial range and geographic vector features.

input :spatial range rectangle BBox, geographic vector feature p.
output :True: intersection; False: non-intersection

1 if p.type == point then
2 if p intersect BBox then return True;
3 else
4 return False
5 else if p.type == line then
6 for l ∈ p do
7 if l intersect BBox then return True;
8 else
9 return False

10 else if p.type == polygon then
11 for s ∈ p do
12 if s intersect BBox then return True;
13 else
14 return False

15 if p contain BBox then return True;
16 else
17 return False
18 return

The core idea is that, for point features, the rectangle corresponding to the index node
and point is directly used to judge the intersection. For line and polygon data, each simple
line segment forming the boundary of line and polygon features is judged. As long as
there is a line segment intersecting with the rectangular spatial range of the index node,
the vector feature can be considered to have intersected with the index node. For polygon
features, there is also a case to deal with; that is, although the polygon boundary does not
intersect with the index node, the index node is inside the polygon feature, which is also
judged to intersect with the index node. In the above cases, the intersection judgment can
be summarized as the intersection of a point and a simple line segment with a rectangular
region, which can be quickly judged by geometric computational methods.

According to the structure design of the VPQ index and the determination algorithm
of the intersecting relationship between geographic vector features and index nodes, we
designed the construction process of VPQ index as follows:

(1) Create the root node of the VPQ index according to the global spatial range and set
the maximum depth of the VPQ index.

(2) Perform the necessary coordinate transformation and perform the following Steps 3
to 6 for each feature in the input geographic vector data.

(3) Take the VPQ root node as the current index node R.
(4) The counter, Count, of the R increases by 1. If the level, level, does not reach the

maximum depth, the spatial range, BBox, of R is divided into four spatial subranges,
Slu (upper left), Sru (upper right), Slb (lower left), and Srb (lower right), and algorithm
1 is adopted to test the intersection between the current geographic vector feature p
and the four subregions one by one. If it intersects, the pointer will be positioned at
the child node. If the child node does not exist, the child node of the corresponding
region will be generated.

(5) For each newly positioned child node, take it as the new current node R and skip to
Step 4 to continue the execution.

(6) Continue until there are no new positioning nodes.
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According to the above process, all regions containing geographic vector data have
corresponding nodes in the VPQ index, and the number of geographic vector features is
reflected in the Count attribute of the node. Any region without geographic vector data
has no corresponding node in the VPQ index.

3.3. VPQTree-Based Preview Algorithm of BGVD

In the VGVM of geographic vector data, the issue of geographic vector data visu-
alization is transformed into the query of matching vector features in the spatial range
corresponding to screen pixels. The judgment criterion for calculating pixel display values
is as follows: if the number of vector features within the spatial range corresponding to
the pixel is greater than the set threshold, the pixel value will be generated; otherwise, no
pixel value will be generated. In the VPQ index constructed from geographic vector data,
the index nodes that hit the vector features in the spatial range are created and the spatial
range of the index nodes in the VPQ index is mapped to the spatial range corresponding to
the pixel. Therefore, with the support of the VPQ index, the issue of geographic vector data
visualization can be transformed to query whether the index node corresponding to the
pixel to be calculated exists in the VPQ index.

In this section, we propose a VPQTree-based preview algorithm of BGVD (VPQP) to
generate the pixel display value in the viewport for the final preview display effect. The
main process is as follows: in the process, “partial matching” means that the encoding
of the child node of query node S is consistent with the corresponding prefix digit of the
encoding of the pixel, and “equal matching” means that the encoding of the child node of
query node S is completely consistent with the encoding of the pixel.

(1) Calculate the corresponding spatial range of the pixel according to the pixel number.
(2) Encode the spatial range of the pixel, and set the number of encoding times to 8 at the

tile level to which the pixel belongs, so as to obtain the Geohash encoding of the pixel.
(3) Start the query from the root node of VPQ index, and take the root node as the current

query node S.
(4) Match the Geohash encoding of the pixel with the encoding of the child node of query

node S.
(5) If the two encodings exhibit “partial matching”, the last two digits of the matching

result are used: if they are“00”, the pointer is positioned to the lower left child node; if
they are “10”, the pointer is positioned to the lower right child node; if they are “01”,
the pointer is positioned to the upper left child node; and if they are “11”, the pointer
is positioned to the upper right child node. Otherwise, the pixel value does not need
to be generated and the process ends.

(6) Take the newly positioned index node as the new current query node S and skip to
Step 4 to continue the execution.

(7) The pixel value is generated until the encoding of the child node of query node S and
the encoding of the pixel exhibit “equal matching”.

