
Citation: Zhang, X.; Colbert, I.; Das,

S. Learning Low-Precision Structured

Subnetworks Using Joint Layerwise

Channel Pruning and Uniform

Quantization. Appl. Sci. 2022, 12,

7829. https://doi.org/10.3390/

app12157829

Academic Editors: Deliang Fan and

Zhezhi He

Received: 1 July 2022

Accepted: 23 July 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Learning Low-Precision Structured Subnetworks Using Joint
Layerwise Channel Pruning and Uniform Quantization
Xinyu Zhang 1,†, Ian Colbert 2,† and Srinjoy Das 3,*

1 Department of Computer Science, Rutgers University, New Brunswick, NJ 08901, USA
2 Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, USA
3 School of Mathematical and Data Sciences, West Virginia University, Morgantown, WV 26506, USA
* Correspondence: srinjoy.das@mail.wvu.edu
† These authors contributed equally to this work.

Abstract: Pruning and quantization are core techniques used to reduce the inference costs of deep neu-
ral networks. Among the state-of-the-art pruning techniques, magnitude-based pruning algorithms
have demonstrated consistent success in the reduction of both weight and feature map complexity.
However, we find that existing measures of neuron (or channel) importance estimation used for such
pruning procedures have at least one of two limitations: (1) failure to consider the interdependence
between successive layers; and/or (2) performing the estimation in a parametric setting or by using
distributional assumptions on the feature maps. In this work, we demonstrate that the importance
rankings of the output neurons of a given layer strongly depend on the sparsity level of the preceding
layer, and therefore, naïvely estimating neuron importance to drive magnitude-based pruning will
lead to suboptimal performance. Informed by this observation, we propose a purely data-driven
nonparametric, magnitude-based channel pruning strategy that works in a greedy manner based on
the activations of the previous sparsified layer. We demonstrate that our proposed method works
effectively in combination with statistics-based quantization techniques to generate low precision
structured subnetworks that can be efficiently accelerated by hardware platforms such as GPUs
and FPGAs. Using our proposed algorithms, we demonstrate increased performance per memory
footprint over existing solutions across a range of discriminative and generative networks.

Keywords: channel pruning; layerwise pruning; quantization; joint pruning; quantization

1. Introduction

The performance of deep neural networks (DNNs) has been shown to scale with the
size of both the training dataset and model architecture [1]; however, the resources required
to deploy larger networks for inference can be prohibitive as they often exceed the compute
and storage budgets of resource-constrained platforms such as mobile or edge devices [2,3].
Therefore, as the usage of deep learning has proliferated in real-time applications with tight
energy consumption budgets and low latency requirements, the field of research focused
on reducing inference costs while maintaining model performance has rapidly expanded
in recent years. Of the many techniques studied to accomplish this task, pruning and
quantization are the most widely used and are often complementary to other approaches
such as network distillation [4] and neural architecture search [5,6].

Pruning (i.e., the process of removing identified redundant elements from a neural net-
work) and quantization (i.e., the processing of reducing their precision) are often considered
to be independent problems [7,8]; however, recent work has begun to study the application
of both in either a joint [2,6,9,10] or unified [11,12] setting. Unified algorithms typically
use mixed precision quantization and integrate pruning by reducing the precision of an
element (or a set of elements) to 0. On the other hand, joint algorithms combine separate
optimization objectives for pruning and quantization under one learning framework, often

Appl. Sci. 2022, 12, 7829. https://doi.org/10.3390/app12157829 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157829
https://doi.org/10.3390/app12157829
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1669-5519
https://orcid.org/0000-0003-3821-8112
https://doi.org/10.3390/app12157829
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157829?type=check_update&version=2

Appl. Sci. 2022, 12, 7829 2 of 20

using the standard “prune-then-quantize” paradigm [2]. In this work, we study the joint
application of pruning and quantization under this paradigm across both discriminative
and generative tasks for the purpose of learning low-precision structured subnetworks that
can be efficiently accelerated by highly-parallelized hardware platforms.

Motivated by our observation that data-driven measures of neuron importance strongly
depend on the activation distribution of the preceding layer, we design a greedy layerwise
channel pruning algorithm that is heuristically guided by nonparametric estimates. We
evaluate the performance of our algorithm using various pruning schedules and alter-
native measures of neuron importance based on pre-existing literature and observe that
our greedy layerwise algorithm yields consistent benefits. Intuitively, our results suggest
that, by allowing a given layer to adjust to abrupt shifts to its input activation distribution
before pruning, the heuristics used to rank order neurons by importance become more
effective, which leads to improved network performance. Furthermore, when combined
with our moving average statistics-based uniform quantization procedure, we are able to
learn low-precision structured subnetworks with minimal performance degradation for
both discriminative and generative tasks. Our joint pruning and quantization algorithm is
visualized in Figure 1, where we depict the sequence of pruning and quantization steps
used during training. As further described in Section 4, our framework uses data-driven
importance measures to guide our greedy layerwise channel pruning algorithm before
our quantization operator is activated to reduce the precision of both the weights wi and
activations hi for each layer i ∈ {1, · · · , L}. The pruning mask for each layer i is evaluated
for tp steps before moving to layer i + 1. After all layers are pruned to a target sparsity, we
activate the quantization operators and fine-tune for tq steps. It is important to note that,
while only the pruning mask of one layer is tuned every tp steps, the weights in all layers
are updated through gradient descent in every step, and latent operators act as identity
functions until activated.

Quantize

Prune Quantize

Quantize

Prune Quantize

Quantize

Prune Quantize

Quantize

Prune Quantize

tra
in

in
g

sc
he

du
le

computational order

Quantize

Prune Quantize

Quantize

Prune Quantize

...

Figure 1. We introduce a joint layerwise channel pruning and uniform quantization framework built
from algorithms formulated using moving average statistics. Here, yellow blocks denote operators
actively being evaluated, clear blocks with dotted lines denote latent operators that have yet to be
activated, and white blocks denote activated operators that have already been evaluated.

The primary contributions of our work are as follows:

1. We design a greedy layerwise channel pruning strategy using a nonparametric data-
driven importance measure built without invoking any distributional assumptions.

Appl. Sci. 2022, 12, 7829 3 of 20

2. We build a fully data-driven nonparametric framework to learn performant low-
precision structured subnetworks by combining our layerwise channel pruning algo-
rithm with quantization-aware training.

3. We evaluate our algorithm using alternative pruning schedules and neuron impor-
tance measures and demonstrate clear advantages over pre-existing approaches.

4. We demonstrate increased performance per memory footprint over existing solutions
across a wide range of discriminative and generative computer vision tasks.

The outline of the rest of the paper is as follows. In Section 2, we review prior work
in neural network pruning and quantization. In Section 3, we motivate our intuition for
data-driven layerwise pruning using nonparametric measures of correlation and distance
between rank orderings of neuron importance. In Section 4, we describe our layer-by-
layer channel pruning and moving average statistics-based quantization-aware training
algorithms. In Section 5, we evaluate the performance results of our joint channel pruning
and uniform quantization framework using discriminative and generative networks. In
Section 6, we conclude the paper and discuss directions for future work.

2. Background

Our work explores the joint application of channel pruning and uniform quantization
on both the weights and activations of deep neural networks. Here, we motivate our
selected configurations for both.

2.1. Pruning

Neural network pruning techniques aim to reduce the inference costs of overparam-
eterized models by identifying subnetworks that minimize memory requirements while
maintaining task performance. In practice, pruning is often performed by setting the values
of identified elements to zero, and the proportion of zero-valued elements is referred to
as sparsity, where higher values correspond to fewer non-zero elements. Given a target
sparsity, there are a variety of criteria used to identify which elements to prune; the most
important of which are the topology constraints on the resulting subnetwork, the measure
used to rank elements by importance, and the schedule in which elements are pruned.

Topology constraints for pruning techniques can be divided into structured or unstruc-
tured approaches. Structured pruning techniques introduce sparsity in varying levels of
granularity (e.g., entire kernels or channels), whereas unstructured pruning techniques
impose no constraint on the topology of the sparsity scheme, as shown in Figure 2. Due
to their inherent flexibility, unstructured pruning techniques can offer high compression
rates with minimal accuracy degradation [2,13]; however, they bring little hardware effi-
ciency due to poor data locality caused by irregular sparsity patterns, which create minimal
opportunities for parallelism [14,15]. Alternatively, structured pruning techniques offer
more hardware-friendly implementations, often by removing entire channels. This not only
reduces the compute workload in a manner that is easily accelerated by most computing
platforms [14] but also reduces energy consumption as activations dominate data transfer
costs for both discriminative [16] and generative [17] models. Therefore, we focus on
channel pruning in this work.

