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Abstract: Advances in nanotechnology have led to the development of antimicrobial technology of
nanomaterials. In recent years, photocatalytic antibacterial disinfection methods with ZnO-based
nanomaterials have attracted extensive attention in the scientific community. In addition, recently
widely and speedily spread viral microorganisms, such as COVID-19 and monkeypox virus, have
aroused global concerns. Traditional methods of water purification and disinfection are inhibited
due to the increased resistance of bacteria and viruses. Exploring new and effective antimicrobial
materials and methods has important practical application value. This review is a comprehensive
overview of recent progress in the following: (i) preparation methods of ZnO-based nanomaterials
and comparison between methods; (ii) types of nanomaterials for photocatalytic antibacterials in
water treatment; (iii) methods for studying the antimicrobial activities and (iv) mechanisms of ZnO-
based antibacterials. Subsequently, the use of different doping strategies to enhance the photocatalytic
antibacterial properties of ZnO-based nanomaterials is also emphatically discussed. Finally, future
research and practical applications of ZnO-based nanomaterials for antibacterial activity are proposed.
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1. Introduction

With rapid global population growth, urbanization increasing, illicit misuse of fresh-
water resources, and continued destruction of the global climate, the increasing demand
for clean water is becoming a global concern [1–3]. Seven billion people, more than 15%
of the world’s people, are facing a shortage of fresh water resources, which even causes
them to not have enough fresh water to sustain normal life and productive work [4,5].
Water scarcity is exacerbated by the increasing water pollution from releases of waterborne
pathogens, inorganic pollutants, organic pollutants, agricultural chemicals, derivatives of
human and animal drugs, and endocrine disruptors [6–8].

Infectious diseases caused by biological contamination such as typhoid fever, dysen-
tery, cholera, and diarrhea are a major cause of death worldwide and continue to replicate
at an alarming rate [9]. The extensive use of antibiotics and antibacterial drugs has led
to strong drug resistance in viruses and bacteria, which further exacerbates the spread of
biological infectious diseases [10]. In addition, the recent epidemics of global security issues
such as the COVID-19 virus and monkeypox virus are caused by the spread of viruses
that threaten all human beings and have a great impact on human production, life, and
health [11–14]. Similar to bacteria and pathogenic microorganisms, epidemic viruses are
always difficult to eradicate due to the abuse of antibiotics and various disadvantages of
disinfectants [15,16]. In view of the above situation, it is crucial to explore more effective
solutions and approaches.

Recent advancements in semiconductor materials and new nanomaterials have blazed
new trails for their applications in the fields of photocatalysis and bacterial inactivation [9].
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Nanotechnology provides a variety of promising nanomaterials for the field of photocat-
alytic antimicrobial. Metal oxides have many advantages such as non-toxic, stable, and
efficient biological properties, which make them stand out among many nanomaterials and
become a research hotspot in this field. Numerous nanomaterials doped with metal oxides
such as ZnO [17], Fe2O3 [18], TiO2 [19], Ag2O [20], CaO [20], MgO [21], and CuO [22]
have been applied as efficient antibacterial agents for both Gram-positive (G+) and Gram-
negative (G-) bacteria, such as Escherichia coli, Salmonella enteritidis, Streptococcus pyogenes,
Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella typhimurium, Fecal intestinal cocci,
etc. [23]. Among the antibacterial agents, ZnO-based nanomaterials are widely recognized
as promising antibacterial agents with strong photocatalytic antibacterial activity [24,25].
Nevertheless, the wide bandgap of ZnO is approximately 3.2–3.3 eV, which affects its
light absorption ability, resulting in a response only in the ultraviolet band [26]. Previous
studies indicated that defects of nanomaterials in photocatalytic antibacterial processes
could be effectively improved after being modified [27]. Strategies, such as loading an-
tibacterial agents, loading oxidized nanomaterials, and adjusting the particle size, material
microshape, and concentration of ZnO were employed to enhance the antibacterial proper-
ties. While exploring the antibacterial ability improvement, the antibacterial mechanism
should also be in-depth investigated.

In previous studies, some mechanisms for photocatalytic antimicrobials, such as metal ion
release, reactive oxygen species (ROS) generation [28], destruction of cell membranes, internaliza-
tion of nanoparticles [29], interruption or blockade of transmembrane transport, etc., have been
proposed [30,31]. Overall, the purpose of all antibacterial mechanisms is to disrupt the bacterial
cell structure and break it down into harmless substances. However, our understanding of the
specific process of substance transformation during the photocatalyst-induced antimicrobial
process is still very limited, which requires further exploration.

This review is an exhaustive summary of recent research advances on the antimicrobial
of ZnO-based nanomaterials. By summarizing previous studies, ZnO-based nanomate-
rials with excellent antibacterial effects were obtained. From the perspective of material
preparation, different preparation methods are reviewed, and both the advantages and
disadvantages are compared. Subsequently, the antimicrobial mechanism of ZnO-based
nanomaterials is discussed in-depth from both the physical and chemical aspects. In detail,
various strategies to enhance the antimicrobial ability of ZnO-based nanomaterials in recent
studies are proposed. Finally, temporary deficiencies in the improvement strategy are
summed up, and prospects for the future development direction and application potential
are presented.

2. ZnO-Based Nanostructures Preparation

Among the numerous methods for preparing ZnO-based nanomaterials, the wet-
chemical/solution technique has many advantages such as simplicity, rapid operation, and
cost savings, which make it a promising method for the preparation of ZnO-based nano-
materials. The advantages and disadvantages of commonly used wet-chemical/solution
techniques, such as the sol–gel method, co-precipitation method, microwave-assisted
method, and hydrothermal method, are presented in detail in Table 1. The preparatory
stage of ZnO nanomaterial growth is fully wetted by wet-chemical/solution techniques,
which greatly improves the stability of the materials.
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Table 1. Advantages and disadvantages of different antibacterial synthesis methods.

