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Abstract: The data privacy leakage problem of federated learning has attracted widespread attention.
Using differential privacy can protect the data privacy of each node in the federated learning, but
adding noise to the model parameters will reduce the accuracy and convergence efficiency of the
model. A Kalman Filter-based Differential Privacy Federated Learning Method (KDP-FL) has been
proposed to solve this problem, which reduces the impact of the noise added on the model by
Kalman filtering. Furthermore, the effectiveness of the proposed method is verified in the case of
both Non-IID and IID data distributions. The experiments show that the accuracy of the proposed
method is improved by 0.3–4.5% compared to differential privacy federated learning.
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1. Introduction

With the development of industry and the improvement in computing power, the ap-
plication of artificial intelligence in various fields of people’s lives has been becoming
more popular, affecting many aspects, including medical care, logistics, face and voice
recognition, etc. There is a wide application of machine learning and profound learning
benefits from computing power and massive data. The traditional machine learning and
deep learning model rely on data centers and require large amounts of high-quality data.
With the increasing requirements of machine learning and deep learning in our lives, the
requirements for data quantity and quality are also higher. In addition, in production
and life, other companies and organizations need to pay to collect massive amounts of
data. Aside from the cost, protecting users’ privacy is also an important factor limiting
the data obtained. To address these issues, Google proposed federated learning [1–3],
which has attracted attention from scholars and organizations. Federated learning can train
models using decentralized data, which significantly increases the amount and quality of
data. On the other hand, the participating nodes are not required to provide their own
local data in federated learning. They only need to deliver the training results to protect
the user’s data privacy. However, federated learning does not make the user’s privacy
completely invulnerable, and the user’s privacy may be obtained through the shared model
parameters [4,5].

Two schemes have been proposed to improve privacy protection in federated learn-
ing, one based on homomorphic encryption [6–9] and the other based on differential
privacy [10–13]. However, these methods have difficulties in practical application due to
their limitations. Differential privacy relies on adding noise to the original data or training
results to protect privacy, and it may reduce the model’s accuracy. Too much noise can
make the model less accurate than expected. At the same time, too little noise will not
achieve the protection of user privacy, making it challenging to balance privacy protection
and accuracy [8]. Homomorphic encryption techniques rely on complex encryption and
decryption computations, which may cost a large amount of time. At the same time, the dif-
ferent computing power of devices and the different time used in complex calculations
situations can make the aggregation unsynchronized [14].
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To solve the above problems of federated learning, Kalman filter-based differential
privacy federated learning (KDP-FL) is proposed. The proposed scheme consists of two
parts, using differential privacy to protect the gradient privacy in federated learning and
using the Kalman filter to reduce the noise added to preserve privacy in order to improve
the accuracy of the global model. The main contributions of this paper are as follows.

(1) A multiparty cooperative model training scheme that protects data privacy is pro-
posed.

(2) A differential privacy federated learning algorithm is proposed to protect user data
privacy by a differential privacy mechanism.

(3) The noise introduced by the differential privacy mechanism is reduced by Kalman
filtering to improve the model’s accuracy.

2. Related Work

Federated learning has been gradually applied to protect the data privacy of all parties
in scenarios where multiple parties cooperate in training and need to exchange data, such
as traffic monitoring [15], edge computing [14], and IoT [16], to ensure that the original
data is not leaked. However, privacy analysis attacks mean that federated learning also
faces the risk of privacy leakage. It is essential to solve the problems of federated learning,
especially gradient privacy protection, where data privacy is a particular concern. There
are currently two privacy-preserving methods in federated learning: (1) differential privacy
and (2) homomorphic encryption.

Abadi et al. [10] proposed a differential privacy deep learning method that combined
machine learning or deep learning methods with differential privacy and proposed a
new computational theory to obtain lower privacy consumption with smaller constraints,
providing a basis for introducing differential privacy in federated learning. Hu et al. [11]
used a block coordinate descent to optimize the objective function and differential privacy,
which could protect gradient privacy but performed poorly in non-convex models.