Appl. Sci. 2022, 12, 7829 4 of 20

Input
Activations Weights Output

Activations

feature maps parameters convolution layer pruned

(a) Structured Pruning

Input
Activations Weights Output

Activations

feature maps parameters convolution layer pruned

(b) Unstructured Pruning

Figure 2. We depict the differences between structured (a) structured pruning and (b) unstruc-
tured pruning.

Various measures have been proposed to heuristically determine the relative im-
portance of channels in a neural network. Weight magnitude has become the standard
importance measure used to guide unstructured pruning algorithms [2,13,18], intuitively
suggesting that larger magnitudes have greater influence in the network. Thus, weight mag-
nitude can be extended to rank order channels using the `1-norm of channel weights [19].
We refer to such importance measures as data-free, as they do not require a data distribution
to estimate neuron importance. Alternatively, purely data-driven approaches such as [20]
prioritize removing redundancy from the information (i.e., hidden activations) propagated
through the network from the input data. This class of techniques has shown tremendous
promise in finding performant structured subnetworks by heuristically guiding pruning al-
gorithms to minimize feature reconstruction error [15], remove underutilized channels [20],
or minimize the mutual information between successive layers [21]. However, we find that
these approaches are limited by one or two key oversights:

1. They do not consider the interdependence between successive layers in a neural
network when measuring neuron importance, as in the case of [19,20,22].

2. They either use a parametric setting or invoke distributional assumptions on the
activation data that may not hold true for all network architectures, as in the case
of [15,21,23,24].

In this paper, using a completely nonparametric framework, we design a layerwise
channel pruning algorithm using a data-driven measure of channel importance. Using tar-
geted statistical experiments, we focus on some important differences between data-driven
and data-free approaches when constructing our pruning algorithms. These experiments,
further discussed in Section 3, also motivate the rationale for our layerwise approach.

Appl. Sci. 2022, 12, 7829 5 of 20

2.2. Quantization

We are interested in quantization for the purpose of accelerating our structured sub-
networks on mobile or edge devices; thus, we construct our “quantization” and “dequan-
tization” operators from the standard uniform affine mapping from a high precision real
number r to a low-precision quantized number q using a scaling factor s and zero-point z,
as given by Equation (1). Although more complex non-uniform and non-linear mappings
have been considered [4,25], their utility and practicality are often circumstantial as they
require dequantization before performing computation in the high precision real domain
and are thus far less efficient on resource-constrained hardware [26].

r = s · (q− z) (1)

As is standard practice, our quantizer (Equation (2)) and dequantizer (Equation (3)) are
parameterized by scaling factor s and zero-point z. Here, s is a strictly positive real scaling
factor and z is an integer value that maps to the real zero such that the real zero is exactly
representable in the quantized domain. This ensures the numerical fidelity of common
operations such as zero-padding [27,28]. Here, b·e denotes the half-way rounding function
and clip(x; n, p) = min(max(x, n), p), where n and p are the clipping limits defined by the
bitwidth b. For signed integers, n = −2b−1 and p = 2b−1 − 1. For unsigned integers, n = 0
and p = 2b − 1. As is standard practice, we use per-tensor scaling factors on the activations
and per-channel scaling factors on only the weights [29].

quantize(x; s, z) := clip(
⌊ x

s

⌉
+ z; n, p) (2)

dequantize(x; s, z) := s · (x− z) (3)

As reported in previous studies, eliminating zero points in the quantization mapping
such that z = 0 reduces the computational overhead of cross-terms when executing in-
ference using integer-only arithmetic [29,30]. This strategy is commonly referred to as
symmetric quantization, with asymmetric quantization as its alternative. To demonstrate the
computational overhead of cross-terms introduced by asymmetric quantization, consider
the real values for input activation x, weight w, and output activation y mapping to quan-
tized values qx, qw, and qy, respectively. The arithmetic for their product, y = x ·w, becomes
the following:

sy(qy − zy) = sx(qx − zx) · sw(qw − zw) (4)

where sx, sw, and sy represent their respective scaling factors and zx, zw, and zy represent
their respective zero points. This simplifies to the following:

qy =
sxsw

sy
(qxqw − qxzw − qwzx + zxzw) + zy (5)

These cross-terms often require non-trivial optimizations to remain efficient; how-
ever, by constraining the quantization scheme of all weights in a DNN to be symmetric
(i.e., zw = 0), we can mask the overhead of asymmetric quantization on the activations
without any additional hardware or software optimizations as the arithmetic simplifies
to Equation (6), where l denotes layer l ∈ {0, · · · , L} in a neural network with L sequen-
tial layers. (

q(l+1)
x − z(l+1)

x

)
=

s(l)x s(l)w

s(l+1)
x

q(l)w

(
q(l)x − z(l)x

)
(6)

Note that, when using a symmetric quantizer on both the inputs and outputs to the
neural network (i.e., x(0) and x(L), respectively), we can freely use asymmetric quantization
on the hidden layers without any overhead caused by the cross terms in Equation (5).
While previous works have alluded to this optimization [26], we are not aware of any
research that has explicitly exploited it as we do. In our work, we focus on uniform affine

Appl. Sci. 2022, 12, 7829 6 of 20

quantization, where we apply symmetric, per-channel quantization to the weights and
asymmetric, per-tensor quantization to the activations.

3. Motivation

To demonstrate the interdependence between successive layers in a neural network, we
inject structured sparsity into the input activations of a given layer within the network and
evaluate how this leads to a shift in output channel importance rankings with respect to the
dense input activations (i.e., when there is no input sparsity). To rank order output channels
by importance, we use two measures: (1) the mean `1-norm of the output activations
generated by each channel, and (2) the `1-norm of the learned weights for each output
channel. For a given layer i with hidden activations hi and Ci output channels, we denote
the importance estimates for each channel as µi,c where c ∈ {1, · · · , Ci}. In order to compare
two sets of rankings, we use the following nonparametric measures:

• Kendall’s Coefficient of Rank Correlation [31]:
For a given layer i with Ci outputs channels, let the rank orderings of two sets of
importance estimates µi = {µi,1, · · · , µi,Ci} and νi = {νi,1, · · · , νi,Ci} be given by
rµi and rνi , respectively. The Kendall’s coefficient of rank correlation measures the
similarity between rµi and rνi . The statistic τ (referred to as Kendall’s Tau) is given
below in Equation (7), where sign(x) is given by Equation (8). Here, τ = 1 is a
perfect relationship, τ = 0 is no relationship at all, and τ = −1 is a perfect negative
relationship.

τ =
2

n(n− 1) ∑
k<j

sign(µi,k − µi,j) · sign(νi,k − νi,j) (7)

sign(x) =

+1 if x > 0

0 if x = 0
−1 if x < 0

(8)

• Levenshtein Distance [32]:
For a given layer i with Ci outputs channels, let the rank orderings of two sets of
importance estimates µi = {µi,1, · · · , µi,Ci} and νi = {νi,1, · · · , νi,Ci} be given by
rµi and rνi , respectively. The Levenshtein distance between these two sequences of
ranks, which we denote as lev(rµi , rνi), is defined as the minimum number of single
element edits required to change rµi to rνi . The distance is formally defined using
recursion as given by Equations (9) and (10). The function tail(r) of an ordered set of
n elements returns all but the first element of the string such that r = {r(1), · · · , r(n)}
and tail(r) = {r(2), · · · , r(n)}, where we denote element j of ranked set rµi as r(j)

µi . Here,
lev(rµi , rνi) will have a low value close to 0 if rµi and rνi are very similar; otherwise, it
will have a high value.

lev(rµi , rνi) =

length(rµi) if length(rνi) = 0
length(rνi) if length(rµi) = 0

lev
(
tail(rµi), tail(rνi)

)
if r(1)µi = r(1)νi

1 + f (rµi , rνi) otherwise

(9)

f (rµi , rνi) = min
(
lev(tail(rµi), rνi), lev(rµi , tail(rνi)), lev(tail(rµi), tail(rνi))

)
(10)

To perform our evaluation for a discriminative task, we train LeNet5 [33] models
to classify MNIST [34] images. For a generative task, we train convolutional variational
autoencoders (VAEs) to generate MNIST images1. For each case, we independently train
30 models using different random seeds. Our 30 LeNet5 models have an average test
accuracy of 98.2% with a standard deviation of 0.003%, and our 30 VAEs have a mean
Fréchet inception distance (FID) [35] of 9.81 with a standard deviation of 0.725. In Figure 3,
we provide sampled images generated from a randomly selected VAE. These metrics

Appl. Sci. 2022, 12, 7829 7 of 20

and images are provided as supporting evidence that we use fully trained models in our
statistical analysis, which forms the basis of our conclusions in this section.