Method Preparation Shape Advantages Disadvantages References

Sol–gel

Nanorods;
Nanotubes;
Nanobelts;
Nano springs;
Nano spirals;
Nano rings.

(1) Uniform doping;
(2) High stability;
(3) Low synthesis temperature.

(1) Expensive raw material prices;
(2) Longer reaction time;
(3) Organics escape.

[32–34]

Co-precipitation

Homogeneous
and spherical;
Nanobelts;
Nano springs.

(1) Simple preparation process;
(2) Low cost;
(3) Short synthesis cycle.

(1) Additional precipitant;
(2) High temperature calcination;
(3) Uneven dispersion.

[35,36]

Microwaves-assisted

Nanorods;
Nanotubes;
Nanobelts;
Nano springs.

(1) High synthesis efficiency;
(2) Energy saving;
(3) Improved material
properties.

(1) Indeterminate form;
(2) Large investment;
(3) High requirements for
equipment.

[37–39]

Hydrothermal
Nanobelts;
Nano springs;
Nano spirals.

(1) Less thermal stress;
(2) High particle purity;
(3) Controllable crystal shape;
(4) Low cost.

(1) Inconvenient to observe;
(2) Not intuitive;
(3) High equipment requirements;
(4) Technical difficulty;
(5) Poor safety performance.

[40–42]

2.1. Sol–Gel Method

The sol–gel method is one of the most effective chemical methods for nanocompos-
ites preparation with desired properties and advantages, such as low cost, mild reac-
tion, environmental friendliness, reliability, and simplicity [43]. In the preparation of
photocatalytic materials, the materials synthesized by this method have better photocat-
alytic activity [44]. ZnO nanoparticles were successfully synthesized using the gel-sol
method by Hasnidawani [45], and the surface morphology was verified by Fe-SEM images
(Figure 1), which was confirmed to have a rod-like structure with a dense particle structure.
Varieties of ZnO nanostructures have been discovered, which are in the form of nanorods,
nanotubes, nanobelts, nano springs, nano spirals, nano rings, and many more [46]. Among
these structures, the rod-like structure is the best nanostructure compared to others due
to their one-dimensional nanostructures (such as nanorods, nanowires, and nanotubes)
that can facilitate more efficient carrier transport for the decreased grain boundaries, sur-
face defects, disorders, and discontinuous interfaces [47,48]. In the process of preparing
ZnO-based nanomaterials by the sol–gel method, the influence of factors such as solution
drop acceleration rate, reaction temperature, pH, etc., will have a significant impact on the
antibacterial properties of the materials [49]. Effects of various preparation influencing
factors on the antibacterial properties of ZnO were tested, and pH was proven to be the
most important influencing factor [50]. The reason is suggested to be that the neutral
and acidic solution environment is more suitable for Zn2+ to function and achieve an
antibacterial effect. As long as the optimal pH and preparation temperature are found, the
sol–gel method will be one of the effective preparation methods with high efficiency and
low cost. Therefore, in recent studies, the sol–gel method is used more in the synthetization
of ZnO-based nanoparticles [51–53].
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with permission from Ref. [45]. Copyright © 2022, Elsevier B.V. 

2.2. Co-Precipitation Method 
The co-precipitation method does not require expensive raw materials and 

complicated equipment, which provides a suitable method for low-cost and large-scale 
production [54]. Furthermore, in addition to simpler devices, suitable metals, metal 
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precipitation method was chosen to prepare ZnO-based nanoparticles in an aqueous 
solution at two different reaction temperatures (50 °C and 70 °C) by Kotresh et al. [56]. 
The surface morphology of ZnO nanoparticles prepared by the co-precipitation method 
was observed by scanning electron microscope (SEM) images as shown in Figure 2. It can 
be seen from the SEM images that the particles are uniformly spherical with a dense and 
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improvement of photocatalytic reactions. However, it was found that the droplet 
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of the co-precipitation method with a simple preparation process, the use of this method 
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Figure 1. FE-SEM micrographs of synthesized ZnO at different magnifications. Reprinted/adapted
with permission from Ref. [45]. Copyright © 2022, Elsevier B.V.

2.2. Co-Precipitation Method

The co-precipitation method does not require expensive raw materials and complicated
equipment, which provides a suitable method for low-cost and large-scale production [54].
Furthermore, in addition to simpler devices, suitable metals, metal oxides, and surfactants
are added to change the morphology of the materials [55]. The co-precipitation method was
chosen to prepare ZnO-based nanoparticles in an aqueous solution at two different reaction
temperatures (50 ◦C and 70 ◦C) by Kotresh et al. [56]. The surface morphology of ZnO
nanoparticles prepared by the co-precipitation method was observed by scanning electron
microscope (SEM) images as shown in Figure 2. It can be seen from the SEM images that
the particles are uniformly spherical with a dense and dense structure. The spherical ZnO
nanoparticles prepared by the co-precipitation method are favorable for uniform disper-
sion in the photocatalytic reaction and efficiency improvement of photocatalytic reactions.
However, it was found that the droplet acceleration rate had the greatest impact on the
antibacterial properties of ZnO-based nanomaterials synthesized by the co-precipitation
method [57]. The size of the nanoparticles synthesized by the co-precipitation method is
affected by the drop rate of the solution, which will affect the contact area of the nanoparti-
cles during the antibacterial reaction, thereby greatly affecting the antibacterial effect [58].
Therefore, the droplet acceleration rate and particle size need to be carefully considered
during synthesis, which is an important part of the success of the co-precipitation method.
Due to the advantages of the co-precipitation method with a simple preparation process,
the use of this method has gradually increased in nanomaterial synthesis research in recent
years [59–61].
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2.3. Microwave-Assisted Method

