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Abstract: The COVID-19 disease has spread worldwide since 2020, causing a high number of deaths
as well as infections, and impacting economic, social and health systems. Understanding its dynamics
may facilitate a better understanding of its behavior, reducing the impact of similar diseases in the
future. Classical modeling techniques have failed in predicting the behavior of this disease, since
they have been unable to capture hidden features in the data collected about the disease. The present
research benefits from the high capacity of modern computers and new trends in artificial intelligence
(AI), specifically three deep learning (DL) neural networks: recurrent neural network (RNN), gated
recurrent unit (GRU), and long short-term memory (LSTM). We thus modelled daily new infections
of COVID-19 in four countries (Saudi Arabia, Egypt, Italy, and India) that vary in their climates,
cultures, populations, and health systems. The results show that a simple-structure RNN algorithm is
better at predicting daily new infections and that DL techniques have promising potential in disease
modeling and can be used efficiently even in the case of limited datasets.

Keywords: COVID-19 prediction; deep learning (DL); long short-term memory (LSTM); gated
recurrent unit (GRU); recurrent neural network (RNN); performance metrics

1. Introduction
1.1. Study Motivation

The COVID-19 disease was first reported in Wuhan, Hubei province, China. SARS-
CoV-2, the virus that causes COVID-19, has a high sequence similarity to SARS-CoV and to
a bat coronavirus: 79.6% and 96%, respectively [1]. COVID-19 is a dangerous respiratory
disease that has spread rapidly and dramatically via point mutations and recombination
around the world during the last two years, resulting in a major pandemic [2–4]. In addition
to millions of fatalities, the disease has had a significant impact on social and economic
systems, developing new secondary consequences, notably on the psychological aspect
of many people. Despite the vaccination campaigns organized worldwide, the disease
still appears in multiple waves. This is more than likely due to the fact that new variants
emerge regularly and, subsequently, can escape immune response [5]. The emergence of
variants is a result of generating new point mutation(s) in the spike protein, which leads
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to the emergence of variants of SARS-CoV-2, such as the “omicron” variant [3,4]. Many
other variants such as the “delta” variant have emerged, posing a major threat in terms of
deaths; higher infectivity; mortality; and in particular, rapid virus transmission. Therefore,
currently, most vaccination schemes are focused on the highly mutated spike gene [6].

The dynamics of SARS-CoV-2 transmission have revealed different patterns due to the
diversity and complexity of the factors that play a role in the spread of the virus. Climatic
and environmental conditions, health systems, vaccine availability, and the mitigation
actions taken by local authorities are among those factors [7]. Mathematicians and health
scientists, as well as computer scientists are working hard to model and simulate the
disease’s spread. Such work efficiently contributes to decision-making and provides tools
to optimally implement suitable interventions to mitigate the disease [8,9].

Despite the good results provided by many case studies and the numerous factors
impacting the disease’s spread, classical models such as the well-known Susceptible–
Infected–Recovered (SIR) model and its derivatives [10–15], as well as time-series [16,17]
and phenomenological epidemic models (generalized growth (GG), classical logistic growth
(CLG), and generalized Richards (GR)) [18] may fail in detecting hidden patterns of the
disease due to the complex nature of the disease’s dynamics and the numerous factors
impacting the disease’s spread [9]. In fact, the SIR model and its derivatives were unable
to forecast the current dynamics and patterns of COVID-19. According to [14], this may
be due to the fact that the adopted assumptions for calibrating an SIR model may not
be true in the case of COVID-19. The authors concluded that more sophisticated models
facilitating capturing the disease’s hidden patterns should be used. Moreover, the SIR
model was found to be unable to capture multiple epicenters of the disease when they
appeared at different times, particularly in the case of the USA. This has led to difficulties in
optimally selecting the model parameters [15]. SIR models are also known to be continuous-
time nonlinear differential equations. As a consequence, there are no efficient analytic
techniques to solve such equations. Researchers should resort to discretized forms of such
equations in order to find approximate solutions based on computerized codes known not
to provide exact solutions [12]. Regarding the usefulness of ARIMA time-series models,
the main claim reported by many researchers such as [17] is that it cannot be efficiently
used in complex contexts where dynamics are fast, such as in the case of COVID-19. In fact,
time-series models have the limitation of requiring stationary observations and, therefore,
cannot fit non-stationary datasets, which is generally the case with COVID-19. In addition,
the calibrations of the above-cited parametric models should involve solving optimization
problems known to be hard, non-convex, and constrained. The classical ML models’ main
drawback is the way they handle the data when predicting the future. In fact, the data are
processed forward, and therefore, there is no impact of the historical state of the neurons.
Many researchers have developed more sophisticated models benefiting from the boom
in artificial intelligence (AI), machine learning (ML), and deep learning (DL) tools when
seeking more accurate and useful models. The main disadvantage of using classical ML
models is the way they handle data for predicting the future. With respect to model-
based methods, the main motivations behind using DL models for modeling/predicting
COVID-19 infections can be summarized by the following points. First, in contrast to SIR
and phenomenological models, DL are non-parametric models, and therefore, weights
and biases are free coefficients to be determined optimally without any constraints or
required regularities of the optimization problems. Second, when compared to time-series
(such as autoregressive integrated moving average (ARIMA)) models, DL does not require
stationary datasets. Thus, DL can operate even when using non-stationary observations.
Finally, although classical ML models (artificial neural networks (ANNs)) belong to the
same family of modeling techniques (artificial intelligence (AI)) as DL, the latter has the
advantage of processing the data in two directions: forward and backward. As a result,
DL can keep previous information hidden in the data and model its impact on the future
values.
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1.2. Related Work