The VPQP algorithm of geographic vector data is shown as Algorithm 2. In the
algorithm,← is the assignment operation; RT is the stack, which is a data structure that
follows the “first in, first out” rule; Range(.) is the function of obtaining the spatial range of
the pixel; Geohash(.) is the function of obtaining the binary Geohash encoding of a spatial
range; Match(.) is the function that obtains the same substring of both encodings; and
S.Cnodes[lu/ru/lb/rb] represent the four children of node S, respectively.
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Algorithm 2: The VPQP algorithm of geographic vector data.
input :VPQ index VPQTree, pixel P, tile level z, threshold of vector features δ.
output :True: the value of pixel P is generated; False: the value of pixel P is not

generated.
1 R← Range(P) ;
2 encoding← Geohash(R, z + 8);
3 create node stack RT, the root node of VPQTree is pushed into RT;
4 repeat
5 S← the top element of RT;
6 for child node s ∈ S do
7 match_result←Match(s.encoding, encoding);
8 if match_result belong to “partial matching” then
9 take the last two matches last_result of match_result;

10 if last_result == “00” then
11 the S.Cnodes[lu] is pushed into RT;
12 break;
13 else if last_result == “10” then
14 the S.Cnodes[ru] is pushed into RT;
15 break;
16 else if last_result == “01” then
17 the S.Cnodes[lb] is pushed into RT;
18 break;
19 else if last_result == “11” then
20 the S.Cnodes[rb] is pushed into RT;
21 break;
22 else if match_result belong to “equal matching” then
23 if S.count < δ then return True;

24 until RT is null;
25 return False;

4. Experiment
4.1. Experiment Settings

The experiment was carried out on a cluster system consisting of four high-performance
computers as computing nodes. The four computing nodes were connected via a 10-gigabit
Ethernet network. Each node had 32 CPUs and 512 GB of memory. Experimental data were
from the open-source projects OpenStreetMap [3] and OpencellID [27]. Some data with
more than 100 million geographical vector features were selected to verify the efficiency of
the proposed method. The experimental data configuration is shown in Table 1.

Table 1. Configuration of experimental data.

Dataset Type Records Size

P1: OpenCeilliD cell tower locations point 40,719,478 40,719,478 points
P2: OSM all points on the planet point 2,682,401,763 2,682,401,763 points
L1: OSM water areas boundaries linestring 9,211,000 376,208,235 segments
L2: OSM roads linestring 72,336,396 717,048,198 segments
L3: OSM all linestrings on the planet linestring 106,268,554 1,573,469,984 segments
A1: OSM buildings polygon 114,839,692 804,028,282 edges
A2: OSM all polygons on the planet polygon 181,772,692 2,077,524,465 edges

The algorithm code in this paper is based on C++11, and the external function libraries
that were called include Proj 4.9.2, Mpich 3.3.2, Redis 3.2.12, Libpng 1.2.59, Crow 0.3, etc.
The software used for performance comparison relies on libraries such as Boost C++ 1.72,
Hadoop 2.9.2, Spark 2.3.3, SpatialHadoop 2.4.2, GeoSpark 1.2.0, and Mapnik 3.0.22. In the
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experiment, VPQ indexes were established for each dataset, which were saved as index
files in the file system and deployed in each computing node in the cluster environment.

4.2. Comparative Analysis of Geographic Vector Data Visualization Performance

The proposed method was compared and analyzed with the four existing geographic
vector visualization methods, namely, HadoopViz [18], GeoSparkViz [20], Mapnik, and
HiVision [21]. In order to verify the advantages of the method compared with traditional
data-oriented methods, the first three most-representative data-driven geographic vector
data visualization methods were selected, which adopt high-performance parallel comput-
ing architecture to accelerate the realization of big geographic vector data visualization and
have good performance. HadoopViz is implemented based on Hadoop, and GeosparkViz
is implemented based on Spark, a distributed memory computing framework. These two
methods both provide good load balancing to improve the overall computing performance.
For the given geographic vector data, they can quickly generate visualization results in the
form of map tiles in a distributed parallel manner. Mapnik is a high-performance mapping
tool for a wide range of applications, allowing the rapid mapping output of geographic
vector data with a given mapping spatial range and style. At the same time, in order to
verify the performance improvement of this method compared with our previous work, we
also compared the visualization algorithm proposed in our previous work, HiVision, which
is a high-performance visualization algorithm of geographic vector data rasterization based
on the MPI computing framework.

In the experiment, the global tile pyramid division model was used to organize the
visualization results, and six scenes of drawing scale were designed from small to large
(Table 2). First, the experimental data were drawn on a 4096 × 4096 canvas; then, the canvas
was divided along the tile pyramid model layer by layer, with each layer being four times
larger than the previous layer.

Table 2. The design of drawing scenes.

Scene ID Pixel Size

D1 4096 × 4096
D2 8192 × 8192
D3 16,384 × 16,384
D4 32,768 × 32,768
D5 65,536 × 65,536
D6 131,072 × 131,072

We used the MPI + OpenMP hybrid parallel method to execute the proposed algorithm.
According to the total number of CPU cores in the experimental configuration, 128 MPI
task processes were started in the cluster environment, and 2 OpenMP threads were started
in each MPI task process for the parallel computation of the preview drawing in a given
area. Comparative results are shown in Figure 3.