(a) Original Images (b) Generated Images

Figure 3. We provide random images generated from one of our VAEs trained on MNIST [34].

For LeNet5, we evaluate the importance of the 16 output channels of the second layer
when iteratively pruning its six input channels. For the VAE, we evaluate the importance of
the 16 output channels of the second layer of our decoder, which has 32 input channels. We
increase the sparsity of the input channels using the rank ordering of the original unpruned
network as determined by the mean `1-norm of its activations when estimated over the
test dataset. We denote the importance estimate of the preceding layer as µi−1 and the
respective rank ordering as rµi−1 . Note that µi−1 = {µi−1,1, · · · , µi−1,6} for LeNet5 and
µi−1 = {µi−1,1, · · · , µi−1,32} for our VAE. For each level of input sparsity, which we denote
as s, we then rank order the output channels using the mean `1-norm over their respective
activations also estimated over the test dataset. We denote the rank ordering of output
channel activations by importance measure µi for a given sparsity level (s) as rµi |s. Note
that this sparsity level is over the input of our activation distribution, not the layer being
evaluated, and the importance estimates of the evaluated layer i is µi = {µi,1, · · · , µi,16} for
both LeNet5 and our VAE.

To evaluate the interdependence between successive layers, we iteratively increase
the sparsity (s) of the input activations according to µi−1 for both our discriminative and
generative models and measure the Kendall coefficient τ and Levenshtein distance between
rµi |s (i.e., the rank order of the output channels of layer i by importance measure µi when
input activations hi−1 have a sparsity of s > 0) and rµi (i.e., the rank order of output
channels of layer i by importance measure µi when input activations have no sparsity). We
visualize the results in Figure 4. For brevity in the titles of our plots, we use sparse activations
to refer to the rank order of the output channels of layer i when using the mean `1-norm of
the output channel activations as the importance measure µi when input activations hi−1
have a sparsity of s (i.e., rµi |s); alternatively, we use dense activations when input activations
hi−1 have no sparsity (i.e., rµi). We use dense weights to refer to the rank order of the output
channels of layer i when using the `1-norm of the channel weights as the importance
measure νi (i.e., rνi). We observe that as the input activation sparsity s increases from 0 to
100%, the correlation between rµi |s and rµi gradually decreases and the Levenshtein distance
gradually increases. We repeat this process using the `1-norm of our channel weights as our
measure of importance, which we will denote as νi; however, the `1-norm of our channel
weights is a data-free measure that is by definition invariant to this sparsity injection.
Therefore, when iteratively increasing the sparsity of the input activations according to
νi−1, we measure the relationship between our data-driven rankings rµi |s and data-free
ranking rνi . We observe that the correlation between rµi |s and rνi is much weaker, and their
relationship is not as severely affected by the sparsity of the input activations.

Appl. Sci. 2022, 12, 7829 8 of 20

(a) LeNet5 Correlation Evaluation (b) VAE Correlation Evaluation

(c) LeNet5 Distance Evaluation (d) VAE Distance Evaluation

Figure 4. As discussed in Section 3, we evaluate the Kendall coefficient of rank correlation (top row)
and the Levenshtein distance (bottom row) over 30 independently trained discriminative models (left
column) and generative models (right column). We plot the correlation and distance between rµi and
rµi |s in blue, and the correlation and distance between rµi |s and rνi in green.

From these experiments, we draw the following conclusions. First, data-driven chan-
nel importance rankings (e.g., the rankings of output channels by the `1-norm of activation
distributions) are heavily impacted by the sparsity of the preceding input activation distri-
bution2. Given this, we hypothesize that we can increase the effectiveness of data-driven
pruning criterion by allowing a given layer to adjust to shifts in its input activation before ap-
plying pruning. Second, data-driven and data-free channel importance measurements are
weakly correlated. Therefore, when used to heuristically guide channel pruning algorithms,
we expect that these two importance measurements will behave differently under extreme
levels of sparsity. It is important to note that we cannot conclude which ranking is necessar-
ily “correct”, as these experiments only demonstrate that they are “different”. In Section 5,
we empirically evaluate the performance of these neuron importance measurements using
various pruning schedules to provide further insights.

4. Algorithms

For the purpose of describing our pruning and quantization algorithms, we first
introduce our notation. We denote the input data to a neural network with L layers as x
and, for discriminative tasks, its associated output label as y. We denote the activations of
the network as {hi}L

i=1, where hi denotes the activations of hidden layer i and h0 = x for
convenience. The set of weights of each layer are denoted as {wi}L

i=1, where wi is the set
of weights for layer i with Ci output channels, which we refer to as neurons. Finally, we
denote the binary mask used to prune each layer as {mi}L

i=1 and the importance estimates
of each neuron as {µi}L

i=1, where mi,c ∈ {0, 1} and µi,j ∈ R+ are, respectively, a scalar
value for the binary mask and non-negative importance estimate for each neuron c in layer
i, where c ∈ {1, · · · , Ci}.

Appl. Sci. 2022, 12, 7829 9 of 20

4.1. Greedy Layerwise Channel Pruning Using Nonparametric Statistics

When viewing the input data x as a random variable, neural networks are sometimes
interpreted as Markov chains, where every hidden layer i defines the conditional probability
p(hi|hi−1) [21,36]. Such a formulation motivates our observations that the effectiveness
of neuron importance measurements relying on hi is dependent on the stability of input
activation distribution hi−1. In Section 3, we show that iteratively increasing the sparsity
of the input activations of a given layer results in a monotonic decorrelation between the
rank orderings of its output activations when using sparse versus dense input activations.
Thus, we hypothesize that by allowing a given layer to adjust to these abrupt shifts in its
input activation distribution hi−1 before pruning hi, we can increase the effectiveness of
the heuristics used to rank order neurons by importance. As such, we design an iterative
channel pruning algorithm that greedily traverses the topology of a feedforward neural
network, starting from the first hidden layer h1 and ending at the final hidden layer hL.

Our layerwise iterative channel pruning algorithm is summarized in Algorithm 1.

Algorithm 1: Our proposed layerwise channel pruning algorithm, using per-
channel `1-norm of activations to measure importance. All channel masks
{mi}L

i=1 are initialized to 1 and all importance measurements {µi}L
i=1 are ini-

tialized to 0. We update learned weights of all layers in the network {wi}L
i=1 at

every step using backpropagation, but only update the mask mi for layer i at
step i.

Input:
s := sparsity target
tp := number of evaluation steps for each layer
∆p := mask update frequency

Output: {mi}L
i=1

1

2 {mi}L
i=1 ← initializeMasksToOne()

3 {µi}L
i=1 ← initializeImportanceEstimatesToZero()

4 for i← 1 to L do
5 for t← 1 to tp do
6 networkForwardPass()
7 for c← 1 to Ci do
8 µi,c ← (µi,c · (t− 1) + ‖hi,c‖1)/t
9 end

10 networkBackwardPass()
11 every ∆p
12 for c← 1 to Ci do
13 if mi,c < quantile(µi , s) then
14 mi,c ← 0
15 end
16 end
17 end
18 end

We first initialize the values of all masks {mi}L
i=1 to 1 and the values of all importance

measurements {mi}L
i=1 to 0. Note that the mask for a given neuron mi,c is a binary value

that prunes the neuron when mi,c = 0, and µi,c is a non-negative value where µi,1 > µi,2 is
interpreted as neuron one being more important than neuron two in layer i. When pruning
layer i, we estimate the importance of each neuron c using the moving average of the
`1-norm of activations over channel c from hi over tp steps. We evaluate our pruning mask
every ∆p steps, where ∆p ≤ tp, at which point we prune neurons according to the µi using
a pre-defined sparsity target sT . The entire network is pruned to the given target sparsity
once all L layers are processed. As is standard practice, we do not prune visible activations
(i.e., the input and output activations x and y, respectively). In practice, we apply this
procedure on a pre-trained network and continue to fine-tune our structured subnetwork
for T more epochs after pruning. As we greedily increase the sparsity of the network
layer-by-layer, we refer to this iterative pruning schedule as “layerwise” channel pruning.