For COVID-19 forecasting, many researchers have developed DL-based approaches
for analyzing and predicting the number of infections, recoveries, and deaths in different
locations [7–9,19–31]. Because of the high sensitivity of the disease dynamics with location
features, the reported results were consequently different from one location to another,
even in the same country. In Table 1 below, the case studies selected including the ref-
erence, country/location, DL techniques used, period covered, results, advantages, and
shortcomings are summarized.

Table 1. Summary of selected studies using DL and model-based methods for modeling/predicting
COVID-19 spread dynamics.

Ref. Country/Location Used Technique Period Results Advantages Shortcomings

[7]
Brazil, Germany,
India, Italy,
Russia

LSTM, Bi-LSTM
22 January
2020–27 June
2020

Bi-LSTM: Best
MAE = 0.0070,
RMSE = 0.0077,
R2 = 0.9997

Good
generalization

Requires data
scaling

[8] India
DL using
incremental
learning

March
2020–August
2020

Results are
different from
one state to
another
(minimum MAE
around 1.18%)

Ability to forecast
30 days. No need
to retrain the
model when new
data are available

Training back-
propagation
algorithm may be
trapped into local
minima

[9] USA/Connecticut LSTM, GCN-LSTM 20 May 2020–8
October 2020

Worse than
classical ARIMA

Ability to work at
the macro level

ARIMA model
provided better
results than DL

[19]

USA, Brazil,
India, France,
Russia, UK, Italy,
Spain, Turkey,
Germany

GRU, LSTM, CNN
20 January
2020–28 March
2021

Good results in
terms of
symmetric MAPE
and RMSE

Use of an
augmentation
time-series
technique to
generate a larger
dataset

Difficulty of
hyperparameter
selection

[20] USA, India, Brazil

Bi-LSTM,
Convolutional
LSTM and
ensemble method
including both
methods

January
2020–April 2021

MAPE =
0.87–1.90,
Accuracy =
98.10–99.13%

Combining two
DL algorithms
has provided
good forecasts

No indication
about the
historical data
used to predict
the future values

[21] France CNN
Jan.
2020–March
2020

1% error rate in
the national level

Ability to predict
using a limited
dataset

Relative
discrepancy
between national
and regional
levels

[22]
Italy, Spain,
France, China,
USA, Australia

RNN, LSTM,
Bi-LSTM, GRU,
VAE

22 January
2020–17 June
2020

VAE
outperformed the
other DL
algorithms

Ability to predict
using a limited
dataset

Use of a limited
number of
features (only 1)

[23] Egypt LSTM, CNN, MLP
14 February
2020–15 August
2020

Determination
coefficient more
than 0.999 for DL
algorithms

Forecasting
horizon of 1 week
and 1 month
ahead

Using 20
previous data,
which are more
than the
incubation period
(14 days)
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Table 1. Cont.

Ref. Country/Location Used Technique Period Results Advantages Shortcomings

[24]

Saudi Arabia,
Brazil, India,
South Africa,
Spain, USA

LSTM
2 March
2020–10
October 2020

LSTM 11% better
than ARIMA

Capability of
learning
nonlinear
features of
COVID-19 data

Hyperparameters
determined using
a parametric
study

[25] Brazil, Russia,
UK

LSTM, GRU, CNN,
MCNN

Up to 18
November 2020

CNN has
outperformed in
terms of
performance
metrics

Good
performances
with few data

LSTM provided
bad results for
long run forecasts

[26] India/Chennai ARIMA, LSTM,
SLSTM, Prophet

22 January
2020–8 May
2020

LSTM 2% better
than other DL
algorithms

Good
performances are
reported by the
authors

Reliability
depends on the
dataset and
location

[27] India RNN, Modified
LSTM, DRL

30 January
2020–16 August
2020

MLSTM-DRL
was found to
outperform the
other methods

High
predictability and
good agreement
between
predicted and
recorded data

Case-sensitive

[28]