From the experimental results, firstly, it can be seen that among the geographic vector
data visualization methods involved in the comparison, GeoSparkViz takes less time than
the other three methods for drawing scenes with a larger number of pixels. HiVision takes
less time than the other three methods for drawing scenes with a smaller number of pixels.
Compared with the existing methods, the plotting time of the proposed VPQP algorithm is
much smaller than the existing methods on all datasets and in all drawing scenes, and for
the billion-scale datasets, P2, L3, and A2, the plotting time of the algorithm is only 10.4%
(=38.77 s ÷ 373.16 s), 15.2% (=38.11 s ÷ 251.43 s), and 8.8% (=37.86 s ÷ 432.23 s), respectively,
indicating that the proposed algorithm has excellent plotting performance. Secondly, with
the increase in pixel size in scenes D1 to D6, the rendering time of the existing method
increases sharply. Compared with this, the increasing trend of the rendering time of the
VPQP algorithm is small, indicating that the algorithm has low computational complexity.
Then, we observe that as the size of the dataset grows from L1 to L3, the difference in
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plotting time between the three datasets under each plotting scene is small, indicating that
the VPQP algorithm has the property of being insensitive to data size and is suitable for
the preview visualization of BGVD. Finally, the drawing time of the VPQP algorithm in
drawing scenes D1 and D2 is less than 1 s, which indicates that the algorithm has good
performance in supporting real-time previews. In practice, the data preview operation
usually follows a general to local process, and the image size within the screen is usually
smaller than the image size in the above drawing scenes, which shows that the proposed
method has better performance in supporting the interactive real-time visualization of
BGVD compared with existing visualization methods.
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Figure 3. Comparative results of the rendering performance of different methods.

4.3. Analysis of Real-Time Preview Performance

To verify the ability of the proposed VPQP algorithm to support the real-time preview
of BGVD, we randomly selected 3072 × 2048 drawing areas in each experimental scene in
Table 2 and analyzed the average drawing time of each dataset, as shown in Table 1, in
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order to observe the delay performance of the proposed VPQP algorithm for data preview
under the viewport resolution of current mainstream display devices.

In this experiment, we started 64 MPI processes, each containing four OpenMp threads
for generating preview visualization results. We conducted 20 random experiments for
each dataset according to the above settings, and then counted the preview latency of
the generated results. The experimental results are shown in Figure 4. In Figure 4, the
bottom line represents the smallest preview latency, the top line represents the largest
preview latency, and the symbol “×” represents the average preview latency in the repeated
experiments. Since single experiments have a certain degree of chance, we selected the
average value of the preview latency for analysis. The results show that the average
preview latency of all datasets in the 3072 × 2048 region is between 1 s and 1.5 s, which
can support real-time previews in terms of human–computer interactions. We also observe
that although the scale of each experimental dataset in Table 1 is relatively different, their
average preview drawing latency does not differ by much, indicating that the proposed
method is not sensitive to data size. This advantage provides good interaction stability and
data scale adaptation when previewing BGVD.

Figure 4. Real-time performance evaluation of the proposed method.

5. Conclusions and Future Work

Aiming to solve the problem of the real-time visualization of BGVD, this paper explores
a new method that takes the viewport pixel as the visual computing unit, analyzes the
spatial relationship between the spatial range corresponding to the viewport pixel and
geographic vector data, and then judges the pixel value according to the results in terms of
the spatial relationship. The proposed method shifts the dependence of the visualization
calculation cost on the data scale to the viewport image pixel scale. Based on the model,
the viewport pixel quadtree index and the VPQ-based real-time visualization algorithm
are proposed. Experiments on billion-scale data show that the proposed method has a
more than ten times greater improvement in performance compared with the existing
optimal methods, and achieves a real-time computation and visualization preview for
BGVD. Furthermore, the visualization results of the proposed method are all temporarily
stored in memory and do not require external memory space, which is more advantageous
in terms of resource consumption cost than the existing visualization methods that require
a large amount of external memory space to temporarily store tile data.

In the follow-up study, combined with our previous exploration and experimental
attempts, the adaptability of the proposed method to different viewport resolutions needs to
be further studied. The VPQ-based visualization method of BGVD has obvious performance
advantages when the viewport resolution is relatively small, especially when the viewport
covers all features of the geographic vector dataset, and the pixel scale of the viewport
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is much smaller than that of the geographic vector data. However, when the viewport
resolution is relatively large and the size of the viewport pixels is larger than the size of the
geographic vector data, the performance of the existing methods is inferior. Therefore, it is
necessary to further study the adaptability of this method to different viewports.
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