Appl. Sci. 2022, 12, 7829 10 of 20

Throughout our algorithm, we continue to update the weights of each layer {wi}L
i=1 using

gradient descent such that all weights are updated for L · tp + T gradient steps.
The concept of using an iterative pruning schedule to alleviate the impact of abruptly

removing neurons has been explored in prior work [11,23,37,38]; however, they iteratively
introduce sparsity globally at each step. Because these pruning schedules gradually in-
troduce sparsity according to a per-step heuristic, we refer to this class of algorithms as
“stepwise” pruning. We visualize the differences in these algorithms in Figure 5. Unlike our
layerwise pruning schedule, which determines µi only after hi−1 has stabilized, stepwise
pruning schedules determine µi and µi−1 jointly. As discussed in Section 3, this could lead
to less effective measures of neuron importance. In Section 5, we compare our layerwise
pruning schedule against the standard stepwise approach.

Training
Progress

(a) Stepwise Pruning Schedule

Training
Progress

(b) Layerwise Pruning Schedule

Figure 5. We depict the differences between the standard stepwise pruning schedule (a) and our
layerwise pruning schedule (b). While stepwise pruning algorithms iteratively increase sparsity
globally in the network with each step, our layerwise pruning algorithm iteratively increases sparsity
layer-by-layer with each step. Throughout the training progress (horizontal flow), gray nodes denote
visible neurons that are not pruned, red nodes denote hidden neurons that have been identified to be
pruned in a given step, and white nodes denote hidden neurons that remain active.

4.2. Uniform Quantization-Aware Training

To train our structured subnetworks for low-precision quantization, we use the
straight-through estimator (STE) [39] to approximate the gradients of our rounding function
such that ∇xbxe = 1, but bxe 6= x. To apply asymmetric quantization to our hidden activa-
tions {hi}L

i=1, we adaptively fit our per-tensor scaling factor si and zero-point zi. To apply
symmetric quantization to our weights {wi}L

i=1, we adaptively fit our per-channel scaling
factor si where si,c denotes the scaling factor for channel c ∈ {1, · · · , Ci}. For each layer i,
we estimate the upper and lower bounds of activation hi and the maximum magnitude of
weight wi using moving average statistics, similar to our technique in Algorithm 1. Follow-
ing the work of [28], we summarize the adaptive asymmetric and symmetric quantization
algorithms used in this paper in Algorithms 2 and 3, respectively.

Algorithm 2: Our adaptive asymmetric quantization algorithm for our activa-
tions hi using per-tensor scaling factors. We use moving average statistics over
hidden activation hi to estimate the bounds on its dynamic range for the purpose
of deriving scaling factor si and zero-point zi for layer i.

Input:
(

l(t)i , u(t)
i

)
:= estimated bounds on hidden activation hi at time step t

Output: Quantized activation ĥi; Updated bounds
(

l(t+1)
i , u(t+1)

i

)
1 l(t+1)

i ← (lt · t + min(hi))/(t + 1)

2 u(t+1)
i ← (ut · t + max(hi))/(t + 1)

3 si ← (u(t+1)
i − l(t+1)

i)/2b

4 zi ← b−l(t+1)
i /se

5 ĥi ← clip
(
bhi/sie+ zi; 0, 2b − 1

)

Appl. Sci. 2022, 12, 7829 11 of 20

Algorithm 3: Our adaptive symmetric quantization algorithm for the set of
weights wi for layer i using per-channel scaling factors. We use moving average
statistics to estimate the maximum weight magnitude for each channel c to
derive our per-channel scaling factors sc.

Input: s(t)i,c := estimated scaling factor s for channel c of weight wi at time t

Output: Quantized weight ŵi; updated scaling factor s(t+1)
i,c

1 for c← 1 to Ci do

2 s(t+1)
i,c ←

(
s(t)i,c · t +

max(wi)

2b−1

)
/(t + 1)

3 end
4 ŵi ← clip(bwi/st+1e;−2b−1, 2b−1 − 1)

5. Experiments

In Section 3, we present our hypothesis that, by allowing a given layer to adjust to
abrupt shifts to its input distribution before pruning its channels, the heuristics used to
rank order neurons by importance become more effective. Here, we compare our greedy
layerwise channel pruning algorithm against alternative pruning schedules and importance
measures to demonstrate the increased performance of our approach versus existing base-
lines. For the purpose of enabling inference acceleration on resource-constrained hardware
such as mobile and edge devices, we combine the use of our channel pruning algorithm
with moving average statistics-based uniform quantization, as described in Section 4. We
evaluate the performance of our algorithms using the following discriminative and genera-
tive computer vision tasks:

1. Image classification with DenseNet121 [40], and MobileNetV2 [41] on CIFAR100 [42]
2. Semantic segmentation with UNet [43], and FRRNet [44] on Cityscape [45]
3. Image style transfer with CycleGAN [46] on Cityscape

We implement our pruning algorithms using the PyTorch deep learning framework [47]
and create a custom neural network pruning module to compute neuron importance es-
timates and derive binary masks using local buffers3. Example usage of the functions in
this repository is provided in Appendix A. For each task, our baselines are built using the
existing open-source implementations provided by the respective original authors. To the
extent possible, we use the same weight initialization techniques, network architecture, and
hyperparameter configurations as reported in the original papers. All models are trained
through Nautilus—a distributed research compute infrastructure from the Pacific Research
Platform (PRP) [48]. Single-GPU training time for each model ranges from 3 hours (e.g.,
MobileNetV2 on CIFAR100) to 12 hours (e.g., CycleGAN on Cityscape) depending on the
complexity of the task. Furthermore, for the style transfer task, CycleGAN uses a cycle
consistency loss that includes two mappings: (1) generator Gθ , parameterized by θ, maps
input image x to the target domain x̂; and (2) generator Fφ, parameterized by φ, maps x̂
back to the original image x. During training, we only prune the forward mapping into the
target domain Gθ(x), as we are only interested in accelerating inference, and the reverse
transform is discarded at inference time. Given an input label map, the forward mapping
Gθ of our pruned and quantized CycleGAN model generates realistic 128 × 128 images in
the first-person driving view, as shown in Figure 6.

Appl. Sci. 2022, 12, 7829 12 of 20

(a) (b) (c) (d) (e) (f)

Figure 6. (a) Input, (b) Output (Baseline), (c) Output (P50%), (d) Output (P75%), (e) Output (P50%,
W8A8), (f) Output (P75%, W8A8). We provide examples of images generated from CycleGAN given
the same input (left). Here, P50% and P75% denote 50% and 75% channel pruning, respectively. We
use “W8A8” to denote that the weights and activations have both been quantized to 8 bits.

5.1. Evaluating Pruning Schedules and Importance Measures

Here, we evaluate the importance of our layerwise iterative pruning schedule by
comparing it to three alternative pruning schedules:

1. Training from scratch. Prior work has demonstrated that, in some cases, there is no
need to implement a pruning schedule because pre-defined structured subnetwork
architectures can be trained from scratch to match or surpass the performance of the
original larger network [38]. As such, we evaluate our pruning algorithm against
this baseline.

2. One-shot. We compare against the common “prune then fine-tune” strategy [20],
where we train a fully connected baseline, and then prune the converged model to
our target sparsity in one step before fine-tuning to heal the network.

3. Stepwise. Unlike one-shot pruning schedules, which jump to the target sparsity in
one step, stepwise pruning schedules iteratively increase the sparsity in the network
over many steps throughout training. We benchmark against the state-of-the-art
iterative pruning schedule proposed by Zhu and Gupta [23].

In Table 1, we report the performance of each of these algorithms with target sparsity
levels of sT = 50% and sT = 75% across our discriminative and generative tasks. Each
entry is the averaged result over three independent runs. We use the same learning rate
schedule and optimizer for each experiment to ensure an even comparison. We use top-1
accuracy to evaluate image classification models, mean intersection-over-union (mIOU)
to evaluate semantic segmentation models, and Fréchet inception distance (FID) [35] to
measure the difference between real images and images generated from our CycleGAN.
Based on these metrics, we observe that our layerwise channel pruning algorithm performs
stronger at more extreme levels of sparsity in a majority of cases.