India, Argentina,
France, South
Korea, Germany,
Russia, UK, Italy

Combination of
SIRVD and DL
algorithms

15 January
2021–27 May
2021

SIRVD-DL: R2 =
0.995 and MAPE
= 0.92
outperformed
standalone DL
methods

Hybrid methods
yielded better
results than
standalone
methods

Computationally
hard

[29]
Pakistan,
Afghanistan,
India, Bangladesh

LSTM, RNN, GRU
22 January
2020–21 June
2020

Accuracy rate
greater than 90%

Ability to forecast
the next 10
coming days

No details about
hyperparameters’
choice

[30] Australia, Iran

LSTM, Conv-LSTM,
GRU, Bi-LSTM,
Bi-Conv-LSTM,
Bi-GRU

25 January
2020–19 August
2020 (Australia)
3 January
2020–6 October
2020 (Iran)

Bidirectional
models were
found to yield
better than their
simple form
(without
backward
components)

Two techniques
were reported by
the authors to be
used for the first
time at the time
of their study

No information
about the
hyperparameters
settings

[31]
Malaysia,
Morocco, Saudi
Arabia

RNN, LSTM
15 March
2020–3
December 2020

98.58% of
accuracy LSTM
and 93.45% RNN

Seven-day-ahead
forecasts

High
computational
burden

[10] Italy
SIRCQTHE
epidemiological
model

Italian real data Efficient feedback
control laws

Benefiting from
modeling to
design control
strategies

Modeling context
(the purpose of
the paper is more
for control not for
prediction)

[11] Italy
Model predictive
optimal control
based on SIR model

Italian
multi-region
study during
2020

Synthesis of
model predictive
control in
regional and
national levels

SIRQTHE model
used for a model
predictive
optimal control
strategy

The study is
relatively old and
does not cover a
large period of
the COVID-19
pandemic
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Table 1. Cont.

Ref. Country/Location Used Technique Period Results Advantages Shortcomings

[16] Saudi Arabia

ARIMA time-series
model for
predicting the
number of people
who were newly
infected

2 March 2020 to
20 April 2020

Prediction with a
horizon of 4
weeks

Useful models
particularly in the
beginning of the
pandemic in
Saudi Arabia

The results were
not sufficiently
accurate

[18] Saudi Arabia

Generalized
Richards model
calibrated by
particle swarm
optimization (PSO)

2 March 2020 to
10 October 2020

Forecasting of the
number of
cumulative
infection and the
pandemic
probable end date
(R2 = 0.9953)

The end of the
first wave of the
disease in Saudi
Arabia was
accurately
estimated

An increasing
bias was
observed

[12] Saudi Arabia

SIR and ML
learning models for
predicting
COVID-19
dynamics

2 March 2020 to
21 February
2021

Prediction of
infections,
recoveries, and
deaths (MAPE =
7%)

Simple and
generic models

Data processed
forward and no
effect of the
neurons’
historical states

Abbreviations: ARIMA (Autoregressive Integrated Moving Average), Bi-LSTM (Bidirectional LSTM), CNN
(Convolutional Neural Network), DL (Deep Learning), DRL (Deep Reinforcement Learning), GCN-LSTM (Graph
Convolutional Network LSTM), LSTM (Long Short-Term Memory), MAPE (Mean Absolute Percentage Error),
MCNN (Multivariate CNN), MLP (Multi-Layer Perceptron), RMSE (Root Mean Square Error), SLSTM (Stacked
LSTM), SIRVD (SIR–Vaccinated–Deceased), VAE (Variational Auto-Encoder).

By examining state-of-the-art DL work related to predicting COVID-19 spread dynam-
ics, it can be noted that they were distributed over many countries situated at different
locations, with different climatic conditions and cultures. In terms of datasets, the inves-
tigated studies were based on periods covering the beginning of the disease when an
insufficient amount of data was available. This limitation was overcome by [19] using an
augmentation technique to generate more data with the same features as the original data,
which were insufficient for a data-demanding technique such as DL. The authors in [8]
adopted an incremental training technique to handle the newly released data. In addition,
several studies used simple DL algorithms, such as LSTM, GRU, and RNN [7,9,19,24,25],
while other authors adopted bidirectional variants of the previous techniques [20,22,30].
Another important trend was the hybridization of two DL algorithms [20,22,25,27] or the
combination of DL with classical disease models based on SIR [28]. Finally, few work has
been conducted using datasets covering the period after the arrival of vaccines. The main
difficulties faced by the work considered can be summarized as follows: (i) non-availability
of a systematic procedure for choosing DL hyperparameters, (ii) use of a limited number of
features, and (iii) non-availability of a sufficient amount of data required by DL.