Zhao et al. [12] used differential privacy federated learning for vehicle nets to train
intelligent traffic management systems to protect vehicle location privacy but did not evalu-
ate the accuracy under the influence of noise. Homomorphic encryption is a cryptographic
method based on the computational complexity theory of mathematical puzzles, where
the model parameters computed by each training node are aggregated and sent to the
specified node after homomorphic encryption, and the model parameters obtained after
decryption are the same as those obtained by direct aggregation without encryption, using
this property to protect gradient privacy. Li et al. [13] used the chain aggregation method to
protect gradient privacy, which improved the accuracy, but the chain aggregation approach
introduced a large communication overhead. Fang et al. [8] used the Pilliar algorithm
combined with federated learning to protect gradient privacy, but the Pilliar algorithm
requires complex power operations, which introduced a large time overhead. Ma et al. [9]
used the multi-key homomorphic encryption (MK-HE) to solve the collusion attack leakage
problem brought by a single key, which improved privacy protection for federated learning.
Zhang et al. [7] improved the encoding method during gradient transmission, reducing the
computational overhead due to encryption but decreasing the accuracy.

To balance accuracy and differential privacy, this paper uses a differential privacy
approach to protect gradient privacy while using Kalman filtering to reduce the impact of
the noise on the accuracy.

3. Proposed Method

This section introduces the Kalman filtering-based differential privacy federated learn-
ing method, which contains a Differential Privacy mini-Batch Gradient Descent Algorithm
and the Kalman reduction parameters aggregation method.
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3.1. Method Overview

There are two types of nodes in federated learning, the Request Node (RN) and the
Training Node (TN). The nodes that need others to assist in training the model are called
the RN, which deliver task requests to other nodes and initialize or update the global model.
The nodes that assist the RN in training the model are called the TN, which train the model
using local data and provide the training results, which is also called the gradient, to the
RN. There are C TNs participating in training each round. The workflow of KDP-FL is
shown in Figure 1. Federated learning contains T rounds of global training. Global training
includes task definition, model update, and local training. The RN defines the task and
initializes the global model. Then, it loops the following steps to finish the global training:

(1) The RN updates the global model parameters and sends them to the TN.
(2) The TN trains the model locally and obtains the local training result for the tth round

of training after e iterations. This step is also called local training.
(3) The TN adds Gaussian noise to the training result and sends them to the RN.
(4) The RN uses Kalman filtering on all the training result to reduce the noise.
(5) The RN aggregates all the training results to obtain the global model parameters for

the next round.
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Figure 1. The workflow of KDPFL.

3.2. Method Details

In this section, we introduce our method in detail. Some significant symbols used in
this paper are defined in Table 1.



Appl. Sci. 2022, 12, 7787 4 of 11

Table 1. Symbol definitions.

Symbol Definition

w0 Initial global model parameters
T Total number of global training rounds
E The number of iterations performed in local training between two global training rounds
λ Learning rate
B Batch size
g Local training result of TN
g′ Local training result of TN after adding noise
w Model parameters of TN in local training
wt Global model parameters in the tth round of global training.
wt,c Model parameters of TNc in the tth round of global training
gt,c Local training result of TNc in the tth round of global training
g′t,c Local training result of TNc in the tth round of global training after adding noise
M Differential privacy mechanism
D Dataset
M Clipping threshold
q Sample probability
I Unit matrix
C The number of TN

3.2.1. Differential Privacy-Based Stochastic Mini-BATCH Gradient Descent (DP-SGD)

TNs train the model locally instead of providing local raw data to the RNs to protect
data privacy, then send the training result to the RN. Algorithm 1 describes the local
training. Each TN uses w0 as the initial local model parameters, uses the local data as the
dataset, and trains the model using the DP-SGD algorithm. In the eth round of the DP-SGD,
the TN performs several iterations to optimize the model parameters. During optimization,
the training results are not sent to the RN, and noise is added to the training result at the
end of the Eth round of optimization of local training. Local training is performed using
the following iteration

w = w− λ
1
B

B

∑
b=1

gb (1)