Next, we compare the performance of data-driven and data-free neuron importance
measures when used to guide our greedy layerwise channel pruning algorithm. In Table 2,
we compare the performance of our algorithm when using the `1-norm of the channel
activations against using the `1-norm of the channel weights. Although prior work had
experimented with using the `0-norm as a data-driven importance measure [20], we do not
compare against this as not all layers in our baselines are followed by a ReLU. We observe
that using the `1-norm of the output activation channels yields superior results than using
the `1-norm of channel weights in a majority of cases. Furthermore, we also observe that
using the `1-norm of channel weights to guide our greedy layerwise pruning algorithm
often yields better results than other pruning schedules reported in Table 1.

Appl. Sci. 2022, 12, 7829 13 of 20

Table 1. Comparing pruning schedules across discriminative and generative tasks. With higher levels
of sparsity, our greedy layerwise channel pruning algorithm performs better than existing baselines
across both discriminative and generative tasks. Note that for top-1 accuracy and mIOU, higher is
better, but for FID, lower is better.

Classification
(Accuracy) Segmentation (mIOU) Style Transfer

(FID)

DenseNet121 MobileNetV2 UNet FRRNet CycleGAN

Baseline Full Model 78.70 68.31 61.69 66.32 47.17

50% Sparsity

From Scratch 76.75 65.36 58.90 61.84 50.39
One-Shot 78.40 67.39 60.59 64.53 49.43
Stepwise 77.14 68.05 58.13 64.90 52.83

Layerwise (Ours) 78.77 67.58 60.57 65.52 48.06

75% Sparsity

From Scratch 73.07 56.66 56.71 59.29 59.55
One-Shot 76.40 56.16 52.77 58.71 57.07
Stepwise 72.55 60.40 51.05 56.59 65.67

Layerwise (Ours) 76.44 60.71 56.48 61.14 55.48

Table 2. Comparing data-free vs. data-driven neuron importance measures across discriminative and
generative tasks using our greedy layerwise channel pruning algorithm, we observe that the mean
`1-norm of the output activations (i.e., “Layerwise (A)”) performs better than the `1-norm of channel
weights (i.e., “Layerwise (W)”).

Classification
(Accuracy) Segmentation (mIOU) Style Transfer

(FID)

DenseNet121 MobileNetV2 UNet FRRNet CycleGAN

Baseline Full Model 78.70 68.31 61.69 66.32 47.17

50% Sparsity Layerwise (A) 78.77 67.58 60.57 65.52 48.06
Layerwise (W) 77.88 67.56 59.41 66.16 52.52

75% Sparsity Layerwise (A) 76.44 60.71 56.48 61.14 55.48
Layerwise (W) 73.53 60.62 54.38 60.18 67.97

The results reported in Tables 1 and 2 suggest that we can increase the effectiveness of
nonparametric data-driven pruning criteria by only pruning a given layer after its preceding
layer has been fully pruned, which supports our motivating hypothesis. Our experiments
in Section 3 show that the rank ordering of channels for a given layer i is strongly impacted
by the sparsity of the input activations hi−1 to that layer. Equation-based pruning schedules
such as [23] gradually introduce sparsity throughout the network with each step, as shown
in Figure 5. Thus, at time t, they approximate the neuron importance with respect to
the target sparsity sT using the neuron importance with respect to the current sparsity
st, where st ≤ sT and t ≤ T. As such, this class of algorithms uses rankings rµi |st

to
heuristically guide pruning. Furthermore, one-shot pruning schedules approximate the
neuron importance with respect to the target sparsity sT using estimates at step 0, when
the input activations have no sparsity. As such, this class of algorithms uses rankings rµi to
heuristically guide pruning. In contrast, our layerwise pruning schedule directly uses the
neuron importance measure with respect to the target sparsity sT , where we use rµi |sT

to
heuristically guide pruning. As the sparsity target sT increases to more extreme levels, there
is a gradual decorrelation between rµi and rµi |sT

, as shown in Section 3. Our results given in
Table 1 show that directly using rµi |sT

within our greedy layerwise framework increases the
effectiveness of data-driven rankings. We conjecture this is because our greedy layerwise
channel pruning algorithm allows an unpruned layer to freely adjust to abrupt shifts in its
input activation distribution caused by pruning the channels of its preceding layer.

Appl. Sci. 2022, 12, 7829 14 of 20

5.2. Evaluation of Joint Pruning and Quantization

We evaluate our greedy layerwise channel pruning algorithm when jointly used
with the quantization algorithms detailed in Section 4.2 to learn low-precision structured
subnetworks through joint pruning and quantization. As discussed in Section 2, we apply
symmetric, per-channel quantization to the weights of our deep neural networks and
asymmetric, per-tensor quantization to the activations. To implement Algorithms 2 and 3,
we create another custom quantization PyTorch module that accumulates the respective
per-tensor or per-channel moving average statistics. As is standard practice, our modules
produce a “fake quantized” output using the derived scale s and zero-point z [27,28]. We
apply these modules to every hidden activation {hi}L

i=1 and set of weights {wi}L
i=1 in the

network to prepare our models for integer-only inference [27]. We follow the standard
“prune-then-quantize” training paradigm and activate the quantization operators only
after the completion of layerwise pruning. Figure 1 shows both the training schedule and
computational order of our joint pruning and quantization pipeline.

In Table 3, we report our joint pruning and quantization results for 50% and 75%
sparsity when training 4-bit and 8-bit models. We use “W4A8” to denote quantizing
weights to 4 bits and activations to 8 bits. For all networks except for CycleGAN, we
quantize the weights of all layers {wi}L

i=1 to the specified bitwidth, including the first
and last layer and quantize the activations of all layers {hi}L

i=1 to the specified bitwidth
except for network input x and output x. For CycleGAN, we always quantize the weights
and input activation of the last layer to 8-bit regardless of global bitwidth configuration,
as is standard practice [49]. For each experiment reported in Table 3, we use our greedy
layerwise pruning algorithm with the `1-norm of the output channel activations as our
importance measure.

Table 3. Joint channel pruning and uniform quantization to learn low-precision structured subnet-
works using our algorithms depicted in Figure 1 and discussed in Section 4.

Classification (Accuracy) Segmentation (mIOU) Style Transfer
(FID)

DenseNet121 MobileNetV2 UNet FRRNet CycleGAN

Baseline Full Model 78.70 68.31 61.69 66.32 47.17
W8A8 79.04 68.26 62.03 66.43 49.89

50% Sparsity
W8A8 79.01 67.58 60.44 64.81 58.12
W4A8 78.41 64.67 60.15 63.42 64.25
W4A4 75.99 59.25 56.12 59.04 92.71

75% Sparsity
W8A8 76.17 61.02 56.15 61.28 85.89
W4A8 76.12 55.41 55.60 60.90 92.12
W4A4 73.62 49.49 51.90 54.16 119.19

Finally, we apply our joint layerwise channel pruning and uniform quantization
framework to train ResNet-32 [37] on the CIFAR10 dataset with sparsity ratios of 25%,
40% and 50%, and uniform bitwidths of 8 and 4. We compare against existing solutions
and summarize the results in Table 4. Here, NW and NA denote the average number of
bits used to quantize weights or activations, respectively, and sW and sA denote the global
weight and activation sparsity, respectively. Note that, as discussed in Section 2.1, channel
pruning reduces both the storage and operating memory4 requirements of both the weights
and activations, while unstructured weight pruning only reduces the memory storage
requirements of the weights. Therefore, structured pruning can result in lower operating
memory requirements, despite lower compression ratios with respect to unstructured
pruning. To compare different approaches across these configurations, we compute the
performance per operating memory size (i.e., performance density) for each model, as
listed in the last column. For existing solutions, we summarize the results reported in
prior work. For solutions that do not apply quantization to the weights or activations, we

Appl. Sci. 2022, 12, 7829 15 of 20

estimate their precision at 16 bits per element rather than 32 since neural networks can
be quantized to 16-bit fixed-point through post-training quantization without significant
accuracy degradation [50].

Table 4 shows that our method is able to achieve a higher performance density (8.92)
than the highest of previous solutions (8.59) while having very competitive performance
(92.53% versus 91.66% top-1 accuracy). When applying 50% pruning and 4-bit quantization,
our method achieves the smallest memory footprint and highest performance density of
25.25, three times larger than the existing highest, while still maintaining sufficient accuracy
(87.3%). Moreover, unlike methods such as [12,51], our framework provides direct control
over the target bitwidth and sparsity, which is more useful in practical scenarios under
tight design constraints, as is the case when deployed on edge GPUs or FPGAs [52–54].