DL techniques generally require much larger datasets to be trained efficiently. How-
ever, in the case of COVID-19, the number of new infections, recoveries, and deaths are
released daily. Therefore, the maximum number of observations available for any technique
should not exceed 940 (covering two years (2020 and 2021) and the first 7 months of 2022)
until present day (20 July 2022). As can be seen in Table 1, the DL techniques in use have
provided, for the majority of case studies, good performance metrics in terms of MAPE
(less than 1% in some cases) and R2 (more than 0.99 in a scale ranging from 0 to 1), although
they were trained with limited-size datasets. In addition, LSTM, GRU, and RNN were
chosen among many available DL methods for being simple and less demanding in terms
of computation time. As can be noticed from the related work, the majority of papers have
used these techniques and they yielded good results (which is one of our study findings).

The main contributions of this paper can be summarized as follows:
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• We used a prediction window of the 14 previous days to predict new infections one
day ahead, which corresponds to the incubation period of COVID-19. Intuitively, any
new infection may result from a person who was infected during the previous 14 days
or less.

• Through our study, the simple-structure DL techniques in use (RNN, GRU, and LSTM)
are found to yield good forecasts although the available datasets are of limited size
(due to the fact that COVID-19 data are released daily). Therefore, it is not necessary
to train complex-structure DL algorithms for small (not guaranteed) improvements in
accuracy. Simple DL algorithms are sufficient in the case of COVID-19.

• To the best of the authors’ knowledge, our study is among a small number of works
covering a dataset that includes the periods before and after the appearance of vaccines.
For this reason, our study is expected to capture the effect of vaccination on the disease
spread.

• The case studies considered possess different features in terms of demographic pat-
terns, climatic conditions, cultures, quality of health systems, economic situation, etc.
This may help evaluate the predictability of new COVID-19 infections using the same
DL tools as in various case studies.

The rest of this paper is structured as follows. In Section 2, the study material and
methods are provided. In Section 3, the results obtained and their discussion are presented.
Finally, the conclusion and suggestions regarding future works are detailed in Section 4.

2. Material and Methods

The procedure adopted for predicting new COVID-19 infections is presented in this
section. Moreover, the three DL algorithms as well as the tuning of the hyperparameters
are succinctly discussed. Note that, before adopting these three DL algorithms, many other
more sophisticated variants of DL techniques have been tested. In particular, we tested
convolutional neural networks (CNN) and tested the bidirectional versions of RNN, GRU,
and LSTM (Bi-RNN, Bi-GRU, and Bi-LSTM, respectively), following which we found that
there is no improvement in the accuracy of the forecasts. DL, as an advanced technology
derived from the classical artificial neural networks (ANNs), has demonstrated successful
modeling capabilities spanning from image processing to time-series forecasting. DL
algorithms are a type of learning-based tool. In fact, DL can learn from raw sequential
datasets and generalize to new datasets [20]. Owing to the high potential of DL technology
in modeling complex phenomena without the need for analytical tools and thanks to
high performance computers, the task of predicting the effects of COVID-19 in terms of
number of infections and deaths seems to become more promising. This paper’s main aim
is to investigate the modeling capabilities and the predictability of new daily COVID-19
infections based on three essentially similar but fundamentally different DL algorithms,
namely, the recurrent neural network (RNN), the gated recurrent unit (GRU), and the long
short-term memory (LSTM).

In a prediction framework, the performance metrics are the most important measures
for evaluating the quality of investigated models. These metrics are also presented in this
section. The case studies used to illustrate the effectiveness of the DL methods evaluated
will be presented in addition to the dataset adopted.