The microwave-assisted method is not only an energy-saving, environmentally friendly,
and heat-free method, but also with many advantages such as fast synthesis speed and the
ability to tune the particle shape [44,62]. ZnO nanoparticles with different morphologies
can be synthesized by the microwave-assisted hydrothermal method by adjusting the time
and power of microwave irradiation [63,64]. Through microwave-assisted chemistry tech-
niques, ZnO nanostructures with different morphologies were synthesized in different pH
reaction mixtures (acidic, basic, or neutral). Furthermore, nanomaterials are synthesized
without any heating and addition of surfactants. Hence, obtaining ZnO particles with
oxygen vacancies and defects is expected to improve their pollutant degradation behav-
ior due to the fast reaction process and non-stoichiometric synthesis [65]. As shown in
Figure 3, the microscopic morphology of the microwave-synthesized ZnO nanostructures
was observed by SEM. It can be seen intuitively that the appearance of ZnO nanoparticles
changes dramatically with the pH change. In addition, from the XRD analysis in Figure 4,
it was demonstrated that the change in intensity and peak width of the two sets of samples
(prepared with NaOH and KOH as pH control agents) can be observed as the solution pH
changes. The above results showed that the shape of synthesized ZnO nanoparticles is
affected by pH changes, which has important implications for the directional synthesis of
nanoparticles with diverse morphologies. In addition, several studies have shown that the
power of the microwave is the most important factor affecting the synthesis of ZnO-based
nanomaterials by microwave-assisted method [66,67]. Moderate-power microwave have
been shown to be suitable for the synthesis of ZnO-based nanomaterials with stronger
antibacterial capabilities [68,69]. However, the exact power influence mechanism needs to
be further explored.
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2.4. Hydrothermal Method

The hydrothermal method is a convenient and highly efficient method, which requires
a lower reaction temperature and saves costs [70]. In addition, by adjusting the duration,
density, and reaction temperature of the contained substances, the morphology and size
of the particles can be controlled [71]. As shown in Figure 5a–c, TEM images of synthe-
sized ZnO particles at precursor concentrations of 5, 10, and 20 mM are revealed. The
morphological features of the poorly dispersed nano-ZnO crystals are clearly demonstrated
by the TEM images in all cases. At precursor concentrations of 5, 10, and 20 mM, ZnO
nanoparticles were observed to have diameters of approximately 4.5, 6, and 8–9 nm, re-
spectively. Furthermore, it was also observed from the images that the size distribution
of the nanoparticles was fairly uniform [72]. As shown in the XRD pattern (Figure 6),
the crystalline structure of the synthesized ZnO particles after hydrothermal treatment
was confirmed. Simultaneously, no impurity peaks were detected from the XRD pattern,
indicating that the target substance with a higher purity was successfully synthesized [72].
Furthermore, the preferred orientation of the ZnO particle samples was not seen from XRD
patterns, suggesting that ZnO crystals may have the most shapes other than rods or sheets.
Based on the above conclusions, the hydrothermal method is a suitable method to prepare
ZnO-based nanoparticles with different shapes. In addition, the antibacterial effect of
ZnO-based nanomaterials prepared by hydrothermal method is affected by several factors,
such as pH, reaction temperature, and dosage ratio [73,74]. The reaction temperature
directly affects the structure of the material and changes the antibacterial ability, while
the pH changes the surface properties and shape of the material to affect the antibacterial
ability [75].
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3. Types of Nanomaterials for Photocatalytic Antimicrobials in Water Treatment

A variety of nanomaterials as efficient adsorption materials and catalytic degradation
and purification of wastewater will be discussed in this section. As shown in Figure 7,
various microbial contaminants and their sources, as well as different nanomaterials for
removal applications are revealed [76]. Limitations of single nanomaterials can be overcome
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by various strategies such as polymer/metal oxide nanocomposite [77], metal oxide/metal-
based nanomaterials [78,79], polymer/metal oxide nanocomposite [80,81], and polymer-
structure-based materials [82,83].
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The nanocomposite is a safe, non-toxic, green and environmentally friendly nanoma-
terial, usually prepared with ZnO and TiO2 as substrates. The addition of TiO2 and ZnO
NPs in some polymers such as polypropylene matrix would increase the dielectric constant
of the nanocomposite, thereby enhancing the photocatalytic ability of the material [84]. In
addition, the polymer boundary layer transition zone forms a crystalline structure, which
increases conductivity and acts as a tuning surfactant [85], which greatly enhances the
photoreactivity of the catalytic material. A variety of composite nanomaterials have been
reported that can be applied to organic pollutants and microbial contamination removal
from water [86]. Moreover, the addition of Ag, zinc, zeolite, and titanium is obtained having
better efficiencies in pathogenic pathogens and microorganisms removal from water [87,88].
For example, silver NPs with polyurethane will flexibly remove almost 100% of B. subtilis
and E. coli from water [89,90].

Among the composite nanomaterial antibacterial agents, ZnO-based nanomaterials
have the advantages of strong compatibility, green friendliness, lower costs, and simple
preparation, so they occupy a large proportion of the related studies in this field in re-
cent years. Studies showed that ZnO has stronger direct interactions with bacterial and
pathogen cell surfaces than other semiconductor materials [91]. In addition, ZnO nano-
materials leak Zn2+ in solution, which can exacerbate toxicity to bacteria, pathogens, and
viruses. Compared with Cu+, Fe2+, and Al3+, Zn2+ showed a better ability to fight microbial
contaminants [92]. Therefore, ZnO-based nanomaterials have a better potential to combat
microbial contamination, which is of practical significance for the study of antimicrobial
contamination. Among types of microbial pollution in the water environment, bacterial
pollution is still the most important problem to be solved. Thus, in the next section, the
antimicrobial properties and mechanisms of ZnO-based nanomaterials, as well as methods
for studying antimicrobial properties are introduced, and the methods for improving their
catalytic properties are summarized and discussed.