Table 4. We demonstrate the superior performance per memory footprint (i.e., performance density)
of our framework when compared to existing image classification solutions trained on CIFAR10. By
jointly applying uniform quantization and unstructured pruning to both the weights and activations
of the DNN, we achieve a higher performance density (PD) with higher compression rates than
existing solutions and comparable network performance.

Method Network NW NA sW sA Baseline Acc Accuracy Weights (Mb) Activations (Mb) PD (Acc/Mb)

[55] ResNet-32 8 – 77.8% – 92.58 92.64 (+0.06) 0.83 20.19 4.41

[56] DenseNet-76 2 – 54% – 92.19 91.17 (−1.02) 0.68 141.26 0.64

[38]

VGG-19 – – 95% – 93.50 93.34 (−0.16) 16.03 19.40 2.63
PreResNet-110 – – 95% – 95.04 92.35 (−2.69) 1.38 67.50 1.34
DenseNet-100 – – 95% – 95.24 94.19 (−1.05) 0.97 213.37 0.44

VGG-19 – – 70% 70% 93.5 93.60 (+0.1) 70.70 5.31 1.23
PreResNet-164 – – 60% 60% 95.04 94.23 (−0.81) 16.67 40.21 1.66
DenseNet-40 – – 60% 60% 94.10 93.87 (−0.23) 1.60 22.97 3.82

[57]

DenseNet-40 – – 60% 60% 94.11 93.16 (−0.95) 1.60 22.97 3.79
ResNet-20 – – 38% 38% 92.01 91.66 (−0.35) 2.70 7.96 8.59
ResNet-56 – – 45% 45% 93.04 92.26 (−0.78) 7.53 19.18 3.45

ResNet-110 – – 63% 63% 93.21 92.96 (−0.25) 10.25 25.12 2.63

[58] VGG-16 – – 78.8% 78.8% 93.40 91.50 (−1.90) 49.96 3.75 1.70

[59] VGG16-C – – 95% – 93.51 93.00 (−0.51) 11.78 17.70 3.15
WRN-22-8 – – 95% – 95.74 95.07 (−0.67) 13.73 115.34 0.74

[51] ResNet-20 1.9 – 54% – 91.29 91.15 (−0.14) 0.24 12.85 6.97

[12] VGG-7 4.8 5.4 – – 93.05 93.23 (+0.18) 43.85 3.27 1.98

[60] MobileNet 8 8 – – 91.31 90.59 (−0.72) 25.74 13.17 2.33

[61] ResNet-32 8 – 87.5% – 92.58 92.57 (−0.01) 0.47 20.19 4.48

Ours ResNet-32

8 8 25% 25%

92.58

92.53 − 2.80 7.57 8.92
8 8 40% 40% 91.77 (−0.81) 2.24 6.06 11.06
8 8 50% 50% 90.16 (−2.42) 1.87 5.05 13.04
4 4 50% 50% 87.30 (−5.28) 0.93 2.52 25.25

6. Conclusions and Future Work

In this work, we demonstrate that, when using data-driven measures of neuron
importance, the rank orderings of the output channels of a given layer strongly depend
on the sparsity level of the preceding layer. In Section 3, we show that as we increase
the sparsity of the input activations for a given layer, the correlation trends toward zero
when comparing: (1) the rank order of its output channels using input activations with no
sparsity; versus (2) the rank order of its output channels when the input activations have
sparsity s > 0. Informed by this observation, we propose a data-driven nonparametric,
magnitude-based channel pruning algorithm that works in a greedy manner based on
the activations of the previous sparsified layer, as detailed in Section 4. For the purpose
of learning low-precision structured subnetworks, we demonstrate that our proposed
algorithm works effectively in combination with statistics-based uniform quantization. As
demonstrated in Section 5, our joint layerwise channel pruning and uniform quantization
framework yields increased performance per memory footprint over existing solutions

Appl. Sci. 2022, 12, 7829 16 of 20

across a range of discriminative and generative networks. The resulting neural networks
can be efficiently accelerated by resource-constrained hardware platforms such as edge
GPUs and FPGAs. In future work, we aim to focus more closely on applying our framework
to generative models and explore advanced quantization-aware training techniques to
work jointly with our nonparametric greedy layerwise channel pruning algorithm.

Author Contributions: Software and experiments—X.Z.; writing, formal analysis, and visualization—
X.Z., I.C. and S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These
data can be found in [42,45]. Pre-trained models and configuration files are provided at:
https://github.com/mlzxy/mdpi2022 (accessed on 30 June 2022).

Acknowledgments: This work was supported in part by NSF awards CNS1730158, ACI-1540112,
ACI-1541349, OAC-1826967, the University of California Office of the President, and the California
Institute for Telecommunications and Information Technology’s Qualcomm Institute (Calit2-QI).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Software Library

The code for each algorithm introduced in this paper can be found in our Python
library, qsparse, at https://github.com/mlzxy/qsparse (accessed on 30 June 2022). In
Listing A1, we provide an example of how to use our algorithms for quantization and
pruning as PyTorch modules [47].

Listing A1. Examples of our software interface for quantization and pruning on activations.

Appl. Sci. 2022, 1, 0 16 of 20

on the sparsity level of the preceding layer. In Section 3, we show that as we increase
the sparsity of the input activations for a given layer, the correlation trends toward zero
when comparing: (1) the rank order of its output channels using input activations with no
sparsity; versus (2) the rank order of its output channels when the input activations have
sparsity s > 0. Informed by this observation, we propose a data-driven nonparametric,
magnitude-based channel pruning algorithm that works in a greedy manner based on
the activations of the previous sparsified layer, as detailed in Section 4. For the purpose
of learning low-precision structured subnetworks, we demonstrate that our proposed
algorithm works effectively in combination with statistics-based uniform quantization. As
demonstrated in Section 5, our joint layerwise channel pruning and uniform quantization
framework yields increased performance per memory footprint over existing solutions
across a range of discriminative and generative networks. The resulting neural networks
can be efficiently accelerated by resource-constrained hardware platforms such as edge
GPUs and FPGAs. In future work, we aim to focus more closely on applying our framework
to generative models and explore advanced quantization-aware training techniques to
work jointly with our nonparametric greedy layerwise channel pruning algorithm.

Author Contributions: Software and experiments—X.Z.; writing, formal analysis, and visualization—
X.Z., I.C. and S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These
data can be found in [42,45]. Pre-trained models and configuration files are provided at:
https://github.com/mlzxy/mdpi2022 (accessed on 30 June 2022).

Acknowledgments: This work was supported in part by NSF awards CNS1730158, ACI-1540112,
ACI-1541349, OAC-1826967, the University of California Office of the President, and the California
Institute for Telecommunications and Information Technology’s Qualcomm Institute (Calit2-QI).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Software Library

The code for each algorithm introduced in this paper can be found in our Python
library, qsparse, at https://github.com/mlzxy/qsparse (accessed on 30 June 2022). In
Listing A1, we provide an example of how to use our algorithms for quantization and
pruning as PyTorch modules [47].

import torch.nn as nn
from qsparse import prune, quantize

activation pruning and quantization
nn.Sequential(

nn.Conv2d(10, 30, 3),
prune(sparsity=0.5), # pruning module
quantize(bits=8) # quantization module

)

Listing A1. Examples of our software interface for quantization and pruning on activations.

The majority of existing model compression Python libraries provide either quantiza-
tion [62–64] or pruning [18] support. In contrast, the simplicity of our framework enables an
efficient software interface that supports a wide range of neural network architectures for
both pruning and quantization. To improve the library flexibility, we introduce a technique
that directly transforms the weight attribute of the input layer into a pruned or quantized

The majority of existing model compression Python libraries provide either quantiza-
tion [62–64] or pruning [18] support. In contrast, the simplicity of our framework enables an
efficient software interface that supports a wide range of neural network architectures for
both pruning and quantization. To improve the library flexibility, we introduce a technique
that directly transforms the weight attribute of the input layer into a pruned or quantized
version at runtime, as shown in Listing A2. Thus, our library is layer-agnostic and can work
with any PyTorch module as long as their parameters can be accessed from their weight
attribute, as is standard practice [47].

https://github.com/mlzxy/mdpi2022
https://github.com/mlzxy/qsparse

Appl. Sci. 2022, 12, 7829 17 of 20

Listing A2. An illustration of the technique we use to create weight-quantized modules without
modifying the internal implementation of specific modules. By injecting the weight property, we
are able to automatically apply quantization or pruning at each access of weight. By chaining
transformations for both prune and quantize, we create modules with weights that are jointly
pruned and quantized.