After E rounds of local training, the training result should be sent to the RN. To protect
the gradient privacy, the results need to be revised using a differential privacy method be-
fore sending. The differential privacy mechanism in this paper is the Gaussian mechanism,
defined in Equation (2), whereN

(
0, S2

f · σ
2
)

denotes a normal distribution with mean zero

and variance S2
f · σ

2.

M(D) = f (D) +N
(

0, S2
f · σ

2
)

(2)

A Gaussian mechanism for a function f with S f as sensitivity satisfies (ε, δ)-differential

privacy if δ ≥ 4
5 exp

(
−(σε)2/2

)
and ε < 1 are satisfied [14]. Then, the local training result

noise addition of the TN is calculated as:

g′ =
1
λ

[
w− w0 +N

(
0, σ2M2 I

)]
(3)

To address the gradient explosion that may occur during the training process, L2 norm
gradient clipping is used. In addition, gradient clipping can limit the gradient values to a
certain range, which is beneficial to the Gaussian mechanism. The clipping threshold is
set to M. The gradient value g does not change when the L2 norm number of the gradient
‖g‖2 ≤ M, and if ‖g‖2 > M, the gradient is clipped as Algorithm 1 described. The gradient
clipping method can be used to control the gradient values from exceeding the set threshold
and prevent the impact of gradient explosion on the model. In addition, after gradient
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clipping, the upper bound of the gradient value L2 norm is ‖g‖2 ≤ M. Limiting the upper
bound can effectively control the variance in the noise distribution.

The use of differential privacy in SGD requires the calculation of privacy consumption,
and there is a risk of privacy leakage when the privacy cost is higher than the privacy budget.
Compared to the strong composition theorem [17], using the Moment Accountant proposed
by Adabi et al. [10] can obtain a smaller σ with the same privacy budget. According to

the theory of Moment Account, for any ε < c1q2T and σ ≥ c2
q
√

T log(1/δ)
ε , the DP-BGD

algorithm is (ε, δ)-differentially private for any δ > 0 where c1, c2 are constants, and q is the
sample probability defined in Equation (4). The variance in the added noise is based on the
number of training rounds and privacy budget.

q =
C
N

BE
|D| (4)

σ ≥ c2
q
√

T log(1/δ)

ε
(5)

The DP-SGD algorithm is shown in Algorithm 1.

Algorithm 1 DP-SGD

Input: Dc; w0, M;
Output: g′

1: w← w0
2: for e = 1 to E do
3: Take a random batch with size B
4: for b = 1 to B do
5: gb ←

∂l(w,xb)
∂w

6: gb ← gb/max
(

1, ‖gb‖
M

)
7: end for
8: w← w− λ 1

B ∑B
b=1 gb

9: end for
10: g′ ← 1

λ

[
w− w0 +N

(
0, σ2M2 I

)]
3.2.2. Kalman Noise Reduction Parameter Aggregation

The TN sends the training result to the RN after adding noise using Equation (3),
and the model parameters of node TNc are noted as gc; then, the RN receives the set of
model parameters G = {g′1, g′2, · · · , g′c}.

