
Citation: Alsuwian, T.; Iqbal, M.S.;

Amin, A.A.; Qadir, M.B.; Almasabi,

S.; Jalalah, M. A Comparative Study

of Design of Active Fault-Tolerant

Control System for Air–Fuel Ratio

Control of Internal Combustion

Engine Using Particle Swarm

Optimization, Genetic Algorithm,

and Nonlinear Regression-Based

Observer Model. Appl. Sci. 2022, 12,

7841. https://doi.org/10.3390/

app12157841

Academic Editors: Shoou-Jinn Chang,

Sheng-Joue Young, Dimitris Mourtzis

and Liang-Wen Ji

Received: 4 June 2022

Accepted: 1 August 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Comparative Study of Design of Active Fault-Tolerant
Control System for Air–Fuel Ratio Control of Internal
Combustion Engine Using Particle Swarm Optimization,
Genetic Algorithm, and Nonlinear Regression-Based
Observer Model
Turki Alsuwian 1 , Muhammad Sajid Iqbal 2 , Arslan Ahmed Amin 2,* , Muhammad Bilal Qadir 3,
Saleh Almasabi 1 and Mohammed Jalalah 1,4

1 Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
2 Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences,

Chiniot Faisalabad Campus, Chiniot 35400, Pakistan
3 School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
4 Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and

Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
* Correspondence: arslan.amin@nu.edu.pk

Abstract: In this article, three distinct strategies for designing an Active Fault-Tolerant Control System
(AFTCS) for Air-Fuel Ratio (AFR) control of an Internal Combustion (IC) engine in a process plant to
avoid engine shutdown, are presented. The proposed AFTCS employs a Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and a Nonlinear Regression (NLR)-based observer model in the
Fault Detection and Isolation (FDI) unit for analytical redundancy. A comparison between these three
proposed techniques is carried out to determine the least expensive and most accurate approach.
The results show that the nonlinear regression produces highly accurate results by consuming very
low computational power, and its response time is also very low as compared to GA and PSO. The
results obtained show that NLR requires 99.6% and 93.1% less computational time for throttle and
MAP estimation, respectively, by reducing the estimation error to as low as 0.01. The simulation of
the proposed system is carried out in the MATLAB/Simulink environment. The results prove the
superior fault tolerance performance for sensor faults of the AFR control system, especially for the
Manifold Absolute Pressure (MAP) sensor in terms of less oscillatory response as compared to that
reported in existing literature.

Keywords: active fault-tolerant control; AFR control; fault detection and isolation unit; IC engine;
nonlinear regression; particle swarm optimization; genetic algorithm; observer model

1. Introduction

A fault is a discrepancy between the actual and expected value of a parameter. Fault
tolerance refers to a system’s capacity to continue operating under malfunctioning condi-
tions [1]. Any real-world system can develop faults, lowering the system’s dependability
and performance [2]. Fault-Tolerant Control (FTC) is a technique that may be used to
improve the dependability of important systems such as nuclear power plants and air-
planes [3]. In faulty conditions, the system’s performance can be lowered, although failure
can be tolerated to some amount, provided stability is ensured. Fault-tolerant control
systems are defined as systems with a high level of dependability [2]. FTC approaches are
currently being applied in important industrial processes, such as combustible fuel and
gas, petrochemicals, and fertilizers, where output losses cannot be allowed, and constant
system efficiency is essential [2]. The active and the passive form are the two main types
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of FTC [4]. The Active Fault-Tolerant Control System (AFTCS) is responsible for recogniz-
ing and isolating the system’s defective components. Fault Detection and Isolation (FDI)
employs the observer theory, in which a plant parameter is compared to a predetermined
normal value to produce a residual [5]. If the residual is below the permissible limits, it
means the machine is free of defects. If the residual exceeds the required threshold, the FDI
unit reports faulty conditions. The controller is then reprogrammed to meet the current
operational requirements.

Internal Combustion (IC) engines are common in the process sector and maintaining
adequate Air–Fuel Ratio (AFR) control in their fuel system is vital for improved engine
performance, fuel efficiency, and environmental safety. Because faults in the sensors of the
AFR system cause the engine to shut down, fault tolerance is required. The fault tolerance
in IC engines can be introduced with the help of analytical redundancy. The main principle
of analytical redundancy is to compare real system behavior to the model [6]. The esti-
mated sensor values can be computed by using several optimization and machine learning
techniques. In this paper, we have used three techniques, namely, Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and a Nonlinear Regression (NLR) model, to compute
the estimated sensor values in the case of a fault. The advantages of using these techniques
and the results obtained are discussed in the upcoming sections.

The rest of the paper is organized as follows: the literature review is presented in
Section 2, research methodology is presented in Section 3, estimation techniques used are
discussed in Section 4, and the results are discussed in Section 5, followed by a conclusion
at the end.

2. Literature Review

Kalman filters, fuzzy logic, neural networks, regression, and other techniques may
be used to construct an FDI unit. In the case of sensor and actuator faults coexisting,
Kalman filters are used in [7] for Fault Detection and Location (FDL) in a nonlinear model
of an aeroengine. The proposed system uses hybrid Kalman filters and only detects the
faults and does not estimate the sensor values in case of a fault. Another Kalman filter-
based approach is proposed in [8], where a hybrid FTCS is used to introduce analytical
redundancy in an engine to maintain the Air–Fuel Ratio (AFR). An active FTC system
is proposed in [9], in which an Adaptive Interval Observer (AIO)-based FDI is used to
accomplish trajectory tracking of an unmanned underwater vehicle that is susceptible
to sensor failures and many uncertainties. The proposed AIO is inefficient in terms of
computation power. In [10], the FDI uses fuzzy logic to predict nonlinear functions, and
adaptive control is used to correct bias and obtain faults in the actuator. The proposed
system may accept inaccurate data and inputs; hence, the accuracy may be compromised.
Ding and Fang [11] suggested an FDI method that manages sporadic observations if the full
measurements of data are unavailable. A linear regression-based robust AFTCS approach
can be found in [12] for the AFR control of an IC engine. In the proposed approach,
the nonlinear sensor values are estimated by using linear regression; hence, the system
produces less accurate results. Yu et al. [13] investigated the output degradations caused
by incipient faults and predicted the residual life in a mechatronic device in a case study.
Two analytical redundancy connections were discussed; these would boost the controlled
system’s separation capacity when multiple faults occurred. Reference [14] proposes an
adaptive fault-tolerant approach for synthesizing a compensation controller for uncertain
nonlinear pure-feedback systems with dead-zone actuators and stochastic failures. The
failure mode of the actuator is characterized by a scalar Markovian-type function, and the
compensation strategy is designed using adaptive backstepping methods.

In [15], an Artificial Neural Network (ANN)-based approach is used to estimate the
sensor values in case of a fault to prevent the engine shutdown, but the critical points
(on which the estimation error may be high) are excluded from the analysis. The topic of
command filtering-based event-triggered adaptive fuzzy control for a class of stochastic
nonlinear systems with stochastic failures and input saturation is investigated in [16]. Fuzzy
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Logic Systems (FLSs) are used to approximate unknown nonlinear functions and system
dynamic changes induced by stochastic errors. The command filtering design approach is
used to decrease the computational overhead. The average dwell-time technique is used to
examine the AFTCS problem for a class of switched nonlinear systems in [17], in which
neural networks are used to design the controller. Reference [18] describes a fault-tolerant
control approach for singular systems in the presence of multiplicative failures based
on control performance. Reference [19] discusses the design of an AFTCS for spacecraft
attitude control with actuator defects, fault estimation errors, and control input limitations.