4. ZnO-Based Nanomaterials for Antimicrobial Application in Water Treatment

The antibacterial activity of ZnO-based nanomaterials is greatly affected by the mor-
phology and particle diameter. Considerable methods for the preparation of ZnO-based
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nanomaterials with different morphologies have been reported in the literature, such as
nanorods [93–96], nano/micro flowers [97–101], microspheres [102], nano
powders [103–105], nanotubes [4], quantum dots [106,107], films [107], nanoparticles [108],
and capped nanoparticles [109], to understand their application prospects for antibacterial
agents. To conduct an in-depth exploration of the antibacterial properties of ZnO-based
nanomaterials, the antibacterial research methods in this chapter are firstly introduced, and
then the antibacterial mechanism and material improvement strategies are expounded to
discuss the latest studies in this field.

4.1. Research Methods for Antimicrobial Activities of ZnO Nanostructures

To better study the effect of antibacterial agents, many techniques have been adopted to
test antibacterial properties in recent years. As shown in Table 2, various kinds of adsorbents
for microbes removal in different water resources are listed, which has great reference
significance for antibacterial application studies. In the process of antibacterial ability
testing, the accuracy of the results is affected by many factors, such as types of bacterial
species and the type of data to be tested, etc. In addition, external factors such as the
experimental environment also affect antibacterial detection. Commonly, the temperature
of 37 ◦C and incubation time of 24 h are selected for the tests. Moreover, culture media of
Tryptic Soy Broth, Luria–Bertani (LB) broth, Nutrient Agar, and Tryptic Soy Agar (TSA)
are commonly used. Meanwhile, depending on the technique used, parameters such
as minimum inhibitory concentration (MIC), zone of inhibition (ZOI), colony count, or
optical density of bacterial cultures are selected as the basis for the evaluation. The specific
application methods and practical application cases of various antibacterial detection
technologies are introduced below, which are beneficial for better understanding the
antibacterial properties of ZnO-based nanomaterials.

Table 2. Various kinds of adsorbents for microbial removal in different water resources.

Water Type Sample Type Microbial Pollution Target Types of Adsorbents References

sDrinking water

Domestic drinking water Bacteria; virus; protozoan;
Activated carbon; [110]
Carbon-graphene; [111]
Nano adsorbent; [112]

Microbial contaminants. Carbon-graphene. [113]

Drinking water source
Biological contaminants; Nano adsorbent; [114]
Microbial contaminants; Iron Oxide Nanoparticles; [115]
E. coli. Mixed matrix. [116]

Wastewater

Lake wastewater Pathogenic microorganisms. Zinc oxide; Iron oxide; Silver
oxide nanoparticles. [117,118]

Domestic wastewater

Antibiotics; Biochar; [119]
Pathogenic microorganism; Activated carbon; [120]
V. fischeri, B. subtilis, E. coli; Carbon nanotube; [121]

Pathogenic microorganism. Copper oxide; Zinc oxide; Silver oxide;
Titanium oxide. [122,123]

Industrial wastewater
Pathogenic microorganisms; Graphene oxide nanosheets;

Silver nanoparticles; [124]

Virus. Carbon nanotubes; TiO2. [125]

Laboratory water

Laboratory simulated water

Enterobacter, Citrobacter, Hafnia; Biochar stabilized; Iron oxide; Copper
oxide nanoparticles; [126]

Klebsiella, Escherichia; Fe3O4; SnO2; NiO;
PAN/boehmite nanofibers. [127]

S. aureus, E. coli; Electro spun; Nanofibers; [128]

Bacteria; virus. Silver @ Eggshell;
Nanocomposite. [83,129]

Laboratory pure water
S. aureus, E. coli, C. albicans; Ag nano-embedded pebbles;

Nano cellulose; [85]

E. coli.
Nanofibers; Granular activated carbon; [130,131]
Graphite flake. [132]

4.1.1. Disk-Diffusion Method

The disk-diffusion method is a simple and efficient antimicrobial test, also known as
the Kirby–Bauer antibiotic test (KB test) [133]. Mueller–Hinton agar and Brucella blood agar
are commonly used as media for this method [133]. During the disk-diffusion method, the
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pH of the medium is usually controlled at around 7.2. The bacterial suspension containing
a specific concentration was spread on the above agar medium and the experimental
environment was required to be absolutely dry [22,24,93,94,97,134–136]. Under sterile
conditions, a certain number of ZnO-based nanomaterials were soaked on the filter paper
disk using the selected solvent according to the specific requirements of the experiment.
Let the disk dry and carefully mount it on the medium in a Petri dish. Solvent-soaked disks
were used as controls to ensure the accuracy of the test. Next, the dishes were incubated at
37 ◦C for 24 h, providing the right conditions for bacterial growth. Subsequently, due to the
bactericidal activity of the ZnO-based nanomaterials, no bacterial growth was observed
around the disks at specific distances. The minimum concentration at which ZnO-based
exhibited antibacterial activity was called the minimum inhibitory concentration (MIC)
and the area around the disk with no bacterial growth observed was called the zone of
inhibition. The lower the MIC value, the larger diameter of the inhibition zone and the
higher antibacterial activity. Based on this, the antibacterial properties of ZnO-based
nanomaterials were judged [137,138].

4.1.2. Well-Diffusion Method

The medium used in the well-diffusion method is similar to the method described in
Section 4.1.1, and the two methods can be used together analogously. In contrast to the disk-
diffusion method, the filter paper disk is installed by drilling holes in the media plate. The
wells were filled with various concentrations of ZnO nanoparticle suspensions for testing.
In addition, the calculation method of MIC and ZOI can also refer to the disk-diffusion
method [108,139–142]. Consistent with the disk-diffusion method, sterile conditions are
also one of the most necessary environmental conditions for antimicrobial performance
testing. Based on MIC and ZOI, the pros and cons of antibacterial properties of ZnO-based
nanomaterials can be studied and the efficiency can be evaluated.