Appl. Sci. 2022, 1, 0 17 of 20

version at runtime, as shown in Listing A2. Thus, our library is layer-agnostic and can work
with any PyTorch module as long as their parameters can be accessed from their weight
attribute, as is standard practice [47].

def create_general_quantized_module(mod: nn.Module):
OriginClass = mod.__class__

class Wrapper(OriginClass):
@property
def weight(self):

return quantize(getattr(OriginClass, "weight").__get__(self))

Wrapper.__name__ = OriginClass.__name__
mod.__class__ = Wrapper
return mod

Listing A2. An illustration of the technique we use to create weight-quantized modules without
modifying the internal implementation of specific modules. By injecting the weight property, we
are able to automatically apply quantization or pruning at each access of weight. By chaining
transformations for both prune and quantize, we create modules with weights that are jointly
pruned and quantized.

Based on our custom modules and transformation technique, we provide the network
conversion function, as shown in Listing A3, in which we traverse the entire network and
automatically modify the computational graph to the aim of pruning and quantization. For
each network in our experiments, we apply different conversions on top of the baseline
network to the requirements of evaluation.

import torch.nn as nn
from qsparse import quantize, convert

quantized_net = convert(
pre_defined_net,
quantize(bits=8),
activation_layers=[nn.ReLU,],
weight_layers=[nn.Conv2d]

)

Listing A3. An example usage of our software interface for converting the computational graph of a
pre-defined full-precision network to a quantized one by injecting the quantize module after each
ReLU and transforming each Conv2d to its weight-quantized version without the need to modify the
implementation of the original network.

Notes
1 We use a network architecture comparable to LeNet for the purpose of a reasonably symmetric evaluation across discriminative

and generative tasks. Our encoder uses two convolution layers, each followed by a ReLU and max pooling layer. Our decoder
uses three deconvolution layers, each followed by a ReLU except for the final deconvolution layer, which is followed by a sigmoid.

2 We repeated these experiments using the `0-norm of the output activations and saw very similar results.
3 The code for the algorithms discussed in this paper can be found at https://github.com/mlzxy/mdpi202 (accessed on 30

June 2022).
4 We define operating memory as the aggregate hardware storage area used for weights and activations of the network during

inference, all of which are required to be kept so they can be readily accessed.

References
1. Hestness, J.; Narang, S.; Ardalani, N.; Diamos, G.; Jun, H.; Kianinejad, H.; Patwary, M.; Ali, M.; Yang, Y.; Zhou, Y. Deep learning

scaling is predictable, empirically. arXiv 2017 arXiv:1712.00409.

Based on our custom modules and transformation technique, we provide the network
conversion function, as shown in Listing A3, in which we traverse the entire network and
automatically modify the computational graph to the aim of pruning and quantization. For
each network in our experiments, we apply different conversions on top of the baseline
network to the requirements of evaluation.

Listing A3. An example usage of our software interface for converting the computational graph of a
pre-defined full-precision network to a quantized one by injecting the quantize module after each
ReLU and transforming each Conv2d to its weight-quantized version without the need to modify the
implementation of the original network.

Appl. Sci. 2022, 1, 0 17 of 20

version at runtime, as shown in Listing A2. Thus, our library is layer-agnostic and can work
with any PyTorch module as long as their parameters can be accessed from their weight
attribute, as is standard practice [47].

def create_general_quantized_module(mod: nn.Module):
OriginClass = mod.__class__

class Wrapper(OriginClass):
@property
def weight(self):

return quantize(getattr(OriginClass, "weight").__get__(self))

Wrapper.__name__ = OriginClass.__name__
mod.__class__ = Wrapper
return mod

Listing A2. An illustration of the technique we use to create weight-quantized modules without
modifying the internal implementation of specific modules. By injecting the weight property, we
are able to automatically apply quantization or pruning at each access of weight. By chaining
transformations for both prune and quantize, we create modules with weights that are jointly
pruned and quantized.

Based on our custom modules and transformation technique, we provide the network
conversion function, as shown in Listing A3, in which we traverse the entire network and
automatically modify the computational graph to the aim of pruning and quantization. For
each network in our experiments, we apply different conversions on top of the baseline
network to the requirements of evaluation.

import torch.nn as nn
from qsparse import quantize, convert

quantized_net = convert(
pre_defined_net,
quantize(bits=8),
activation_layers=[nn.ReLU,],
weight_layers=[nn.Conv2d]

)

Listing A3. An example usage of our software interface for converting the computational graph of a
pre-defined full-precision network to a quantized one by injecting the quantize module after each
ReLU and transforming each Conv2d to its weight-quantized version without the need to modify the
implementation of the original network.

Notes
1 We use a network architecture comparable to LeNet for the purpose of a reasonably symmetric evaluation across discriminative

and generative tasks. Our encoder uses two convolution layers, each followed by a ReLU and max pooling layer. Our decoder
uses three deconvolution layers, each followed by a ReLU except for the final deconvolution layer, which is followed by a sigmoid.

2 We repeated these experiments using the `0-norm of the output activations and saw very similar results.
3 The code for the algorithms discussed in this paper can be found at https://github.com/mlzxy/mdpi202 (accessed on 30

June 2022).
4 We define operating memory as the aggregate hardware storage area used for weights and activations of the network during

inference, all of which are required to be kept so they can be readily accessed.

References
1. Hestness, J.; Narang, S.; Ardalani, N.; Diamos, G.; Jun, H.; Kianinejad, H.; Patwary, M.; Ali, M.; Yang, Y.; Zhou, Y. Deep learning

scaling is predictable, empirically. arXiv 2017 arXiv:1712.00409.

Notes
1 We use a network architecture comparable to LeNet for the purpose of a reasonably symmetric evaluation across discriminative

and generative tasks. Our encoder uses two convolution layers, each followed by a ReLU and max pooling layer. Our decoder
uses three deconvolution layers, each followed by a ReLU except for the final deconvolution layer, which is followed by a sigmoid.

2 We repeated these experiments using the `0-norm of the output activations and saw very similar results.
3 The code for the algorithms discussed in this paper can be found at https://github.com/mlzxy/mdpi202 (accessed on 30

June 2022).
4 We define operating memory as the aggregate hardware storage area used for weights and activations of the network during

inference, all of which are required to be kept so they can be readily accessed.

References
1. Hestness, J.; Narang, S.; Ardalani, N.; Diamos, G.; Jun, H.; Kianinejad, H.; Patwary, M.; Ali, M.; Yang, Y.; Zhou, Y. Deep learning

scaling is predictable, empirically. arXiv 2017, arXiv:1712.00409.
2. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and

Huffman Coding. In the Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4
May 2016.

3. Gale, T.; Elsen, E.; Hooker, S. The state of sparsity in deep neural networks. arXiv 2019, arXiv:1902.09574.

https://github.com/mlzxy/mdpi202

Appl. Sci. 2022, 12, 7829 18 of 20

4. Polino, A.; Pascanu, R.; Alistarh, D. Model compression via distillation and quantization. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

5. Dong, X.; Yang, Y. Network pruning via transformable architecture search. arXiv 2019, arXiv:1905.09717.
6. Wang, T.; Wang, K.; Cai, H.; Lin, J.; Liu, Z.; Wang, H.; Lin, Y.; Han, S. Apq: Joint search for network architecture, pruning and

quantization policy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020; pp. 2078–2087.

7. Paupamah, K.; James, S.; Klein, R. Quantisation and pruning for neural network compression and regularisation. In Proceedings
of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; pp. 1–6.

8. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing 2021, 461, 370–403. [CrossRef]

9. Zhao, Y.; Gao, X.; Bates, D.; Mullins, R.; Xu, C.Z. Focused quantization for sparse CNNs. arXiv 2019, arXiv:1905.09717.
10. Yu, P.H.; Wu, S.S.; Klopp, J.P.; Chen, L.G.; Chien, S.Y. Joint Pruning & Quantization for Extremely Sparse Neural Networks. arXiv

2020, arXiv:2010.01892.
11. Colbert, I.; Kreutz-Delgado, K.; Das, S. AX-DBN: An approximate computing framework for the design of low-power discrimina-

tive deep belief networks. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest,
Hungary, 14–19 July 2019; pp. 1–9.