For sensor errors in air–fuel ratio management of internal combustion engines, fuzzy-
logic-based AFTCS was developed in [20] but it consisted only of an active part having
computational inefficiency. In [21], AFTCS was proposed for both sensor and actuator
faults with mathematical relationship observers and redundant actuators for the anti-surge
control system of centrifugal compressors. The approach suggested is less sensitive due to
substantial computational cost, and undesirable transients in switching the control strategy
from a regular controller to a reconfigurable controller once the problem is effectively
diagnosed, which are not prevented throughout this investigation. The applications of FTC
can be found in aerial vehicles such as quadcopters and hex copters as well. Fault detection
and fault-tolerant control algorithms are suggested in [22] to address the problems of
both actuator defects and disturbances in a hex copter. By utilizing sliding mode and
a disturbance observer with an FDI, the motor failure is separated to resolve the one or
two actuator failures. In [23], a strategy for estimating actuator faults in quadcopters
operating in unknown environments is presented. An improved intermediate estimator
approach, which can be used to predict actuator failures and system states, was applied
to the quadcopter model to avoid the difficulty associated with solving linear matrix
inequalities. A sliding mode control based on neural networks is presented in a new
study for the attitude and altitude system of a quadcopter amid small perturbations [24].
In [25], the problem of fault-tolerant control for turbofan engines with actuator defects is
addressed and solved using Convolution Neural Networks (CNN). During this study, a
limited dimensionality is considered; hence, the proposed method is ineffective for the
higher dimensionality of turbofan engines. Moreover, the CNN requires a large dataset to
produce acceptable results, which makes it slow during the training stage.

The existing FTCS approaches along with their shortcomings are summarized in
Table 1.

Table 1. FTCS approaches and their drawbacks.

Technique Reference Remarks

Kalman Filters [7,8,11] KFs use a linear state transition and measurement
model, hence, less accurate for nonlinear estimation

AIO [9] Inefficient in terms of computation power

Fuzzy Logic [10,16,20] The accuracy of these systems is degraded since they
frequently use incorrect data and inputs.

Linear Regression [12] Less accurate estimated values

ANN [15,17] High-error data points are ignored

CNN [25] Requires a large dataset

We can see from the literature that most of the work on fault detection use Kalman
filters, lookup tables, linear regression, machine learning, or ANN. For malfunctioning
sensors, linear regression gives less accurate sensor data, while the Kalman filters and
lookup-table approaches are computationally wasteful. Because gradient descent must
be done several times, the ANN-based technique necessitates forward and backward
propagation. Because of this, the ANN is sluggish, and the only way to increase its speed is
to utilize a GPU, which is a costly option. Hence, we propose three different approaches
that can be used to estimate the values for nonlinear sensors. These approaches are PSO,
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GA, and NLR, which can be used to design an AFTCS for highly nonlinear sensors of an IC
engine for AFR system control.

During this work, the main contribution is the implementation of three estimation
techniques for nonlinear sensors, given the constraint that we have a minimum dataset for
the prediction of sensor values in case of a fault. The proposed techniques are implemented
in such a way that the controller needs much less computational power and computational
time to generate the estimated values. Finally, the performance analysis in terms of accuracy
and computational power requirements is carried out to prove the superior performance of
the proposed techniques. The simulations are carried out by considering an engine speed
of 300 r/min, which is the implementation speed of the MATLAB model. The simulation
results show the superior performance of NLR over PSO and GA and prove the superior
fault tolerance performance, especially for the Manifold Absolute Pressure (MAP) sensor
in terms of less oscillatory response, compared to that reported in existing literature.

3. Research Methodology

The suggested AFTCS was developed in MATLAB/Simulink using the experimentally
proven AFR model [26] of the IC gasoline engine. The results of refining this model to fit
the right AFTCS design for a GA, PSO, and NLR-based FDI unit have been reported. The
Fault Injection Unit (FIU) sends a fault instruction to each sensor one at a time, while the
additional sensors stay normal. The engine speed is set to 300 r/min for this work based
on the MATLAB model’s design speed, and the FDI unit provides the same value to the
controller when the speed sensor fails. The MATLAB model lookup tables [27] are used to
extract the data for MAP and throttle sensors at 300 r/min. GA, PSO, and NLR techniques
are used to create nonlinear relationships between MAP and throttle using the supplied
data. These nonlinear relationships are then used by the FDI unit to estimate the values of
the faulty sensors.

3.1. Air–Fuel Ratio (AFR) Control

An Internal Combustion (IC) engine is a heat engine that uses air to burn fuel in a
combustion chamber. In industrial operations, IC engines are commonly utilized as prime
movers. Chemical energy is turned into mechanical rotation, which is then used to power
the engines’ compressors and alternators. The two types of IC engines are Spark Ignition
(SI) and Compression–Ignition (CI). The compression causes combustion in CI engines,
whereas spark plugs cause combustion in SI engines. During the combustion phase, the
AFR is a measurement of how often air and fuel are mixed in a specified ratio. It is required
for better engine performance, reduced fuel consumption, and less pollution. The general
architecture of the AFR of an SI IC engine is shown in Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 21 
 

 
Figure 1. The architecture of the air–fuel system of an SI IC Engine [4]. 

The mathematical equation of AFR is: AFR = 𝑚௔௜௥𝑚௙௨௘௟ (1)

The chemical equation is given as: 25Oଶ + 2C଼Hଵ଼ → 16COଶ + 18HଶO + Energy (2)

The AFR is referred to as the stoichiometric ratio in this equation, and its value for 
gasoline is 14.6:1. During the combustion of fuel, the AFR ranges from 6:1 to 20:1. A rich 
mixture has a lower value than the stoichiometric ratio, whereas a lean mixture has a 
higher value than this ratio. The 16.5:1 AFR, for example, is lean, while the 13.7:1 AFR is 
rich in gasoline. Rich and lean mixtures are also deemed dangerous to the engine because 
they weaken the catalyst while also lowering engine performance and fuel economy. The 
value of AFR varies depending on the type of petrol. The value for ethanol amounts to 
9:1, methanol to 6.47:1, and hydrogen to 34.3:1. Four sensors are important in preserving 
AFR control of the SI IC engines: 

Manifold Absolute Pressure (MAP) Sensor: It gives the controller a precise suction 
air pressure rating. 

Throttle Sensor: It provides the controller with an air throttle position. 
Exhaust Gas Oxygen (EGO) Sensor: It is used to assess the oxygen substance in the 

drained gas and manages the fuel supply to ensure efficient ignition. 
Speed Sensor: Measures the rotational speed of the crankshaft of an engine; to pro-

vide this speed to the controller, a speed sensor is used. 
Because when these sensors fail, the engine shuts down, hence fault tolerance is re-

quired. It is desirable to generate virtual redundant sensors in the FDI unit that have a 
nonlinear response similar to actual sensors. That is why we used the estimation tech-
niques (GA, PSO, and NLR) in AFTCS architecture to approximate the system. 