4.1.3. Antimicrobial Measurements in Liquid Culture Media

During the incubation period, the turbidity of the growth solution increases with bac-
terial growth. The liquid turbidity and cell proliferation can be measured by periodically
measuring the optical density. The technique does not require reagents and special han-
dling [143–147]. The basic principle of this method is to judge the quality of antibacterial
performance by observing the absorbance at a specific wavelength in a spectrophotometer
and regularly monitoring the corresponding bacterial growth. Umar et al. used ZnO
nanomaterials as antibacterial agents to conduct growth inhibition experiments on E. coli
and achieved excellent experimental results as shown in Figure 8 [101].
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4.1.4. Colony Unit Measurements

Colony unit measurement, also known as the diffusion plate technique, is often
used to count the amount of living bacteria cells. ZnO-based nanomaterials are intro-
duced into agar plates or dispersed as suspensions in specific liquid media. The strains
were mounted on agar plates and incubated at 37 ◦C for a specific time. Colony form-
ing units are counted using an appropriate counting method. In addition, the colony
forming unit (CFU) value can be used to judge the antibacterial ability of ZnO-based
nanomaterials [148–151]. Stankovic et al. [152] calculated the percentage of bacterial cell
reduction (R%) using Equation (1).

R% =
CFUcontrol − CFUsample

CFUsample
(1)

where CFUcontrol = numbers of CFUs per milliliter for the negative control, and
CFUsample = CFUs per milliliter in the presence of ZnO dispersion.

Within a certain range, the above formula can be used to calculate the bacterial
concentration, and the antibacterial performance can be investigated based on the calcula-
tion results.

4.1.5. Microtiter Plate Method

The microtiter plate method, also known as the microplate method, is a method of per-
forming antimicrobial testing by observing changes in a variable number of small test tubes
or plates of microwells. Resazurin [153], 2,3,5-triphenyltetrazolium chloride (TTC), crystal
violet [4] and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) [154],
etc., are put into the wells as indicator solutions. Next, known or different concentrations
of the test strain was dispersed into the wells of a microtiter plate. A known concentration
of ZnO nanomaterials was then dispersed into the wells after dilution in a sterile broth
medium. The palate was then incubated at 37 ◦C for timed intervals. The bacterial cell
activity can be judged by the change of absorbance to detect the antibacterial ability.

4.2. Mechanisms of ZnO-Based Antimicrobial Nanomaterials
4.2.1. Mechanisms of ZnO-Based Photocatalytic

In photocatalysis, an electron–hole couple is created under light force by reduction or
oxidation reactions on the catalyst surface. The photocatalytic degradation mechanism of
ZnO-based photocatalyst on pollutants is shown in Figure 9. Photocatalysis occurs when
a ZnO-based photocatalyst is illuminated by light with energy greater than its band gap
energy [27]. Charge separation is triggered by a light energy absorption process, which
excites electrons from VB to CB, leaving holes in VB [155]. Subsequently, the photogenerated
e−/h+ supports a move to the ZnO photocatalyst surface. Simultaneously, e− and h+
recombine, which reduces the quantum yield. The level of this recombination rate is affected
by many factors, such as the structure of the photocatalyst and the surface modification
process of the photocatalysts [156,157]. The ZnO surface is aggregated with reactive e− and
h+, which promote oxidation and reduction reactions that generate excess ROS, including
superoxide anion (·O2

−) hydroxyl radicals (·OH). Furthermore, the redox potential of the
CB bottom of ZnO is more negative than that of O2/O2

−. Therefore, these excited electrons
can generate O2

−·. Simultaneously, the top of the VB of ZnO is more positive than the redox
potential of ·OH/H2O. Consequently, H2O molecules can be oxidized by these holes to
form hydroxyl radicals. These highly reactive radicals (·OH, O2

−·) directly oxidize organic
pollutant molecules in solutions.
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4.2.2. Chemical Effect of ZnO-Based Nanomaterials on Antibacterial

In the process of exploring the antibacterial mechanism of ZnO-based nanomaterials,
three main chemical antibacterial mechanisms were obtained: generation of reactive oxy-
genated species (ROS) [158], release of Zn2+ ions [31], and photoinduced production of
H2O2 [159]. The ROS mechanism is basically the same as the photocatalytic mechanism
mentioned in Section 4.2.1.

Similar exhaustive studies carried out by Li et al. [31] and Song et al. [160] demon-
strated that the toxicity of Zn2+ ions to cells is one of the mechanisms for the sterilization of
ZnO-based nanomaterials. The concentration of ZnO NPs in ultrapure water in the toxicity
test was 5 mg/L. To compare the cytotoxicity, a Zn2+ ion solution also prepared in ultrapure
water was used (concentration below 0.1 mg/L). TEM images of the treated G− strains of
E. coli are shown in Figure 10. It is evident that the morphology of E. coli was deformed
after modification with ZnO-based nanomaterials or Zn2+ ion solution. Figure 10b,c shows
intracellular fluid leakage due to Zn2+ ions and osmotic stress. The experimental results
showed that the cytotoxic effects of ZnO NPs and Zn2+ ion-treated solutions on E. coli were
comparable. This fully proves that the release of Zn2+ has a positive effect on antibacterial,
and it also shows that it is one of the antibacterial mechanisms of ZnO-based nanomaterials
(Figure 11).
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Besides the light-induced reactive oxygen species produced by ZnO NPs, many pieces
of literature consider H2O2 as the main substance for antibacterial activity against dermo
bacteria [28,161]. Negatively charged ROS cannot penetrate bacterial cell walls, but H2O2
can also easily penetrate bacterial cell walls. Sawai et al. [162] believed that the H2O2
produced by ZnO slurry was the main reason for the biocidal mechanism. It can also be
hypothesized that after H2O2 or HO disrupts the membrane, ROS can penetrate the cell
wall and enter the intracellular space, thereby enhancing the biocidal effect (Figure 12).