The model parameters obtained by the RN contain noise, which will decrease the
accuracy of the model. In order to reduce the impact of differential privacy on the model
and improve the accuracy, it is necessary to revise the model parameters sent by the TN.
In this paper, we use Kalman filtering to revise all model parameters obtained by the RN to
improve the accuracy of the model under the situation where differential privacy noise has
been added to the global model:

g = Kalman
(

g′
)

g′ ∈ G (6)

The details will be described in Section 3.2.3. The global model parameters of the tth
round are obtained after aggregating all the model parameters revised by the Kalman filter;
then, the global model is updated.

wt+1 = wt −
λ

C

C

∑
c=1

gt,c (7)

The KDP-FL algorithm is shown in Algorithm 2.
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Algorithm 2 KDP-FedAvg

Input: Di; w0;
Output: w

1: for t = 1 to T do
2: for c = 1 to C in parallel do
3: TNc do: g′t,c ← DP-SGD(Di, w, M)

4: RN do: gt,c ← Kalman
(

g′t,c
)

5: end for
6: wt+1 ← wt +

λ
C ∑c∈C gt,c

7: end for

3.2.3. Details of Kalman Noise Reduction

The Kalman filter is able to reduce the noise of normal distribution in the linear
system [18]. The noise added to the training result after differential privacy is Gaussian
noise satisfying the condition of normal distribution, and the state update equation is linear,
so the Kalman filter can be used for noise reduction in the training result to decrease the
impact of differential privacy on the accuracy of the model. The noise revising has two
steps, the first step is the model parameters’ update, and the second step is the parameters’
update correction.

There are C TNs in the tth round of federated learning; the model parameters of the
TNc are wt,c, the global model parameters are wt, the parameter vector composed of the
model parameters of all TNs is Wt =

[
wt wt,1 wt,2 · · · wt,N

]
, and the gradient values

of TNc are gt,c. Then, the gradient vector composed of the gradient values of all TNs
is G′t =

[
0 g′t,1 g′t,2 · · · g′t,c

]
. The linear coefficient matrix of the state prediction

equation U is a unit matrix, and V is defined as following:

V =


1 0 0 . . . 0
0 λ

C 0 . . . 0
0 0 λ

C . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . λ
C

 (8)

Then, the parameter update equation for model training can be transformed into the
state prediction equation:

WT
t+1 = UWT

t + VG′Tt (9)

In fact, the parameter update equation Equation (9) for model training can also be
written as: 

wt+1 = wt − λ ∑c∈C g′t,c

wt+1,1 = wt,1 − λgt,1 +N
(

0, σ2M2 I
)

· · ·

wt+1,c = wt, c− λgt,c +N
(

0, σ2M2 I
) , (10)

The noise added by the TN in differential privacy uses the Gaussian mechanism
satisfying Gaussian distribution.

To achieve dimensional matching with U and V, we need the calculation described in
Algorithm 3. The elements in WT

t and G′Tt are all matrix. First, we reshape each element in
WT

t and G′Tt . Let N = m× n, and each matrix wt,c or g′t,c shaped m× n will be reshaped to
N× 1. Let vc,i be the ith parameter in wt,c and $c,i be the ith in g′t,c. Then, we can calculate
Equation (9) using Algorithm 3.
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Algorithm 3 Matrix broadcast calculation

Input: G
′T
t ; WT

t ; U; V;
Output: Wt+1

1: for i = 1 to N do
2: ωi ←

[
vi v1,i v2,i · · · vC,i

]
3: ρi ←

[
0 $1,i $2,i · · · $C,i

]
4: ωT

i ← UωT
i + VρT

i
5: end for
6: wt+1 ←

[
v1 v2 · · · vN

]
7: for c = 1 to C do
8: wt+1,c ←

[
vc,1 vc,2 · · · vc,N

]
9: end for

10: Wt+1 ←
[
wt+1 wt+1,1 wt+1,2 · · · wt+1,C

]
The gradient vector G

′T
k contains noise added by the TN, and the distribution of the

noise is known. The Gaussian noise added by the differential privacy is considered an
external disturbance, i.e., uncertainty in the system.