3.2. System Modeling 
The AFR control can be categorized in a variety of dynamic ranges, such as air dy-

namics, fuel dynamics, sensor model, and controller design [28]. Here, the formulation for 
each dynamic is given. 

3.2.1. Air Dynamics 
Using the ideal air–gas hypothesis and mass conservation theory, the air intake dy-

namics are characterized as follows: 𝑃ሶ௜௡ = 𝑅𝑇௜௡𝑣௜௡ ൫𝑚ሶ ௧௛ − 𝑚ሶ ஼௬௧൯ + 𝑃௜௡ 𝑇ሶ௜௡𝑇௜௡ (3)

𝑃ሶ௜௡ = Ψሺ𝜙௧௛ ,𝑃௜௡,𝑇௜௡,𝑁௘ሻ (4)

Fuel Fuel 
Filter

Fuel 
Pump

Fuel 
Actuator

Air-Fuel 
Mixture Engine

Air 
Filter

Air Throttle 
ActuatorAtmospheric Air

Figure 1. The architecture of the air–fuel system of an SI IC Engine [4].

The mathematical equation of AFR is:

AFR =
mair

m f uel
(1)
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The chemical equation is given as:

25O2 + 2C8H18 → 16CO2 + 18H2O + Energy (2)

The AFR is referred to as the stoichiometric ratio in this equation, and its value for
gasoline is 14.6:1. During the combustion of fuel, the AFR ranges from 6:1 to 20:1. A rich
mixture has a lower value than the stoichiometric ratio, whereas a lean mixture has a higher
value than this ratio. The 16.5:1 AFR, for example, is lean, while the 13.7:1 AFR is rich
in gasoline. Rich and lean mixtures are also deemed dangerous to the engine because
they weaken the catalyst while also lowering engine performance and fuel economy. The
value of AFR varies depending on the type of petrol. The value for ethanol amounts to 9:1,
methanol to 6.47:1, and hydrogen to 34.3:1. Four sensors are important in preserving AFR
control of the SI IC engines:

Manifold Absolute Pressure (MAP) Sensor: It gives the controller a precise suction air
pressure rating.

Throttle Sensor: It provides the controller with an air throttle position.
Exhaust Gas Oxygen (EGO) Sensor: It is used to assess the oxygen substance in the

drained gas and manages the fuel supply to ensure efficient ignition.
Speed Sensor: Measures the rotational speed of the crankshaft of an engine; to provide

this speed to the controller, a speed sensor is used.
Because when these sensors fail, the engine shuts down, hence fault tolerance is

required. It is desirable to generate virtual redundant sensors in the FDI unit that have a
nonlinear response similar to actual sensors. That is why we used the estimation techniques
(GA, PSO, and NLR) in AFTCS architecture to approximate the system.

3.2. System Modeling

The AFR control can be categorized in a variety of dynamic ranges, such as air dynam-
ics, fuel dynamics, sensor model, and controller design [28]. Here, the formulation for each
dynamic is given.

3.2.1. Air Dynamics

Using the ideal air–gas hypothesis and mass conservation theory, the air intake dy-
namics are characterized as follows:

.
Pin =

RTin
vin

( .
mth −

.
mCyt

)
+ Pin

.
Tin
Tin

(3)

.
Pin = Ψ(φth, Pin, Tin, Ne) (4)

In the above equations, Tin is the temperature at the input,
.
Pin is manifold pressure,

and vin is the volume at the input;
.

mth and
.

mCyt are used to indicate the mass flow through
the valve and into the cylinder, respectively; R represents the gas constant; the engine
speed is denoted by Ne, and throttle opening position is represented by φth. The intake
temperature’s derivative concerning time is meant to be zero.

Now, Equation (4) becomes:

.
Pin =

.
kin
( .
mth −

.
mCyt

)
(5)

with
.
kin =

RTin
vin

(6)

The volume of air passing through the valve is [29]:

.
mth = Cd

Pid√
RTid

Ses(φth) g (Pr) (7)
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where Cd is the coefficient of discharge. Pid indicates the overhead load pressure. The load
ratio Pr then can be defined as Pr =

Pin
Pid

.
Ses(φth) is the opening area of throttle and can be given as:

Ses(φth) = σ1{1− cos(σ2φth + σ3)}+ σ4 (8)

Here, g (Pr) is a nonlinear quantity and is given as:

g (Pr) =


√

2γ
γ−1 (Pr)

1
γ

√(
1− Pr

γ−1
γ

)
i f Pr >

(
2

γ+1

) γ
γ−1

√
γ
(

2
γ+1

) γ+1
2(γ−1) i f Pr ≤

(
2

γ+1

) γ
γ−1

(9)

Here, γ is the air heat ratio and its value is 1.4.

3.2.2. Fuel Dynamics

The fuel dynamics can be found in [30] and reported as:
..
m f f (t) = 1

τf
(− .

m f f (t) + x
.

m f i(t))
.

m f v = (1− x)
.

m f i(t).
m f (t) =

.
m f v(t) +

.
m f f (t)

(10)

where τf represents the fuel vapor process at some fixed amount of time indicated by
(s);

.
m f i(t) represents the fuel flow injection [kg/s]; the flow of fuel in the cylinders is

given by
.

m f (t) [kg/s];
.

m f v the vapor fuel flow [kg/s]; and
..
m f f (t) the liquid mass fuel

flow [kg/s]. To produce a more comprehensive model, it is possible to add

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 21 
 

In the above equations, 𝑇𝑖𝑛 is the temperature at the input, 𝑃̇𝑖𝑛 is manifold pressure, 

and 𝑣𝑖𝑛  is the volume at the input; 𝑚̇𝑡ℎ and 𝑚̇𝐶𝑦𝑡  are used to indicate the mass flow 

through the valve and into the cylinder, respectively; R represents the gas constant; the 

engine speed is denoted by 𝑁𝑒, and throttle opening position is represented by 𝜙𝑡ℎ. The 

intake temperature’s derivative concerning time is meant to be zero. 

Now, Equation (4) becomes: 

𝑃̇𝑖𝑛 = 𝑘̇𝑖𝑛(𝑚̇𝑡ℎ − 𝑚̇𝐶𝑦𝑡) (5) 

𝑤𝑖𝑡ℎ    𝑘̇𝑖𝑛 =
𝑅𝑇𝑖𝑛
𝑣𝑖𝑛

 (6) 

The volume of air passing through the valve is [29]: 

𝑚̇𝑡ℎ = 𝐶𝑑
𝑃𝑖𝑑

√𝑅𝑇𝑖𝑑
𝑆𝑒𝑠(𝜙𝑡ℎ) 𝑔 (𝑃𝑟) (7) 

where 𝐶𝑑  is the coefficient of discharge. 𝑃𝑖𝑑  indicates the overhead load pressure. The 

load ratio 𝑃𝑟 then can be defined as 𝑃𝑟 =
𝑃𝑖𝑛

𝑃𝑖𝑑
. 