Appl. Sci. 2022, 12, 7910 13 of 31 
 

 
Figure 10. TEM images of (a) untreated E. coli cells, (b) treated with ZnO nanoparticles, and (c) 
treated with Zn2+ ions solution in ultrapure water. Reprinted/adapted with permission from Ref. 
[31]. Copyright © 2022, American Chemical Society 

 
Figure 11. Schematic diagram of cell damage to G+ bacteria by Zn2+ ions. Reprinted/adapted with 
permission from Ref. [27]. Copyright© 2022 Elsevier B.V. 

 
Figure 12. Schematic diagram of the damage to bacterial cells caused by ZnO nanomaterials pro-
ducing H2O2. Reprinted/adapted with permission from Ref. [27]. Copyright© 2022, Elsevier B.V. 

  

Figure 12. Schematic diagram of the damage to bacterial cells caused by ZnO nanomaterials produc-
ing H2O2. Reprinted/adapted with permission from Ref. [27]. Copyright© 2022, Elsevier B.V.

4.2.3. Influence of Physical Effects of ZnO-Based Nanomaterials on
Antibacterial Performance

In the process of exploring the antibacterial mechanism of ZnO-based nanomaterials,
there are three main chemical antibacterial mechanisms: plasma membrane disruption
through ZnO interactions [163], cellular internalization of ZnO-based nanoparticles [164],
and mechanical damage of the cell envelope [165].

At suitable pH, the bacterial surface is negatively charged due to the dissociation of
carboxyl and other functional groups. Meanwhile, ZnO-based nanomaterials are positively
charged with a zeta potential of +24 mV [161]. As shown in Figure 13, the opposite
charges carried by bacterial cells and ZnO NPs are the reasons for the strong electrostatic
attraction between them. Strong electrostatic interactions force particles larger than 10 nm
in size to accumulate on the outer surface of the plasma membrane and neutralize the
surface potential of the bacterial membrane, resulting in increased surface tension and
membrane depolarization. In addition, strong electrostatic interactions can induce bacterial
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cell changes such as changes in cell membrane and membrane vesicle structure, rupture,
morphological changes, and components, leading to bacterial cell death [166,167]. Since
interactions play an important role in the bactericidal effect, surface modifiers and templates
of ZnO-based nanomaterials would enhance the interaction with bacterial cell walls.
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Another important mechanism is cellular internalization. Cellular internalization is
simply summarized as those nanostructures with a size of less than 10 nm pass through
the plasma membrane, accumulate in bacterial cells, and destroy intracellular components
such as nucleic acids [164,168–170]. In addition, it has also been suggested that the cellular
interaction of ZnO with bacteria can enhance cell permeability (Figure 14) [171]. In conclu-
sion, cellular internalization is one of the physical methods that plays an important role in
the antibacterial process of ZnO-based NPs.
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The last physical mechanism is to use ZnO NPs to create cell membrane damage to
destroy bacterial cells and achieve antibacterial effects. Compared with bulk ZnO materials,
the presence of surface defects, uneven surface texture, and rough edges and corners on
the surface of ZnO-based nanomaterials can lead to effective abrasiveness, resulting in
excessive mechanical damage to bacterial cell membranes [163].

4.3. Effects of Radiation Types on the Antibacterial Activity of ZnO-Based Nanomaterials

In the process of photocatalytic antibacterial studies, ultraviolet (UV) light, sunlight,
and other visible light are the most common types of radiation. In previous studies, ZnO
nanomaterials have always been used for antibacterial testing under UV light due to their
high band constraints [173–175]. From the work of Joe et al. [174], an important conclusion
was found that the oxygen vacancy of ZnO crystals enhanced the photogeneration of ROS,
and ZnO nanoparticles (NPs) with polar facets exhibited the most significant effect of an-
tibacterial activity under UV light stimulation. Furthermore, Ma et al. creatively combined
N-halamine-based materials with ZnO to improve the stability of ZnO’s antibacterial per-
formance under UV light. As a simple and effective method for nanoparticle modification,
this technique can be further extended to the application of ZnO nanoparticles in other
polar substrates for antibacterial functionalization [176].

Despite the promising antibacterial performance of ZnO-based nanomaterials under
UV-driven radiation, photocatalysis using UV-active semiconductors is difficult due to the
limited use of the solar spectrum. Simultaneously, significant progress has been made in
photocatalysis using visible-light-active heteronanostructured semiconductors due to their
simplicity of use, practicality, reproducibility, reliability, and commercialization [177,178].
Recently, several studies have found that photocatalytic efficiency can be improved by
promoting the surface charge transfer reaction of ZnO. In addition, it may also affect the
absorption spectrum of many metal oxide nanoparticles including ZnO, which enables the
composites to undergo photocatalytic reactions under visible light [179–183]. The antibac-
terial activity of ZnO-based nanomaterials driven by visible light is of great significance for
the development of photocatalytic antibacterials. Compared with ultraviolet light, visible
light is more accessible, which makes visible light photocatalysis one of the hottest research
fields. In addition, studies have shown that the ability of ZnO-based nanomaterials to excite
ROS under visible light will be greatly improved, which also leads to the improvement of
antibacterial ability under visible light [184,185]. Therefore, the design and preparation of
visible-light-driven ZnO-based nanomaterials will become a meaningful research direction
in future explorations.

4.4. Strategies for Enhancing ZnO-Based Nanomaterials Antibacterial Activity
4.4.1. Alkaline Earth Metal Doping into ZnO

Common alkaline earth metals including Ca, Mg, Al, and Sr, are frequently used
to introduce significantly altered NPs, such as lattice defects and ionic radius differences
between metal ions and Zn2+ ions, which can improve optical properties and photodegrada-
tion activity of catalysts. Taking Sr as an example, it played an important role in enhancing
the catalytic degradation ability of commonly used metal oxides such as ZnO, TiO2, which
can be used for photocatalytic degradation of organic pollutants in wastewater and pho-
tocatalytic antibacterial [186]. Due to the lack of local d orbitals in alkaline earth metals
and the presence of local d orbitals in transition metals, the doping of alkaline earth metals
is more effective in reducing the optical threshold energy of semiconductors than that of
transition metals [187].