2.1. Design Methodology

In this paper, three DL algorithms are used for predicting the one-day-ahead number
of new infections based on the daily new infections of the previous 14 days. We used
the previous 14 days as input to consider the influence of all possible virus carriers when
transmitting the disease. According to the WHO, the transmission of the virus from people
with infections to others continues from the Day 2 to day 10 or 13 for symptomatic or
asymptomatic individuals, respectively. Thus, all people carrying the virus even 13 days
before contribute to the next-day infections. Moreover, as per the “Criteria for releasing
COVID-19 patients from isolation Geneva: World Health Organization; 2020 (available
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at https://www.who.int/news-room/commentaries/detail/criteria-for-releasing-covid-
19-patients-from-isolation (accessed on 30 July 2022)), any person with an infection should
be released within 14 days, which is likely the period during which they are able to transmit
the virus to others. However, the number of days that may contribute to the coming days’
infections depends on the COVID-19 variant, the location, and the period. As an example,
the authors in [23] chose the length of the subsequence as being equal to 20 consecutive
days. In addition, according to a study conducted in Japan for the BA.1 omicron variant,
the incubation period was found to vary from 1.3 days to 9.6 days [32]. Taking into account
the fact that DL techniques are robust against uncertainties, the choice of the previous
14 days is likely to be reasonable. Regarding the model itself, the structures of the deep
learning (DL) algorithms used in this study are highly nonlinear and involve interactions
between the numbers of infections of the previous days to model the number of infections
in the forthcoming days. Accordingly, the DL includes several multiplicative terms, which
indicate the highly nonlinear character of the models adopted. The problem of modeling
SARS-CoV-2 transmission dynamics is considered difficult because it depends on many
factors (the health system efficiency, vaccine availability, climatic conditions, demography
of the location, the movement of people, the day of the week [33], etc.) including also
“the measures taken by the government” to mitigate/limit the spread of the disease. In
the proposed DL, all of those factors, in addition to any other hidden factor, are included
implicitly in the number of daily new infections. As per the DL structure, those factors are
retained during training via the memory cells. The forecasting procedure is depicted in
Figure 1. The first step consists of the COVID-19 dataset collection. The collected dataset
is then divided into two subsets: 80% used for the models’ training (in-sample), and the
remaining 20% employed for the models’ validation and testing (out-of-sample). Three
performance metrics, namely, the mean absolute percentage error (MAPE), the coefficient
of determination (R2), and the root mean square error (RMSE), are calculated to measure
the accuracy of the investigated models. More details about the operation of the three DL
algorithms as well as the performance metrics’ calculation will be provided in the following
subsections.
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Î(t+1)= F(I(t), I(t − 1), …, I(t − i), …, I(t − 14)) (1) 

where F(.) is a nonlinear function of its arguments for the previous days’ number of in-
fections, I(t) denotes the number of infections on Day t, and 
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2.2. Problem Statement

In this paper, the one-day-ahead estimated number of new infections is modeled as
a function of the number of infections recorded for the previous 14 days. Therefore, it is
represented as in Equation (1).

Î(t + 1) = F(I(t), I(t− 1), . . . , I(t− i), . . . , I(t− 14)) (1)

where F(.) is a nonlinear function of its arguments for the previous days’ number of
infections, I(t) denotes the number of infections on Day t, and Î(t + 1) is the estimated
number of infections on Day (t + 1).

The modeling problem is formulated as an optimization problem, where the quadratic
error function (Equation (2)) between the number of daily infections estimated and recorded
is minimized with respect to the DL algorithm parameters (weights and biases).

E2(Wi, bi) =
N

∑
t=1

(
I(t) − Î(t) + e(t)

)2 (2)

where E2 is the quadratic error function; N denotes the number of out-of-sample obser-
vations; Wi and bi represent, respectively, the deep neural network weights and biases;
and e(t) denotes an error function considered to be a white signal and following a normal
distribution.

2.3. Recurrent Neural Networks

RNNs are a special variant of artificial neural networks (ANNs) that have the ability
to deal with sequential data and, when trained, retain knowledge of the past to model its
effect on the present and on the future [22]. In RNN, data are assumed to involve sequences.
As opposed to classical ANNs, where the data sampling times are independent, RNNs are
an implementation of the “memory” concept, where the states of the previous information
related to the inputs are used to generate the next output of the sequence. In classical
feed-forward neural networks, the information is fed in a forward manner and processed
through hidden layers to finally reach the output layer. However, in RNNs, the network
cells remember their states and provide them as feedback information.

In an RNN, information is transferred through a loop. Therefore, the decision made
by the RNN is based on both the current input and recently received past information [29].
Despite the interesting features of RNN, this DL technique has many limitations, including
the short memory effect and vanishing gradient problem due to backward propagation. In
fact, when training an RNN algorithm, the vanishing/exploding gradient problems must
be faced. The main cause of these two problems is that it is too difficult to keep the data
for a long time. In the case of long sequences, the training algorithm may fail at updating
the RNN weights. Thus, these weights may converge to zero values or may explode when
going toward high values. In conclusion, it can be noted that short memory and vanishing
gradients are two linked problems of RNNs. Solutions to those problems are provided by
introducing GRU and LSTM structures.