𝑆𝑒𝑠(𝜙𝑡ℎ)  is the opening area of throttle and can be given as: 

𝑆𝑒𝑠(𝜙𝑡ℎ) = 𝜎1{1 − cos(𝜎2𝜙𝑡ℎ + 𝜎3)} + 𝜎4 (8) 

Here, 𝑔 (𝑃𝑟)  is a nonlinear quantity and is given as: 

𝑔 (𝑃𝑟) =

{
 
 

 
 
√
2𝛾

𝛾 − 1
(𝑃𝑟)

1
𝛾√(1 − 𝑃𝑟

𝛾−1
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2
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The fuel dynamics can be found in [30] and reported as: 

{
 
 

 
 𝑚̈𝑓𝑓(𝑡) =

1

𝜏𝑓
(−𝑚̇𝑓𝑓(𝑡) + 𝑥𝑚̇𝑓𝑖(𝑡))

𝑚̇𝑓𝑣 = (1 − 𝑥)𝑚̇𝑓𝑖(𝑡)

𝑚̇𝑓(𝑡) = 𝑚̇𝑓𝑣(𝑡) + 𝑚̇𝑓𝑓(𝑡)

 (10) 

where 𝜏𝑓 represents the fuel vapor process at some fixed amount of time indicated by (s); 

𝑚̇𝑓𝑖(𝑡) represents the fuel flow injection [kg s⁄ ]; the flow of fuel in the cylinders is given 

by 𝑚̇𝑓(𝑡) [kg s⁄ ]; 𝑚̇𝑓𝑣 the vapor fuel flow [kg s⁄ ]; and 𝑚̈𝑓𝑓(𝑡) the liquid mass fuel flow 

[kg s⁄ ]. To produce a more comprehensive model, it is possible to add 𝜘 as a vector de-

pendent on the throttle opening or engine r/min 𝑁𝑒 [31]. In our case, the second solution 

is more feasible: 

𝜏𝑓(𝑁𝑒) = 𝜎5𝑁𝑒
−𝜎6 (11) 

𝜘(𝑁𝑒) = 𝜎7 + 𝜎8𝑁𝑒 (12) 

where 𝜎5, 𝜎6, 𝜎7, 𝜎8 are constant parameters. The injector model is given by a linear rela-

tionship between the mass fuel flows from the injectors. The AFR now becomes: 

𝜆𝑐𝑦𝑙 =
𝑚̇𝑐𝑦𝑙(𝑡)

𝜆𝑠𝑚̇𝑓(𝑡)
 (13) 

  

as a vector
dependent on the throttle opening or engine r/min Ne [31]. In our case, the second solution
is more feasible:

τf (Ne) = σ5Ne
−σ6 (11)
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intake temperature’s derivative concerning time is meant to be zero. 

Now, Equation (4) becomes: 

𝑃̇𝑖𝑛 = 𝑘̇𝑖𝑛(𝑚̇𝑡ℎ − 𝑚̇𝐶𝑦𝑡) (5) 

𝑤𝑖𝑡ℎ    𝑘̇𝑖𝑛 =
𝑅𝑇𝑖𝑛
𝑣𝑖𝑛

 (6) 

The volume of air passing through the valve is [29]: 

𝑚̇𝑡ℎ = 𝐶𝑑
𝑃𝑖𝑑

√𝑅𝑇𝑖𝑑
𝑆𝑒𝑠(𝜙𝑡ℎ) 𝑔 (𝑃𝑟) (7) 

where 𝐶𝑑  is the coefficient of discharge. 𝑃𝑖𝑑  indicates the overhead load pressure. The 

load ratio 𝑃𝑟 then can be defined as 𝑃𝑟 =
𝑃𝑖𝑛

𝑃𝑖𝑑
. 

𝑆𝑒𝑠(𝜙𝑡ℎ)  is the opening area of throttle and can be given as: 

𝑆𝑒𝑠(𝜙𝑡ℎ) = 𝜎1{1 − cos(𝜎2𝜙𝑡ℎ + 𝜎3)} + 𝜎4 (8) 

Here, 𝑔 (𝑃𝑟)  is a nonlinear quantity and is given as: 

𝑔 (𝑃𝑟) =

{
 
 

 
 
√
2𝛾

𝛾 − 1
(𝑃𝑟)

1
𝛾√(1 − 𝑃𝑟

𝛾−1
𝛾 )  𝑖𝑓   𝑃𝑟 > (

2

𝛾 + 1
)

𝛾
𝛾−1

√𝛾 (
2

𝛾 + 1
)

𝛾+1
2(𝛾−1)

               𝑖𝑓  𝑃𝑟 ≤ (
2

𝛾 + 1
)

𝛾
𝛾−1

 (9) 

Here, γ is the air heat ratio and its value is 1.4. 

3.2.2. Fuel Dynamics 

The fuel dynamics can be found in [30] and reported as: 

{
 
 

 
 𝑚̈𝑓𝑓(𝑡) =

1

𝜏𝑓
(−𝑚̇𝑓𝑓(𝑡) + 𝑥𝑚̇𝑓𝑖(𝑡))

𝑚̇𝑓𝑣 = (1 − 𝑥)𝑚̇𝑓𝑖(𝑡)

𝑚̇𝑓(𝑡) = 𝑚̇𝑓𝑣(𝑡) + 𝑚̇𝑓𝑓(𝑡)

 (10) 

where 𝜏𝑓 represents the fuel vapor process at some fixed amount of time indicated by (s); 

𝑚̇𝑓𝑖(𝑡) represents the fuel flow injection [kg s⁄ ]; the flow of fuel in the cylinders is given 

by 𝑚̇𝑓(𝑡) [kg s⁄ ]; 𝑚̇𝑓𝑣 the vapor fuel flow [kg s⁄ ]; and 𝑚̈𝑓𝑓(𝑡) the liquid mass fuel flow 

[kg s⁄ ]. To produce a more comprehensive model, it is possible to add 𝜘 as a vector de-

pendent on the throttle opening or engine r/min 𝑁𝑒 [31]. In our case, the second solution 

is more feasible: 

𝜏𝑓(𝑁𝑒) = 𝜎5𝑁𝑒
−𝜎6 (11) 

𝜘(𝑁𝑒) = 𝜎7 + 𝜎8𝑁𝑒 (12) 

where 𝜎5, 𝜎6, 𝜎7, 𝜎8 are constant parameters. The injector model is given by a linear rela-

tionship between the mass fuel flows from the injectors. The AFR now becomes: 

𝜆𝑐𝑦𝑙 =
𝑚̇𝑐𝑦𝑙(𝑡)

𝜆𝑠𝑚̇𝑓(𝑡)
 (13) 

  

(Ne) = σ7 + σ8Ne (12)

where σ5, σ6, σ7, σ8 are constant parameters. The injector model is given by a linear relation-
ship between the mass fuel flows from the injectors. The AFR now becomes:

λcyl =

.
mcyl(t)

λs
.

m f (t)
(13)

3.2.3. Sensor Model

The expression of the lambda (λ) sensor model can be formed as:

.
λ(t) = − 1

τλ
λ(t) +

1
τλ

λcyl(t− τ(Ne(t))) (14)

Here, τλ is the fixed time delay and its value is 0.1 s.
The speed of the engine Ne(t) and time delay τ are related as follows:

τ(Ne(t)) =
60

Ne(t)

(
1 +

1
ncyl

)
(15)

3.2.4. State-Space Representation

To obtain the state-space model, the following equation can be used:[ .
x1.
x2

]
= A

[
x1
x2

]
+ B

[
u1
u2

]
(16)
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y = C
[

x1
x2

]
+ D

[
u1
u2

]
(17){ .

x1 = f1(.)x1(t)− f2(.)u(t).
x2 = − 1

τλ
λ(t) + 1

τλ
λcyl(t− τ(Ne(t)))

(18)

with x1(t) = λcyl , x2(t) = λ(t), and u(t) =
.

m f i(t):

f1(.) = −
1

τλ(Ne)
−

..
mcyl

mcyl(Ne, Pin)
(19)

f2(.) = λs
χ(Ne)

τf (Ne)
mcyl(Ne, Pin) (20)

confined as follows: fi ≤ fi(·) ≤ fi, for i ∈ {1, 2}.