Antibacterial activity of Mg-doped ZnO nanostructures was investigated by
Okeke et al. [188] towards E. coli, P. aeruginosa and Staphylococcus aureus. The zones
of inhibition diameter of the Zn1−xMgxO sample against the selected bacteria pathogen
are displayed in Figure 15. The results showed that all samples were susceptible to bacteria.
The presence of more reactive sites allows surface defects to create space for ZnO to interact
with microorganisms [189]. Therefore, the increase of surface defects in ZnO nanostructures
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increases the reaction sites and the rate of interaction with microorganisms. Bacteria are
250 times larger than nanoparticles [105], while the bacterias have a larger relative surface
area, which makes it easier for nanoparticles of much smaller size to enter the interior of
bacterial cells and cause damage.
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4.4.2. Transition Metals Doping into ZnO

The addition of transition metal ions can generate electronic states in the intermediate
bandgap region to change charge separation and recombination kinetics, which is bene-
ficial to enhancing the ability of photocatalytic antibacterial [190]. Numerous common
transition metals, such as Co, Cu, Ni, Fe, and Mn, are often doped into ZnO to enhance its
photocatalytic antibacterial ability [191].

Fe is the most used metal for enhancing the photocatalytic antibacterial ability of
ZnO. Iron has two oxidation states with ionic radii of 0.61 Å and 0.55 Å, which are used as
dopants for zinc lattice sites, respectively, since their ionic radii are smaller than those of
zinc +2 (0.74 Å) radius. Hence, the doping can be alternative or interstitial to increase the
conductivity of the product. Chandramouli et al. [192] doped Fe into ZnO and investigated
the antibacterial properties of the composites. As shown in Figure 16, TEM images of
Figure 16a pure, Figure 16b Fe doped, and Figure 16c capped ZnO NPs are observed.
For undoped and doped ZnO NPs, they are more spherical with dimensions of 17–19 nm.
Simultaneously, the agglomeration phenomenon occurs when ZnO is doped with Fe,
which is due to the greater surface area and energy. Furthermore, the antibacterial activity
against E. coli showed that the capped ZnO NPs were less toxic to the organism than ZnO
NPs. As shown in Figure 17, the XRD patterns associated with various different ZnO-
based nanomaterials are displayed. Iron doping of ZnO reduces the grain size, resulting
in a further increase in the grain size of glucose-terminated ZnO nanoparticles, which
is consistent with previous reports [193]. Therefore, Fe-ZnO nanoparticles have good
antibacterial activity.
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4.4.3. Noble Metals Doping into ZnO

Due to the formation of Schottky barriers at the metal–semiconductor interface, noble
metal ions (such as Au, Ag, Pd, etc.) doped on the ZnO surface are considered to be excellent
photogenerated electron traps. In addition, noble metals delay electron–hole recombination
by preventing photoexcited electrons from returning to the ZnO surface, which greatly
enhances the photocatalytic antibacterial ability of the composites [194]. Of all the precious
metals, silver is the most stable and suitable dopant with good thermal conductivity and
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electrical conductivity, which will better play the photocatalytic effect of the composite
material. Therefore, it has potential as a catalyst. The surface plasmon resonance (SPR)
properties of silver also contribute to visible light absorption and subsequent electron–hole
pair generation for the degradation of contaminants in water and for antibacterial [195].

Ye et al. [184] reported the synthesis of a series of ZnO/Ag2MoO4/Ag(ZAA) samples
with theoretical molar ratios of ZnO and Ag2MoO4 of 20:1, 30:1, and 60:1 by ultrasonic-
assisted hydrothermal synthesis, and named the corresponding products as ZAA-20, ZAA-
30, and ZAA-60 to investigate the optimal Ag2MoO4/Ag loadings. As shown in Figure 18,
the characteristic diffraction peaks of ZnO and Ag2Mo4 can be clearly found in the XRD
patterns, which indicates that the ZnO/Ag2Mo4 composite was successfully synthesized.
The sharp diffraction peaks reveal the ultra-high crystallinity of the ZnO-based nanocom-
posites. In addition, with the increase of the molar ratio of ZnO to Ag2MoO4, the diffraction
peak intensity of ZnO on the (002) and (110) crystal planes gradually weakened, while the
diffraction peak intensity of Ag2MoO4 gradually increased. The antibacterial properties of
ZnO nanosheets and ZAA nanocomposites against different contents of G− E. coli and G+
S. aureus were evaluated by the visible light electroplating counting method. In Figure 19,
the bacterial cell numbers of all nanocomposites were shown to decrease with increas-
ing contact time, and the photocatalytic antibacterial activities of the four ternary ZAA
nanocomposites were much better than that of pure ZnO sheets. The experimental results
demonstrate that the addition of noble metal Ag will significantly improve the antibacterial
properties of ZnO nanomaterials.
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4.4.4. Rare Earth Metal Doping into ZnO

Doping rare earth metals into ZnO can improve the ability of the composite in trapping
photogenerated carriers and reducing electron–hole recombination, which can enhance
the photocatalytic antibacterial ability. In the rare earth doping process, f-orbital doping
is the most common and efficient way, which can improve the photocatalytic activity by
enhancing the adsorption of pollutants on the catalyst surface, while reducing the band
gap energy to the visible light range [196]. Lanthanide ion doping is considered a versatile
strategy to tune the optical response and improve the photocatalytic performance of ZnO.
Lanthanides are composed of 17 elements in the periodic table, including Sc, Y, La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Lanthanides have attracted
much attention due to their multifunctional properties resulting from their unique f-orbital
structures, and due to the f-f or f-d intra-electron transitions, lanthanides are considered
candidates for luminescent centers in doped materials, which is beneficial to prolonging
the effective response time [197–199].