2.4. Long Short-Term Memory (LSTM)

RNNs are known to have difficulties in training because of the vanishing/exploding
gradients. Therefore, long short-term memory (LSTM) has been introduced to overcome
this difficulty [25]. LSTM is an advanced type of RNN. Its structure is composed mainly of
three types of gates: input, output, and forget [26] (Figure 2). With reference to Figure 2, the
transfer equations of an LSTM unit are described according to Equations (3)–(7). Note that
RNN and GRU are particular structures of an LSTM. More details about DL algorithms as
well as their structures and transfer equations can be found in [26] and [28,29]. In LSTM,
memory cells are introduced to detect hidden features and to continuously track long-term
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historical information. The main idea behind using memory cells is to model historical
self-states of the network through self-connections [22].

ft = σ
(

w f .[ht−1, xt] + b f

)
(3)

it = σ(wi.[ht−1, xt] + bi) (4)

ot = σ(wo.[ht−1, xt] + bo) (5)

Ct = ftCt−1 + it.th(wc.[ht−1, xt] + bc) (6)

ht = Ot.th(Ct) (7)
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All of the variables in Equations (3)–(7) are defined in Figure 2.

2.5. Study Areas and Datasets

In order to investigate the three DL algorithms’ abilities to model new COVID-19
infections, four countries from different geographic locations, climates, and cultures were
selected as case studies. Saudi Arabia, Egypt, India, and Italy were considered. Table 2
below depicts the geographic location, population, and climate information of the case
studies considered.

Table 2. Information about the case studies considered.

Country Geographic Location Climate Population *

Saudi Arabia 25◦00′ N 45◦00′ E Desert 35,836,864
Egypt 30◦20′ N 31◦13′ E Dry and hot 105,975,920

India 8◦4′–37◦6′ N 68◦7′–7◦25′ E 97◦25′ east
longitude Hot and humid 1,405,606,396

Italy 41◦87′ N 12◦56′ E Mediterranean 60,294,088
* https://www.worldometers.info/coronavirus/ (accessed on 20 June 2022).

The dataset (number of confirmed infected cases) used in this study for the four coun-
tries was collected from https://github.com/owid/covid-19-data/tree/master/public/
data (accessed on 5 February 2022). The dataset covers the period from 1 April 2020 to
4 February 2022.

Thus, the 675 observations collected were divided into 80% for the models’ develop-
ment and 20% for the models testing and calibration. Each sequence of 14 observations
was used to predict the next-day number of infections. Additionally, the time period was
selected such that it covers almost all epidemic peaks as well as the discovery of different
variants of the virus. Moreover, more than one year of vaccination campaigns were also
covered.

https://www.worldometers.info/coronavirus/
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
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3. Results and Discussion
3.1. DL Algorithms’ Hyperparameters

The DL network structure as well as its training parameters were determined in terms
of what are known as hyperparameters. Since there is no existing straightforward and
systematic procedure to optimally tune those hyperparameters, we adopted a trial-and-
error strategy. Although it is time-consuming, this strategy remains, to the best of the
authors’ knowledge, the most efficient method, so far, of time-series modeling and analysis
used by researchers and data scientists. The hyperparameters of the RNN, GRU, and LSTM
DL networks selected are summarized in Table 3 below.

Table 3. Hyperparameters of RNN, GRU, and LSTM used in this study.

Hyperparameter Set Value

Units 200
Activation ReLu
Batch size 64
Epochs 1000
Scaler Min–Max
Optimizer Adam

The number of units has a significant effect on the prediction accuracy. Increasing the
number of units generates better fitting data. However, this number cannot be increased
to a very high value since this may increase the training time and cause overfitting. After
several trials, the number of units adopted was 200. The batch size hyperparameter was
the number of samples handled before updating the DL model. This number is usually set
to powers of 2. The higher this number, the faster the algorithm converges. However, the
choice of batch size is case-sensitive and strongly linked to the dataset size. We selected
64 as an intermediate value, which provided reasonable results without inducing a longer
convergence time. The number of epochs refers to the number of opportunities that each
sample in the training dataset has had to update the internal model parameters. After
trying different values, the adopted value was determined at 1000. Scaling the dataset
before initiating the DL model training is a common practice in data science. Since the
majority of activation functions operates in the range [–1, 1], here, we adopted the Min–Max
scaler. For activation of the neurons, we selected a rectified linear unit (ReLU), which is a
piecewise linear function that outputs a value equal to the input if it is positive and outputs
zero otherwise. It has been used frequently in training various DL structures [7,9,21]
and has been found to provide better fitting data while being easier to train. In DL,
optimizers are the algorithms employed to optimally tune the weights and biases of the
ANN while minimizing a loss function. The training process is consequently transferred to
an optimization problem where the objective function is the error between the ANN output
and the target value of the same output, and the decision variables are the features of the
network (weights and biases).