3.2.5. Controller Design

To formulate the architecture of the observer, Wang et al. have provided the mathe-
matical model in [32]. We are using the same model to explain the observer’s design.

.
x = Ax + Bu (21)

y = Cx + Du (22)
.
x = Ax + Bu (23)

y = Cx (24)

where “x” represents the state vector, “u” represents the input vector, and “y” represents
the output vector. The system matrices are A, B, C, and D.

(
.
x− .

x ) = A(x− x) (25)

(y− y) = C(x− x) (26)
.
x = Ax + Bu + L(y− y) (27)

In (27), L is the feedback gain.

.
x− .

x = A(x− x) + L(y− y) (28)

(y− y) = C(x− x) (29)
.
x− .

x = (A + LC)(x− x) (30)
.
ex = (A + LC)ex (31)

(y− y) = Cex (32)

FDI does not declare any fault when “ex” goes to zero. If “ex” is out of bound, an error
is identified, and the faulty value will be replaced. The complex structure of AFTCS, and
its slow response time due to excessive computations, are two of its main drawbacks [33].

The nonlinear observer design equation we obtain from (27) follows:

.
x(t) = Ax (t ) + Bu + g( x, u, t) + L(Cx− y) (33)

where “g(x, u, t)” is a nonlinear function and assumed to be globally Lipschitz. L is the
gain for the nonlinear observer.
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Let ex(t) be the error vector:

ex(t)=̂x(t)– x(t) (34)

From Equations (33) and (34), we obtain:

.
ex =

(
A + LC

)
ex(t) + (g( x, u, t)− g( x, u, t)) (35)

Lemma 1. The error ex(t) asymptotically approaches 0 if we can obtain a matrix R, X, and scalar µ
such that R = RT > 0 and µ > 0 in order to meet the linear matrix inequality (LMI):[

RA + AT R + XC + CTXT + µλ2 I R
R −µI

]
< 0 (36)

The reliability of each sensor is denoted by R.

The following equation can be used to select the observer gain matrix:

L = R−1X (37)

We can validate the choice of observer gain matrix by evaluating the following Lya-
punov function and proving its derivative to be zero:

V(t) = eT
x (t)Rex(t) (38)

Next, we need to check
.

V(x) < 0∀xεD− {0}, as listed below:

.
V(t) = eT

X
(

RA + RLC + AT R + CT L−T R
)
ex + 2eT

x R(g(x,u, k)− g(x, u, k))
≤ eT

X
(

RA + RLC + AT R + CT L−T R
)
ex + 1/µeT

x R2ex + µ‖g(x,u, k)− g(x, u, k)‖2

≤ eT
X
(

RA + RLC + AT R + CT L−T R
)
ex + 1/µeT

x R2ex + µλ2‖ex‖2

= eT
X
((

RA + RLC + AT R + CT L−T R
)
+ µλ2 I + 1/µR2)ex

(39)
Substituting (38) in (39), we obtain:

.
V(t) ≤ eT

X(
(

RA + XC + AT R + CTXT
)
+ µλ2 I + 1/µR2)ex (40)

If the inequality is given in (40) exits, ex asymptotically approaches 0.

(RA + XC + AT R + CTXT + µλ2 I + 1/µR2 ) < 0 (41)

This inequality becomes equal to (41) by applying the Schur complement, which
completes the proof.

Theorem 1. The error ex(t) approaches to zero exponentially with rate k/2 if there exist matrices
R, X, and scalars µ, k such that R = RT > 0 and µ, k > 0 to satisfy the following:

[
RA + AT R + XC + CTXT + µλ2 I + kR R

R −µI

]
< 0 (42)

To prove this, consider (40) and (42), which give

.
V(t) ≤ −keT

x Rex = −kV(t) (43)

Hence, we can write
V(t) ≤ eT

x V(0) (44)
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From (38) we obtain

λmin (R) ‖ex(t)‖2 ≤ e−ktλmax (R) ‖ex(0)‖2 (45)

where λmin and λmax are the minimum and maximum eigenvalues of R, respectively. Hence,
we obtain the following norm:

‖ex(t)‖ ≤
√

λmax (R)/λmin(R) ex(0) e−kt/2 (46)

Coming back to the residual equation:

r(t)=̂‖Cx(t)– y(t)‖ (47)

r(t) ≤
√

λmax (R)/λmin(R) ‖C‖ex(0) e−kt/2 (48)

‖C‖‖ex‖(0) ≈ ‖r(0)‖ (49)

Finally, we can find the following criteria for fault detection of a sensor fault:

r (t)

{
≤
√

λmax (R)/λmin(R) ‖r(0)‖ e−
kt
2 , there is no f ault

>
√

λmax (R)/λmin(R) ‖r(0)‖ e−
kt
2 , there is a f ault

(50)

Figure 2 depicts the planned AFTCS and its activity. When the system first begins, it
tests the sensor values and calculates the sensor-to-observer value threshold ξ.
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The FDI detects the fault by calculating the residual ex and comparing it with the
threshold (ξ) as follows:
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If ex < ξ, no fault is present in the sensor.
If ex ≥ ξ, a fault is detected in the sensor and will be replaced by the observer output.
If there is no fault, the engine performs as anticipated. The error signal, on the other

hand, becomes out of the threshold (10% absolute) if any single sensor fails. The FDI unit
feeds the Engine Control Unit (ECU), the approximate value derived from the observer
model based on PSO, GA, and NLR to replace the defective sensor value. The model’s
analytical redundancy is provided by the output of the approximate simulated value of the
defective sensor.

This model assumes that the engine runs at a constant speed of 300 r/min. We utilized
constant speed in this study since the engines in the process plant run at a constant speed
most of the time. Because the article is focused on designing an AFTCS system, load
changes and their influence on speed are not examined. The data for the MAP sensor and
the throttle sensor at 300 r/min are derived using the available MATLAB model Lookup
Tables (LTs). To generate nonlinear relation between the MAP sensor and the throttle sensor,
the three approaches are applied. For an estimated value of malfunctioning sensors, the FDI
unit uses these nonlinear relationships. It is also supposed that the time spent in switching
and reconfiguring is zero seconds. In actuality, the controller computations will be delayed.
The research has limitations in that it only examines full sensor failure types, neglecting
partial failures, which will be addressed in future research. Many physical problems, such
as open circuits owing to wire breakage or weak connections, or burnout due to any type
of short-circuiting leading the sensor to produce low output, can cause this issue.