Doping ZnO with Ln3+ and Ce4+ ions can convert the magnetism from diamagnetism
to ferromagnetism, improve the n-type conductivity, enhance the photo response, increase
the concentration of free electrons in the CB, and increase the electron
mobility [200–202]. A novel Z-type ZnO–CeO2-Yb2O3 heterojunction photocatalyst was
prepared for the first time by Tauseef et al. [203], and its physical, photocatalytic, and
antibacterial properties were investigated. Growth samples were tested for antimicrobial
properties against E. coli and S. aureus. The effects of operating parameters such as catalyst
dosage, dye concentration, and solution pH on the photocatalytic performance of the
nanocomposites were investigated. The ZOIs of S. aureus and E. coli along with the stan-
dard antibiotic ciprofloxacin are shown in Figure 20a,b. The synthesized nanocomposites
exhibited good activity against both bacteria with a ZOI > 6 mm, but higher activity against
E. coli with a ZOI of 14 mm shown in Figure 21a,b. Positively charged heavy metal ions such
as Zn2+, Ce4+, and Yb3+ can be released from the surface of the nanocomposite to interact
with negatively charged microbial cell membranes. The entry of these metal ions into the
cell membrane reduces the capacity and permeability of proteins, which in turn leads to
the death of microorganisms such as bacteria and viruses. The above antibacterial action
mechanism can be visualized in Figure 22C. In conclusion, the nanocomposites doped with
rare earth ions are effective materials for preventing diseases caused by S. aureus and E. coli.
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4.4.5. Organic Antimicrobial Agents Doping into ZnO

Studies have shown that the composites obtained by co-doping and fusion of organic
antibacterial agents and ZnO nanoparticles exhibited stronger antibacterial activity than
ZnO nanoparticles alone [205,206]. The organic antimicrobial agents are usually immo-
bilized or embedded on the ZnO surface. Taking chitosan (CS) as an example, it is an
abundant natural biopolymer derived from the deacetylation of chitin in crustacean shells
and can be made into films, fibers, beads, and powders. Cationic polymers are generally
antimicrobial [207,208]. In general, antibacterial activity depends on molecular weight
(Mw), degree of deacetylation, temperature, and solution pH [209,210].

Gutha et al. [204] used CS and ZnO as raw materials to prepare a new composite
material chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO), which was used as a
novel antibacterial agent with wound healing properties. CS/PVA/ZnO was proved to
be an effective antibacterial nanomaterial after being analyzed by various characterization
methods. SEM images of various prepared CS/PVA/ZnO-related materials and precursors
are shown in Figure 22A–C. The surface of sole chitosan was obtained to be smooth. The sole
ZnO nanoparticles showed nanosheet-like morphology. The surface of sole CS/PVA/ZnO
microbeads presents a certain pore structure, and the surface of the microbeads is rough,
which is conducive to exerting the ability of photocatalytic antibacterial. The antibacterial
activities of CS, CS/PVA, and CS/PVA/ZnO are shown in Figure 23. The diameter of
the inhibition zone against E. coli cultures (G-) was 10 mm in the CS group, 14 mm in the
CS/PVA group, and 19 mm in the CS/PVA/ZnO group (Figure 23A). Likewise, S. aureus
cultures (G+) had a diameter of 12 mm in the CS group, 15 mm in the CS/PVA group, and
20 mm in the CS/PVA/ZnO group (Figure 23A).
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5. Future Scope and Conclusions
5.1. Future Scope

Although ZnO-based nanomaterials have been applied in organic pollutants removal
from water and conduct antibacterial reactions in water, there is still plenty of space for
improvement. The following points are the aspects that can be improved and strengthened
in the application process of ZnO-based nanomaterials in the future:

(1) Exploring strategies for changing the weak toxicity of ZnO-based nanomaterials so
that they can be better used in drinking water treatment, clinical medicine, virus
killing, and other fields closely related to human beings.

(2) Enhancing the ability of ZnO-based nanomaterials to respond to visible light enables
them to have a wider range of applications. Visible light is one of the most abundant
light sources, and a better response under visible light can maximize the use of existing
energy and reduce investment.

(3) Exploring the use of ZnO-based nanomaterials for photocatalytic removal of resistant
bacteria, cancer cells, and other difficult-to-remove microorganisms and pathogen
cells to improve the availability of the material.

(4) Exploring stronger ZnO-based nanomaterial structures and carriers to improve recyclabil-
ity and improve existing problems such as high solubility and difficulty in recycling.

5.2. Conclusions

This manuscript is based on recent developments in antibacterial water treatment
with ZnO-based nanomaterials. Due to the increasing global requirements for water
environment quality and drinking water quality, especially for the prevention and control
of various epidemics, new ideas and directions are provided for our study. Therefore, the
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existence of bacteria and harmful microorganisms in water is introduced in detail, and
various commonly used antibacterial agents and antibacterial methods are summarized. In
conclusion, different morphologies of ZnO-based nanomaterials can be effectively used
against various Gram-positive and Gram-negative strains by physicochemical interactions
with bacterial cells. Cell membrane damage and biocidal activity are thought to be triggered
by the collective action of chemical and physical interactions. Chemical interactions leading
to the production of ROS and H2O2 and the release of Zn2+ ions from ZnO solubility have
been proved to be the main cause of the above activities. Subsequently, based on this theory,
an in-depth study of the antibacterial mechanism was carried out. Finally, the review also
summarizes the following synthetic strategies to improve the antibacterial properties of
ZnO: (1) doping of alkaline earth metals to ZnO; (2) doping of transition metals to ZnO;
(3) doping of noble metals to ZnO; (4) doping of rare earth metal to ZnO; and (5) loading
organic antimicrobial agents.

It can be expected that the antibacterial potential of ZnO-based nanomaterials in
water treatment is very promising. Studies on ZnO-based nanomaterials continuously
increased in recent years, although they still have many aspects that can be improved. In
the future, we can expect more perfect ZnO-based nanomaterials to be prepared to solve
more antimicrobial-related problems in water treatment.
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