3.2. Experimental Results

Our main objective is to compare the performance of three DL algorithms (RNN, GRU,
and LSTM) in modeling new COVID-19 infections in four countries (Saudi Arabia, Egypt,
Italy, and India) with different demographic patterns, culture, geographic locations, and
climatic conditions. As performance metrics, we used the mean absolute percentage error
(MAPE), the coefficient of determination (R2), and the root mean square error (RMSE).
These considered metrics are widely used by researchers in time-series prediction and are
defined using the following formulas [24,28]:

MAPE =
100
N

N

∑
t=1

∣∣I(t) − Î(t)
∣∣

I
(8)
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R2 = 1−
1
N ∑N

t=1
(

I(t)− Î(t)
)2

1
N ∑N

t=1
(

I(t)− I
)2 (9)

RMSE =

√√√√ 1
N

N

∑
t=1

(
I(t)− Î(t)

)2 (10)

The models’ validation dataset is composed of N (last 20% of the original dataset); I(t)
and Î(t) denote the number of daily new infections at day t and the number estimated by
the model, respectively; and I represents the average number of daily infections over the
testing period.
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Figure 3. Curves of the new daily infections obtained by RNN, GRU, and LSTM for (a) Saudi Arabia,
(b) Egypt, (c) Italy, and (d) India. Day 1 is 9 September 2021.

2 In order to conduct a reasonable comparative study, all DL models have been
run under the same conditions in terms of hyperparameters and the period covered by
the dataset for the four case studies. All experiments were performed using the Python
Keras TensorFlow library on a machine with a 64-bit/2.6 Ghz processor and a random-
access memory (RAM) of 32 GB. The performance measures for the four case studies are
summarized in Tables 4 and 5 below. Since the deep learning (DL) techniques proposed are
non-deterministic methods and since they present a large amount of randomness (bias), the
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whole training/testing process has been run several times (more than 10), and the results
of the best runs are considered.

Table 4. Performance metrics of the RNN, GRU, and LSTM DL algorithms during the testing period
(Saudi Arabia and Egypt).

Country Saudi Arabia Egypt

DL model MAPE (%) R2 RMSE (case) MAPE (%) R2 RMSE (case)

RNN 12.09 0.9754 299 7.53 0.7984 164
GRU 13.30 0.9690 336 8.79 0.7609 179
LSTM 17.98 0.9438 453 8.44 0.7961 165

Table 5. Performance metrics of RNN, GRU, and LSTM DL algorithms during the testing period
(Italy and India).

Country Italy India

DL model MAPE (%) R2 RMSE (case) MAPE (%) R2 RMSE (case)

RNN 25.72 0.8245 2863 17.58 0.8747 3920
GRU 24.48 0.8499 2648 21.59 0.8759 3902
LSTM 25.86 0.8089 2987 26.27 0.8438 4378

The curves of the (actual) new daily infections recorded as well as those obtained by
the RNN, GRU, and LSTM DL algorithms are depicted in Figure 3 for the four case studies.

3.3. Discussion

Based on the results of each case study, the following comments can be made:

• Case of Saudi Arabia: From Table 3, the average MAPE of the three DL algorithms
is around 25%, which is a moderate value. The higher the MAPE, the better the
prediction. However, the three techniques’ R2 is about 0.8 (1 is the ideal value).
Other studies, such as [34,35], have tackled the problem of predicting the number of
COVID-19 infections in Saudi Arabia while covering different periods and datasets.
Compared with other studies in the same territory, such as [35], our R-squared value
can be considered good, since the period covered by our models is larger than the one
covered by that study. This value can be considered good and reflects an interesting
predictability of daily new infections in Saudi Arabia. The average RMSE is around
330 new infections per day. It can be observed also that RNN has been found to
outperform GRU and LSTM, since it yielded the best MAPE, R2, and RMSE. Therefore,
for the case study of Saudi Arabia, a less complex DL algorithm in terms of structure
and training time is preferred for modeling daily new COVID-19 cases. Saudi Arabia’s
population is a mixture of nationalities, religions, and culture. In addition, Saudi
Arabia is a host to two holy mosques at Makkah and Madinah, which are visited by
Muslim people who perform Hajj and Umrah, which may induce hidden features in
terms of factors impacting new infections. The desert climate of Saudi Arabia may
be one the factors negatively affecting daily new infections. From Figure 3a, it can be
observed that the actual recorded new infections curve and the DL algorithms curves
were almost the same during the first 100 days of the testing period (out-of-sample)
and that there were some fluctuations during the remaining days of the same period,
with a relatively small superiority for the RNN curve.

• Case of Egypt: Based on Table 3’s performance measures, the MAPE of the three
algorithms is around 8%, which can be considered good. In addition, the values of
RMSE are also good (around 160 cases per day). However, the values of R2 are around
0.75. This value can be considered moderate, which may be due to jumps in new
infections recorded around days 55 and 82 during the out-of-sample testing period.
As observed from Figure 3b, sudden high daily new infections were recorded and the
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DL algorithms did not capture those jumps. As in the case of Saudi Arabia, the RNN
has the best ability to capture the hidden features of the data for the case of Egypt.
Therefore, an RNN can be recommended in this case study.