4. Estimation Techniques
4.1. Genetic Algorithm (GA)

A search heuristic algorithm that was inspired by evolutionary theory is the Genetic
Algorithm (GA). GA is frequently used to examine alternatives to optimization problems.
For the problems that do not have a proven efficient solution (NP-complete problems) and
very large search spaces, we often use genetic algorithm. In GA, the fittest generation has a
greater chance of surviving in the following generation since we use GA to build several
generations before arriving at the ultimate answer. The current population goes through
cycles of crossover and mutation. Each generation has a solution, and the best or most
useful generation is ultimately picked as the answer. The GA operations are shown in
Figure 3. Based on the values of the population, the GA can be binary or real-coded. In this
study, we used the real-coded GA.
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Uniform crossover is used during this study. The offspring are calculated according to
the following equations:

y1i = αix1i + (1− αi)x2i (51)

y1i = αix2i + (1− αi)x1i (52)

Here, x1i and x2i are parents, y1i and y2i are offsprings, and α is the set of real-valued
random numbers which is uniformly distributed over the interval [0, 1]. To obtain better
results or expand the search space, α can also be distributed over the interval [−γ, 1 + γ],
where γ is a small real number.

To set the mutation parameters, we suppose that the variable xj is changing to xj
′

according to the following relation:

x′j = xj + δ (53)

δ is a real-valued random number with any valid continuous probability distribution. In
this study, we assumed that δ has a normal distribution:

δ ∼ (µ, σ2 ) (54)

The variance σ2 defines the mutation step size.
Owing to its impressive performance, GA is widely used in optimization and clas-

sification problems ranging among fault diagnosis in PV cells [34], OFDM and OQAM
synchronization estimation [35], OFDM modulation [36], classification problem solving [37],
hyperparameter optimization of power amplifiers [38], optimal resource allocation in cloud
computing [39], linear array antenna designing [40], robotic locomotion optimization [41],
compressor-based characteristics estimation for a system’s slow speed [42], and many more
similar problems.

4.2. Particle Swarm Optimization (PSO)

PSO is a swarm intelligence and mobility-based stochastic optimization approach. In
PSO, the concept of social interaction is used to address issues. It makes use of a swarm
of particles (agents) that move around in the search space looking for the best solution.
Each particle in the swarm looks for its positional coordinates in the solution space, which
are connected to the best solution that the particle has identified so far. Pbest, or personal
best, is the term for it. Another best value that the PSO keeps track of is gbest, or global best.
This is the best possible value produced so far by any particle around that particle. In PSO,
each particle has a velocity and a position. We need to update the velocities of the particles
and move the particles to their new positions. The particles move to their new position
according to the following relation:

Pt+1
i = Pt

i + vt+1
i (55)

The velocities are calculated as:

Vt+1
i = W·Vt

i + c1Ut
1 (Pt

b1
− Pt

i ) + c2Ut
2
(

gt
b − Pt

i
)

(56)

In (56), W is the inertia weight and is a positive constant; this parameter is important
for balancing the global search. Vi is the velocity of the particle, U1 and U2 are uniformly
distributed random numbers; c1 is the cognitive constant and c2 is a social constant, Pb is
the personal best, and gb is the global best. Clerk and Kennedy [43] defined a general rule
for the calculation of inertia weight, cognitive, and social constants in terms of constriction
coefficients. The constriction coefficient is given as:
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χ =
2k∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ (57)

Here, kappa (k) is constant and ϕ is also a constant whose value is greater than or
equal to 4; ϕ can be written as:

ϕ = ϕ1 + ϕ2 ≥ 4 (58)

Then, W, c1, and c2 can be calculated as:

W = χ

c1 = χϕ1

c2 = χϕ2

Similar to GA, PSO is also very popular and used in several optimization problems
such as antenna array synthesis, modulation, and demodulation in digital communication,
resource allocation in networking, etc.

4.3. Nonlinear Regression

Regression is one of the most well-known statistical approaches for predictive data
mining. The process of building a model using existing training data that allows you to
predict the value of a continuous output variable based on fresh input variable values is
known as regression [44]. In statistics, nonlinear regression is a type of regression analysis
in which observational data are represented by a nonlinear combination of model param-
eters that are dependent on one or more independent variables. A system of successive
approximations is used to match the results. A statistical model of the nonlinear regression
can be given as:

y ∼ f (X, β) (59)

This model is used to relate a vector of independent variables, X with the associated
dependent variables, vector y. In contrast to linear regression, here the function f is
nonlinear in the components of the vector β.

The goal of the model is to obtain the total of the squares to be as small as feasible.
The sum of the squares is a metric for measuring how close the Y measurements are to the
nonlinear (curved) equation that was used to estimate Y. The difference between the fitted
nonlinear equation and each Y point in the data set is calculated to obtain it. Following
that, each gap must be squared. All the squared figures are brought together at the end.
The more the equation matches the data points in the sample, the smaller the sum of these
squared figures. Logarithmic functions, trigonometric functions, exponential functions,
power functions, Lorenz curves, Gaussian functions, or other similar nonlinear functions
are used in nonlinear regression [44]. In the same way that linear regression modeling
does, nonlinear regression modeling aims to graphically monitor a certain response from a
set of factors. Nonlinear models are more complex to create than linear models since the
equation is formed by a series of approximations (iterations) that may come through trial
and error [44].

5. Results and Discussion
5.1. Estimation of Sensor Values

To add the analytical redundancy in the proposed model, the sensor values are re-
placed by the estimated values in case of a fault. The estimated values are calculated by
using PSO, GA, and NLR.
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5.1.1. MAP Estimation

The use of PSO, GA, and NLR requires a fitness function. To formulate the fitness func-
tion for the MAP estimation, the sum of the least-squares method is used. An exponential
equation given by (60) is used to predict the values of MAP sensors in the case of a fault:

ye = 1− e−axb
+ ce−x +

d
x2 − 1

(60)

Here, ye is the estimated MAP value; x is throttle angle; and a, b, c, and d are unknown
constants. The difference between the estimated MAP value (ye) and the actual MAP value
(y) is calculated and the sum of the difference over the entire range of x is computed to find
the fitness function fM. The expression for the fitness function is given as:

fM =
1

2n

n

∑
i=1

(yi − yei)
2 (61)

Here, n = 17 and the values of x and y are given in Table 2.

Table 2. Throttle angle (x) and MAP values (y) at 300 r/min [27].

x (Throttle Angle) 0◦ 3◦ 6◦ 9◦ 12◦ 15◦ 18◦ 21◦ 24◦

y (MAP Value) 0.091 0.114 0.191 0.329 0.545 0.745 0.857 0.915 0.946

x (Throttle Angle) 27◦ 30◦ 35◦ 46◦ 57◦ 68◦ 79◦ 90◦

y (MAP Value) 0.964 0.975 0.985 0.994 0.997 0.998 0.999 0.999

The fitness function given by (61) is then minimized by using PSO, GA, and NLR to
find the best possible values of the unknown constants a, b, c, and d. All three optimization
techniques were implemented in MATLAB and executed on a Core i7 processor with a
RAM of 8 GB. PSO was executed with a swarm size of 1500, maximum iterations were kept
at 200, and the values of ϕ1 and ϕ2 were set at 2.1 each; the values of kappa (k) and damping
ratio of inertia coefficient were assumed to be 1.1 and 0.9 respectively. While implementing
the GA, the simulated binary crossover is used instead of blend crossover with parameters
β = 2.1 and distribution index ηC = 2.1. The other parameters γ, µ, and σ were set at
0.1, 0.015, and 1, respectively. The population size was set at 500 with 150 iterations. To
implement the NLR, the residual sum of squares (RSS) is computed and then the unknown
constants were found for which the RSS is minimum. With the abovementioned settings,
all three estimations techniques returned the unknown constants and the estimated MAP
values, which are given in Tables 3 and 4, respectively.