In Kalman filtering, zt is used to denote the actually obtained data, calculated using
the following equation:

zt = HWt + R, (11)

where H is the data unit transformation matrix. In this paper, the data sent by the TN are
the same as the data obtained by the RN; so, H is the C + 1 dimensional unit vector. R is
the error column vector. In order to avoid the occurrence of a singular matrix in subsequent
calculations, here, R = 0.1Q is taken. The calculation of the Kalman gain matrix using the
noise covariance matrix Pt is

Kt+1 = HPtHT
(

HPtHT + R
)−1

(12)

Since H is a C + 1 dimensional unit vector, the formula for the Kalman gain can be
reduced to

Kt+1 = Pt(Pt + R)−1. (13)

The parameter update equation using the Kalman gain correction is

Wt+1 = Wt + Kt(zt − HWt). (14)

We update the covariance matrix of the norm noise:

Pt+1 = (I − KtH)Pt + Q. (15)

Q ∼ N
(

0, σ2M2 I
)

(16)

4. Experiment and Analysis
4.1. Experiment Setting

The public datasets MNIST [19], FMNIST [20], and CIFAR10 [21] were selected to
train and test. The dataset was partitioned to simulate a federated learning environment,
(1) independently and identically distributed (IID) for each TN [1]: the training data
were shuffled and then partitioned into 100 clients each receiving an equal amount of
examples; (2) non-independently and identically distributed (Non-IID) for each TN [22]:
we distributed the data among 100 TNs, such that each TN contained samples of only two
kinds; the number of samples among the TN followed a power law, as detailed in Table 2.
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Table 2. Dataset details.

Dataset Labels Devices Training Samples
Samples/Device

mean std

MNIST 10 100 60,000 600 328
FMNIST 10 100 60,000 600 328
Cifar10 10 100 50,000 500 293

Using CNN as the training model for MNIST and FMNIST, the network architecture
consisted of two fully connected layers. The convolutional layers used 5× 5 convolutions
with stride 1, followed by a ReLU and 2× 2 max pools, with 32 channels in the first layer
and 64 channels in the second layer. Then the first convolution output was 32× 14× 14
after pools, and the second convolution output was 64× 7× 7 after pools. Last, we had
two fully connected layers and used resnet50 [23] to train the model for CIFAR10.

The experimental environment was an Intel(R) Xeon(R) W-2295 CPU@3.00 GHz,
64 GB RAM, NVIDIA GeForce RTX 3080 GPU, and the experimental platform was Pytorch.
According to the related works [10–12], the parameters of this paper were set as shown in
Table 3.

Table 3. Parameter definitions.

Definition Parameter

Total number of nodes Call = 100
Number of TNs involved in training C = 20
Number of local batches B = 32
Learning rate λ = 0.05
Local training round E = 5
Privacy budget ε = 1 or ε = 5

4.2. Privacy Budget Analysis

Moments Accountant can provide a tighter bound than the composition theorem on
privacy loss. The privacy loss can be calculated by the noise level σ. The privacy loss with
the increasing global epoch is shown in Figure 2. To test the effectiveness of the proposed
method under different privacy budgets, we selected ε = 1 and ε = 5. A larger privacy
budget ε = 5 will result in a more accurate model, and a smaller privacy budget ε = 1 will
achieve better privacy protection. Then, we let δ = 10−5 and computed the noise level σ
using Equation (5).

Figure 2. Privacy loss with increasing global epoch.
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4.3. Experimental Results

The effectiveness of the method is shown by the model accuracy, and the comparison
results are shown in Figure 3. The DP-FedAvg algorithm protected privacy by adding
noise to the gradient matrix, and the impact of privacy protection depended on the size
of the privacy budget. The smaller the privacy budget, the better the privacy protection.
However, as the privacy budget decreased, the noise required to be added increased, which
may lead to a decrease in the accuracy of the model. By comparing the accuracy under
the non-IID dataset, DP-FedAvg in (a) and (c), a higher requirement for privacy protection
needed a smaller ε, which led to lower accuracy of the model. Furthermore, the accuracy
of DP-FedAvg at ε = 1 decreased about 3% compared to that at ε = 5. Furthermore,
the accuracy of DP-FedAvg ε = 1 was lower than ε = 5 and was the same as the pattern
in the IID.