• Case of Italy: The GRU was found to better model the dynamics of daily new infections
since it yielded the lowest MAPE (24.4818%), the highest R2 (0.8499), and the lowest
RMSE (2648 cases/day). However, the MAPE value can be considered high, which
indicates bad predictability of the daily new infections using DL. The GRU DL network
has an intermediately complex structure, situated between a simple structure (RNN)
and a complex structure (LSTM). Therefore, this may result in a moderate training time.
In conclusion, the GRU can be recommended for the case study of Italy. The relatively
bad performance of the three DL techniques can be attributed to the fluctuations in
daily new infections noticed particularly starting from Day 95 (Figure 3c). Note that,
among recent studies concerning the prediction of the number COVID-19 infections
in Italy, the authors of [36] focused on predicting the reproduction number, which is
complementary to the number of infections predicted in our study. Future directions
can be built around a combination of the two topics.

• Case of India: The best MAPE was provided by the RNN (17.58%) and the best R2 and
RMSE (0.8759 and 3902, respectively) were yielded by the GRU DL algorithm. In this
case study, the GRU can be adopted as the best forecasting technique. From Figure 3d,
it can be observed that LSTM fails in capturing the strong fluctuation in daily new
infections occurring around Day 120. However, the average value of the MAPE of the
three techniques is relatively high, which reflects the relatively bad predictability of
the daily new infections using DL.

As an overall observation, the values of MAPE yielded by the three DL techniques can
be considered moderate (ranging from 8% to 25%). The values of R2 can be considered to
range from good to very good (ranging from 0.8 to more than 0.9). The RNN technique
is recommended for three case studies (Saudi Arabia, Egypt, and India), and GRU is
recommended for Italy. From this, it can be concluded that there is no need to use complex-
structure DL networks to model the daily new infections dynamics. Simpler DL algorithms
can yield better forecasts within reasonable training time. Moreover, DL techniques are
known to require large amounts of data, which is not true in the case of COVID-19, since
health authorities are releasing data on a daily basis. The 80% used (540 observations out
of 675 collected) can be considered a relatively small dataset to train DL algorithms. It
should also be noted that, when compared with the results of model-based techniques, the
forecasts yielded by the three DL techniques can be considered good, since the coefficient
of determination (R2) ranges between 0.8 and 0.9, which was the case in many studies
using classical models. However, a fair comparison should be conducted between methods
from the same family, under the same conditions, and using the same datasets in the same
country/location. Forecasting COVID-19 dynamics was shown through several studies
(and confirmed in this study) to be case-sensitive.

Overfitting is the situation where a DL algorithm performance on the training dataset
is good (in-sample) and “bad” for new dataset or testing (out-of-sample). To investigate
this problem, we performed the following:

− We conducted various experiments (for the four case studies) while varying the num-
ber of iterations (epochs). The quality of the DL models was measured by calculating
three performance metrics (the RMSE, the coefficient of determination (R2), and the
mean absolute percentage error (MAPE)) for the out-of-sample datasets.

− As seen from Tables 4 and 5, the coefficient of determination was found to be more
than 0.8 and reached 0.97 in some cases (this value varies between 0 and 1 for the
ideal fit). In addition, the MAPE and RMSE were in good ranges, which indicates the
“good” quality of our investigated models and no overfitting.

Predictions and modeling in the case of pandemics are very useful for supporting
decision-making. In fact, in the case of the unprecedented COVID-19 pandemic, several
models have been developed under different circumstances in different locations. DL
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models including those developed in this study, were found to be very useful since they
were able to take into consideration hidden factors implicitly. Moreover, they have been
found to be relatively accurate in estimating the future numbers of infections. Decision-
makers can benefit from these models in efficiently managing resources (including human
resources) and supplies as well as preparing their health systems for any dangerous
situation that may occur.

4. Conclusions

Three DL techniques, namely, the RNN, the GRU, and the LSTM, have been inves-
tigated for their predictability of one-day-ahead daily new infections of COVID-19, as
explained by the infections recorded during the previous 14 days, which is considered the
virus incubation period. The three techniques have yielded acceptable forecasts for the case
studies investigated (Saudi Arabia, Egypt, Italy, and India), although they were trained
using a dataset of limited size. Through this study, it has been concluded that the simple-
structure DL technique (RNN) is recommended for modeling daily new infections since
it generated better forecasts using limited training times. The results of this study can be
used pertinently by health authorities and decision-makers to analyze the dynamics of the
COVID-19 disease (since the disease is currently almost at its end) and can be generalized
to other epidemics that may occur in the future. Future work can be allocated to model the
effect of climatic and pollution indicators using DL networks in a multi-variate time-series
context.
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