Table 3. Values of unknown constants found by PSO, GA, and NLR for MAP estimation.

Constant PSO GA NLR

a 0.0048 0.0106 0.0042

b 2.0909 1.7589 2.1109

c 0.4797 0.2606 0.4897

d 0.4084 0.1690 0.3883

To examine the performance of the individual algorithms, the line fit plots were made,
and then the statistics such as residual sum of squares (RSS), mean square error (MSE), R2,
adjusted R2, standard error of estimation (SEE), and optimization times were recorded and
given in Table 5. The line fit plots are shown in Figure 4.
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Table 4. Estimated MAP values with PSO, GA, and NLR.

Throttle Angle Actual MAP
Value

Estimated MAP Values

PSO GA NLR

0◦ 0.091 0.0813 0.0917 0.0913

3◦ 0.114 0.1216 0.1046 0.1138

6◦ 0.191 0.1954 0.2246 0.1792

9◦ 0.329 0.3805 0.3985 0.3542

12◦ 0.545 0.5791 0.5683 0.5482

15◦ 0.745 0.7475 0.7113 0.7190

18◦ 0.857 0.8666 0.8194 0.8449

21◦ 0.915 0.9381 0.8940 0.9243

24◦ 0.946 0.9749 0.9415 0.9675

27◦ 0.964 0.9913 0.9696 0.9879

30◦ 0.975 0.9975 0.9851 0.9962

35◦ 0.985 1.0000 0.9961 0.9998

46◦ 0.994 1.0002 0.9999 1.0002

57◦ 0.997 1.0001 1.0000 1.0001

68◦ 0.998 1.0001 1.0000 1.0001

79◦ 0.999 1.0001 1.0000 1.0001

90◦ 0.999 1.0001 1.0000 1.0000

Table 5. Estimation statistics for MAP estimation.

Parameter PSO GA NLR

Residual Sum of Squares (RSS) 0.007 0.010 0.003

Mean Square Error (MSE) 0.0004 0.0006 0.0002

Coefficient of Determination (R2) 0.99 0.99 0.99

Adjusted R2 0.96 0.92 0.98

Standard Error of Estimation (SEE) 0.02 0.024 0.01

Optimization Time (t) in seconds 6.71 4.25 0.46

It is evident from Figure 4 that the estimated values generated by NLR are very close
to the actual values of the MAP sensor. It is further supported by entries in Table 4. From
Table 5, it can be noted that RSS, MSE, R2, and adjusted R2 values for NLR are much better
than PSO and GA. It can be seen in Table 5 that the R2 values for all three techniques are the
same (0.99), but the adjusted R2 of NLR is very impressive (0.98) as compared to GA (0.92)
and PSO (0.96). PSO and NLR produce nearly the same results. Moreover, the SEE value
for NLR is 0.01 as compared to 0.02 and 0.024 in PSO and GA, respectively. It proves the
higher accuracy of NLR over PSO and GA. To further justify the claim of the effectiveness
of NLR, the optimization times are also calculated by using MATLAB, and it can be noted
from Table 5 that the optimization time of NLR is shorter (0.46 s) when compared to PSO
(6.71 s) and GA (4.25 s), which makes the NLR useful for time-sensitive applications and
controllers with less computation power.
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5.1.2. Throttle Estimation

The use of PSO, GA, and NLR requires a fitness function. To formulate the fitness
function for the throttle estimation, the sum of the least-squares method is used. A 6th-
degree polynomial given by (62) is used to predict the values of throttle sensors in the case
of a fault:

ye = a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 (62)

Here, ye is the estimated throttle value; x is MAP value; and a6, a5, a4, a3, a2, a1, and a0
are unknown constants. The difference between estimated throttle value (ye) and actual
throttle value (y) is calculated and the sum of the difference over the entire range of x is
computed to find the fitness function fM. The expression for the fitness function is given as:

fM =
1

2n

n

∑
i=1

(yi − yei)
2 (63)

For throttle estimation, n = 19, and the values of x and y are given in Table 6.
The fitness function given by (63) is then minimized by using PSO, GA, and NLR to

find the best possible values of the unknown constants a0 through a6. All three optimization
techniques were implemented in MATLAB and executed on a Core i7 processor with a
RAM of 8 GB. PSO was executed with a swarm size of 1800, maximum iterations were
kept at 500, and the values of ϕ1 and ϕ2 were set at 2.9 and 1.5, respectively; the values of
kappa (k) and damping ratio of inertia coefficient were assumed to be 1.5 and 0.2. While
implementing the GA, the simulated binary crossover is used instead of blend crossover
with parameters β = 3.8 and distribution index ηC = 2.1. The other parameters γ, µ, and
σ were set at 0.25, 0.02, and 0.5, respectively. The population size was set at 400 with
100 iterations. To implement the NLR, the residual sum of squares (RSS) is computed
and then the unknown constants were found for which the RSS is minimum. With the
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abovementioned settings, all three estimation techniques returned the unknown constants
and the estimated throttle values, which are given in Tables 7 and 8, respectively.

Table 6. MAP value (x) and throttle angles (y) at 300 r/min [27].

x (MAP Value) 0.05 0.10 0.15 0.20 0.25 0.30 0.35

y (Throttle Angle) 0◦ 1.98◦ 4.69◦ 6.26◦ 7.47◦ 8.48◦ 9.36◦

x (MAP Value) 0.40 0.45 0.50 0.55 0.60 0.65 0.70

y (Throttle Angle) 10.13◦ 10.82◦ 11.45◦ 12.06◦ 12.70◦ 13.40◦ 14.19◦

x (MAP Value) 0.75 0.80 0.85 0.90 0.95

y (Throttle Angle) 15.11◦ 16.24◦ 17.75◦ 20.03◦ 24.50◦

Table 7. Values of unknown constants found by PSO, GA, and NLR for throttle estimation.

Constant PSO GA NLR

a6 52.92 45.88 806.64

a5 −57.10 −28.79 −2144.63

a4 59.85 32.90 2157.77

a3 −60.03 −56.51 −956.47

a2 0.001 2.40 129.75

a1 35.11 35.56 40.77

a0 −1.03 −1.26 −2.34

Table 8. Estimated throttle values with PSO, GA, and NLR.