12. Van Baalen, M.; Louizos, C.; Nagel, M.; Amjad, R.A.; Wang, Y.; Blankevoort, T.; Welling, M. Bayesian bits: Unifying quantization
and pruning. Adv. Neural Inf. Process. Syst. 2020, 33, 5741–5752.

13. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

14. Mao, H.; Han, S.; Pool, J.; Li, W.; Liu, X.; Wang, Y.; Dally, W.J. Exploring the Granularity of Sparsity in Convolutional Neural
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu,
HI, USA, 21–26 July 2017.

15. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2017; pp. 1389–1397.

16. Jha, N.K.; Mittal, S.; Avancha, S. Data-type aware arithmetic intensity for deep neural networks. Energy 2021, 120, x109.
17. Colbert, I.; Kreutz-Delgado, K.; Das, S. An Energy-Efficient Edge Computing Paradigm for Convolution-Based Image Upsampling.

IEEE Access 2021, 9, 147967–147984. [CrossRef]
18. Blalock, D.; Gonzalez Ortiz, J.J.; Frankle, J.; Guttag, J. What is the state of neural network pruning? Proc. Mach. Learn. Syst. 2020,

2, 129–146.
19. Chen, T.; Chen, X.; Ma, X.; Wang, Y.; Wang, Z. Coarsening the Granularity: Towards Structurally Sparse Lottery Tickets. In

Proceedings of the International Conference on Machine Learning, Baltimore, MA, USA, 17–23 July 2022.
20. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250
21. Dai, B.; Zhu, C.; Guo, B.; Wipf, D. Compressing neural networks using the variational information bottleneck. In Proceedings of

the International Conference on Machine Learning. PMLR, 2018, Stockholm, Sweden, 10–15 July 2018; pp. 1135–1144.
22. Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; Kautz, J. Importance estimation for neural network pruning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11264–11272.
23. Zhu, M.; Gupta, S. To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
24. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE

International Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2017; pp. 5058–5066.
25. Wang, Y.; Lu, Y.; Blankevoort, T. Differentiable joint pruning and quantization for hardware efficiency. In Proceedings of the

European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 259–277.
26. Wu, H.; Judd, P.; Zhang, X.; Isaev, M.; Micikevicius, P. Integer Quantization for Deep Learning Inference: Principles and Empirical

Evaluation. arXiv 2020, arXiv:2004.09602.
27. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural

networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

28. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342.
29. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A survey of quantization methods for efficient neural

network inference. arXiv 2021, arXiv:1806.08342.
30. Jain, S.; Gural, A.; Wu, M.; Dick, C. Trained quantization thresholds for accurate and efficient fixed-point inference of deep neural

networks. Proc. Mach. Learn. Syst. 2020, 2, 112–128.
31. Knight, W.R. A computer method for calculating Kendall’s tau with ungrouped data. J. Am. Stat. Assoc. 1966, 61, 436–439.

[CrossRef]
32. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics—Doklady; 1966;

Volume 10, pp. 707–710. Available online: https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf (accessed on 30 June 2022).

http://doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.1109/ACCESS.2021.3123938
http://dx.doi.org/10.1080/01621459.1966.10480879
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf

Appl. Sci. 2022, 12, 7829 19 of 20

33. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

34. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed
on 30 June 2022).

35. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30.

36. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE information
theory workshop (itw), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–20 June 2016; pp. 770–778.

38. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

39. Bengio, Y.; Léonard, N.; Courville, A. Estimating or propagating gradients through stochastic neurons for conditional computation.
arXiv 2013, arXiv:1308.3432.

40. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

41. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the International Conference on Machine Learning, PMLR, 2018, Stockholm, Sweden, 10–15 July 2018; pp. 4510–4520.

42. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 30 June 2022).

43. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical image computing and computer-assisted intervention, Munich, Germany, 5–9 October 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

44. Pohlen, T.; Hermans, A.; Mathias, M.; Leibe, B. Full-resolution residual networks for semantic segmentation in street scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA,
21—26 July 2017; pp. 4151–4160.

45. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

46. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26
July 2017; pp. 2223–2232.

47. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

48. Nautilus. 2022. Available online: https://ucsd-prp.gitlab.io/ (accessed on 30 June 2022).
49. Thomas, M.M.; Vaidyanathan, K.; Liktor, G.; Forbes, A.G. A reduced-precision network for image reconstruction. ACM Trans.

Graph. Tog 2020, 39, 1–12. [CrossRef]
50. Rezk, N.M.; Nordström, T.; Ul-Abdin, Z. Shrink and Eliminate: A Study of Post-Training Quantization and Repeated Operations

Elimination in RNN Models. Information 2022, 13, 176. [CrossRef]
51. Yang, H.; Gui, S.; Zhu, Y.; Liu, J. Automatic neural network compression by sparsity-quantization joint learning: A constrained

optimization-based approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 13–19 June 2020; pp. 2178–2188.

52. Zhang, X. A Design Methodology for Efficient Implementation of Deconvolutional Neural Networks on an FPGA; University of California:
San Diego, CA, USA, 2017.

53. Biookaghazadeh, S.; Zhao, M.; Ren, F. Are {FPGAs} Suitable for Edge Computing? In Proceedings of the USENIX Workshop on
Hot Topics in Edge Computing (HotEdge 18): Boston, MA, USA , 10 July 2018

54. Colbert, I.; Daly, J.; Kreutz-Delgado, K.; Das, S. A competitive edge: Can FPGAs beat GPUs at DCNN inference acceleration in
resource-limited edge computing applications? arXiv 2021, arXiv:2102.00294.

55. Choi, Y.; El-Khamy, M.; Lee, J. Towards the Limit of Network Quantization. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

56. Achterhold, J.; Koehler, J.M.; Schmeink, A.; Genewein, T. Variational network quantization. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

57. Zhao, C.; Ni, B.; Zhang, J.; Zhao, Q.; Zhang, W.; Tian, Q. Variational convolutional neural network pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2780–2789.

58. Xiao, X.; Wang, Z. Autoprune: Automatic network pruning by regularizing auxiliary parameters. Adv. Neural Inf. Process. Syst.
(NeurIPS 2019) 2019, 32.

59. Dettmers, T.; Zettlemoyer, L. Sparse networks from scratch: Faster training without losing performance. arXiv 2019,
arXiv:1907.04840.

http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://ucsd-prp.gitlab.io/
http://dx.doi.org/10.1145/3414685.3417786
http://dx.doi.org/10.3390/info13040176

Appl. Sci. 2022, 12, 7829 20 of 20

60. Paupamah, K.; James, S.; Klein, R. Quantisation and pruning for neural network compression and regularisation. In Proceedings
of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; pp. 1–6.

61. Choi, Y.; El-Khamy, M.; Lee, J. Universal deep neural network compression. IEEE J. Sel. Top. Signal Process. 2020, 14, 715–726.
[CrossRef]

62. Pappalardo, A. Xilinx/Brevitas. Available online: https://zenodo.org/record/5779154#.YujQyepBxPY (accessed on 30 June 2022).
63. torch.nn.qat—PyTorch 1.9.0 Documentation. 2021. Available online: https://pytorch.org/docs/stable/torch.nn.qat.html (ac-

cessed on 30 June 2022).
64. Coelho C.N., Jr.; Kuusela, A.; Zhuang, H.; Aarrestad, T.; Loncar, V.; Ngadiuba, J.; Pierini, M.; Summers, S. Ultra low-latency,

low-area inference accelerators using heterogeneous deep quantization with QKeras and hls4ml. arXiv 2020, arXiv:2006.10159

http://dx.doi.org/10.1109/JSTSP.2020.2975903
https://zenodo.org/record/5779154#.YujQyepBxPY
https://pytorch.org/docs/stable/torch.nn.qat.html

	Introduction
	Background
	Pruning
	Quantization

	Motivation
	Algorithms
	Greedy Layerwise Channel Pruning Using Nonparametric Statistics
	Uniform Quantization-Aware Training

	Experiments
	Evaluating Pruning Schedules and Importance Measures
	Evaluation of Joint Pruning and Quantization

	Conclusions and Future Work
	Appendix A
	References