In addition, using different datasets, FMNIST and CIFAR10, the experimental results in
Table 4 show that KDPFL achieved good results in the other two datasets. Hence, the model
is suitable for other datasets. By testing CNN and CIFAR10, the experimental results show
that KDPFL is suitable for different neural network structures and has good compatibility.

Table 4. Accuracy in different models and datasets.

Method

FMNIST (acc/%) CIFAR10 (acc/%)

Non IID IID Non IID IID

ε = 1 ε = 5 ε = 1 ε = 5 ε = 1 ε = 5 ε = 1 ε = 5

FedAvg 86.62 89.56 83.21 86.34
DP-FedAvg 83.17 84.94 86.59 88.02 77.26 79.44 81.23 83.55
KDPFL 86.12 86.23 88.93 89.01 82.76 82.88 85.93 86.03
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Figure 3. Experiment results: (a) non-IID, ε = 1; (b) IID, ε = 1; (c) non-IID, ε = 5; (d) IID, ε = 5.

In this paper, the parameter update equation was transformed into the state update
equation. Furthermore, the global model parameter update, which was completely de-
termined by the TN’s training result, was transformed into the global model parameter
update, which was jointly determined by the estimated value and the TN calculation result.
The Kalman gain coefficient was calculated by the noise covariance matrix, and the weight
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of the estimated value and the predicted value in the global model update were calculated
by the Kalman gain coefficient to realize the optimal global model update.

The Kalman filter noise reduction method, which reduced the noise at aggregation,
decreased the effect of the differential privacy added noise on the model, achieved an
accuracy closer to the FedAvg algorithm without added noise, and performed well with
both non-IID data and IID data. With non-IID data, the accuracy ε = 1 was improved up to
4.5% compared to DP-FedAvg, and the accuracy ε = 5 was improved up to 2.5%. The above
experiments show that the scheme proposed in this paper can protect the user’s privacy
with little loss of accuracy.

5. Conclusions

In this paper, a Kalman filter-based differential privacy federated learning method,
KDP-FL, was proposed. Federated learning was used to achieve data sharing while
preserving privacy. In addition, differential privacy was added to federated learning,
which can resist gradient differential attacks and further protect user privacy. Furthermore,
the influence of the noise added by the differential mechanism on the accuracy of the model
was reduced by the Kalman filter. The experiment results and analysis showed that the
proposed method was able to train models with little loss of accuracy while protecting user
privacy. KDP-FL is suitable for training privacy-preserving models under multiple nodes
and can help in data cooperation among multiple nodes.

When the neural network is simple, the additional computational overhead brought
by Algorithm 3 is negligible. However, when the neural network is complex with a large
number of parameters, optimizing all parameters requires calculating the Kalman gain
for each parameter, which will bring about a non-negligible additional computational
overhead.

In addition, the proposed method used Kalman filtering, which increases the com-
putational overhead and is not applicable to devices and nodes with weak computational
power, which is a direction for future improvement.

Author Contributions: Conceptualization, X.Y. and Z.D.; data collection and analysis, Z.D.; valida-
tion, X.Y.; writing—original draft preparation, Z.D.; writing—review and editing, X.Y. and Z.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Ministry of Science and Technology of China, National
Key R&D Program “Cyberspace Security” Key Project, 2017YFB0802305 and the Natural Science
Foundation of Hebei Province, F2021201052.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The source code
can be found here: https://git.acwing.com/dzj/kdpfl.git (accessed on 29 July 2022), and the datasets
can be found here: https://pan.baidu.com/s/1PVFJ7vnezGe9jEp8Pgh_fg?pwd=n2w5 (accessed on
29 July 2022).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. Artif. Intell. Stat. 2017, 54, 1273–1282.
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