MAP Value Actual Throttle Value
Estimated Throttle Values

PSO GA NLR

0.05 0◦ 0.72◦ 0.52◦ −0.08◦

0.10 1.98◦ 2.43◦ 2.27◦ 2.28◦

0.15 4.69◦ 4.06◦ 3.95◦ 4.41◦

0.20 6.26◦ 5.59◦ 5.54◦ 6.17◦

0.25 7.47◦ 7.00◦ 7.01◦ 7.55◦

0.30 8.48◦ 8.27◦ 8.33◦ 8.60◦

0.35 9.36◦ 9.38◦ 9.48◦ 9.42◦

0.40 10.13◦ 10.34◦ 10.47◦ 10.10◦

0.45 10.82◦ 11.14◦ 11.28◦ 10.73◦

0.50 11.45◦ 11.80◦ 11.93◦ 11.37◦

0.55 12.06◦ 12.36◦ 12.46◦ 12.05◦

0.60 12.70◦ 12.85◦ 12.90◦ 12.76◦

0.65 13.40◦ 13.35◦ 13.35◦ 13.49◦

0.70 14.19◦ 13.95◦ 13.89◦ 14.25◦

0.75 15.11◦ 14.78◦ 14.67◦ 15.08◦

0.80 16.24◦ 16.00◦ 15.87◦ 16.13◦

0.85 17.75◦ 17.81◦ 17.71◦ 17.68◦

0.90 20.03◦ 20.48◦ 20.47◦ 20.20◦

0.95 24.50◦ 24.32◦ 24.50◦ 24.44◦
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To examine the performance of the individual algorithms, the line fit plots were made,
and then the statistics such as residual sum of squares (RSS), mean square error (MSE), R2,
adjusted R2, standard error of estimation (SEE), and optimization times were recorded and
given in Table 9. The line fit plots are shown in Figure 5.

Table 9. Estimation statistics for throttle estimation.

Parameter PSO GA NLR

Residual Sum of Squares (RSS) 2.65 3.02 0.28

Mean Square Error (MSE) 0.14 0.16 0.01

Coefficient of Determination (R2) 0.996 0.995 0.999

Adjusted R2 0.94 0.93 0.99

Standard Error of Estimation (SEE) 0.40 0.42 0.10

Optimization Time (t) in seconds 26.63 3.03 0.097
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It is evident from Figure 5 that the estimated values generated by NLR are very close
to the actual values of the throttle sensor. It is further supported by entries in Table 8.
From Table 9, it can be noted that RSS, MSE, R2, and adjusted R2 values for NLR are much
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better than those for PSO and GA. It can be seen in Table 9 that the R2 values for all three
techniques are the same (0.99), but the adjusted R2 of NLR is very impressive (0.99) as
compared to GA (0.93) and PSO (0.94). PSO and NLR produce nearly the same results.
Moreover, the SEE value for NLR is only 0.1 as compared to 0.4 and 0.42 in PSO and GA,
respectively. It proves the higher accuracy of NLR over PSO and GA. To further justify
the claim of the effectiveness of NLR, the optimization times are also calculated by using
MATLAB, and it can be noted from Table 9 that the optimization time of NLR is shorter
(0.097 s) as compared to PSO (26.63 s) and GA (3.03 s), which makes the NLR useful for
time-sensitive applications and controllers with less computation power. Both PSO and
GA produce identical results, but it is worth noticing that PSO consumes much more
time as compared to GA. This fact makes GA the second-best option for this optimization,
after NLR.

5.2. MATLAB Simulation Results

The proposed AFTCS for the AFR controller was implemented in a MATLAB IC
gasoline engine model. The FDI block is used to identify, separate, and substitute inaccurate
parameters with expected values. As shown in Section 5.1, the NLR provides more accurate
results by consuming less computation power; thus, the observer model in the FDI unit
was built with the nonlinear regression relationships. The AFTCS phase is simulated with
failures, based on input from the other functional sensors in the FDI unit; the FLC observer
develops a new estimated value, which is delivered to the controller. The defect is injected
into each sensor, one at a time by the FIU, which keeps the others healthy. The mixture
AFR ratio is kept at 14.6 in normal circumstances, while it decreases to 11.7 under faulty
situations (rich mixture). Despite the degradation, the system maintains stability, which is
compatible with AFTCS design philosophy [45]. Figure 6 shows how the proposed AFTCS
performs in both normal and abnormal scenarios.
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The AFR deteriorated to 11.7 in the steady state with a fault in any one sensor with the
AFTCS portion alone, as shown in Figure 6. It can be noted from Figure 6 that the engine
response is less oscillatory as compared to results reported in [12], especially when the fault
is introduced in the MAP sensor. This is because the estimated values generated by NLR
are very close to the actual sensor values, which validates the analytical redundancy and
proves the effectiveness of NLR.
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5.3. Reliability Analysis

In this section, the probabilistic reliability analysis was carried out for our proposed
AFTCS model. Let R represents the reliability of each sensor, then the probability of failure
of these components follows:

PCF = 1− R (64)

where PCF represents the probability of component failure.
Without fault tolerance, the engine shuts down due to a fault in any of the four sensors.
Let PSF represent the probability of system failure and RSystem represents the reliability

of the overall system, then we have

PSF = 4(1− R) (65)

RSystem = 1− PSF (66)

RSystem = 1− 4 (1− R) (67)

If R = 0.9, then RSystem = 1− 4 (1− 0.9) = 0.6

RSystem = 60%

The proposed AFTCS prevents the engine from shutting down in the event of a
malfunction in a single sensor. However, if two sensors fail at the same moment, the engine
will shut down. Hence,

PSF = 4
2C(1− R)(1− R) (68)

PSF = 6 (1− R)2 (69)

RSystem = 1− PSF (70)

RSystem = 1− 6 (1− R)2 (71)

If R = 0.9, then RSystem = 1− 6 (1− 0.9)2 = 0.94

RSystem = 94%

Thus, the reliability of the system improves by 34% with the proposed AFTCS for
sensor faults.

From the abovementioned MAP estimation results, throttle estimations results,
MATLAB simulation results, and reliability analysis, we can say that the proposed
methods, and especially the nonlinear regression, are more efficient as compared to other
techniques because:

• The estimated values generated by PSO, GA, and NLR are very close to the actual
MAP and throttle values. The standard error of estimation is less than 0.02 for MAP
estimation and less than 0.4 for throttle estimation.

• The computational power requirements are much less for these techniques.
• The computational time needed by these techniques is much less, which makes these

methods efficient in terms of response time in the case of a sensor fault.

6. Conclusions

In this article, a comparative study was reported for the design of an advanced AFTCS
for AFR control of an IC engine to achieve greater reliability and prevent costly shutdowns
due to sensor faults. These comparisons consisted of three estimations techniques: PSO,
GA, and NLR. All three techniques were used to calculate the estimated values for MAP
and throttle values of an IC engine in the case of a single sensor failure. The accuracy and
the computation speed of these algorithms were measured by using MATLAB and it was
proved that NLR produces more accurate results very quickly as compared to PSO and GA.
An AFTCS was also proposed for the IC engine. In the proposed AFTCS, the FDI unit was
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built with a nonlinear regression-based observer unit. The model was implemented in the
MATLAB/Simulink environment and tested for various sensor faults. The results prove
superior fault tolerance performance for sensor faults of the AFR control system, especially
for the MAP sensor in terms of less oscillatory response as compared to those reported in
existing literature. It was also proved that the proposed model is suitable for time-critical
applications and controllers with limited computation power.

Since we have considered full-type faults of the sensors as a limiting case of study,
future experimental work may include the AFTCS design for partial-type faults of the
sensors with experimentation, such as hardware-in-the-loop testing.
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