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Abstract: In this paper, a compact cat swarm optimization algorithm based on a Small Sample
Probability Model (SSPCCSO) is proposed. In the same way as with previous algorithms, there is
a tracking mode and a searching mode in the processing of searching for optimal solutions, but
besides these, a novel differential operator is introduced in the searching mode, and it is proved
that this could greatly enhance the search ability for the potential global best solution. Another
highlight of this algorithm is that the gradient descent method is adopted to increase the convergence
velocity and reduce the computation cost. More importantly, a small sample probability model
is designed to represent the population of samples instead of the normal probability distribution.
This representation method could run with low computing power of the equipment, and the whole
algorithm only uses a cat with no historical position and velocity. Therefore, it is suitable for solving
optimization problems with limited hardware. In the experiment, SSPCCSO is superior to other
compact evolutionary algorithms in most benchmark functions and can also perform well compared
to some population-based evolutionary algorithms. It provides a new means of solving small sample
optimization problems.

Keywords: compact cat swarm optimization; differential operator; small samples probability model;
gradient descent method

1. Introduction

Lately, compact evolutionary algorithms (cEA) have rapidly developed. In 1999,
Georges R. Harik et.al proposed a novel compact genetic algorithm (cGA) [1]. It mimics
the behavior of a simple GA with standard binary coding for order-one problem. It could
almost obtain the same performance as a standard GA under this simple representation.
Besides these, it engendered an idea that it is possible to use a probability distribution
to represent populations, in order to reduce memory usage. Inspired by cGA, Ernesto
Mininno et al. proposed a real-valued Compact Genetic Algorithms (rcGA) [2]. It firstly
employed a normal probabilistic distribution model to describe the statistic features of all
of the samplings. Individuals could be generated directly from this normal probabilistic
distribution model. The most successful highlight of rcGA lies in that it employed effective
updating rules to update the parameters of the normal probabilistic distribution functions
(PDF). A compact Differential Evolutionary algorithm (cDE) [3] was presented by Ernesto
Mininno et al. in 2011. Though it was based on the same normal probabilistic model, it
inherited the essential features of differential evolutionary (DE). The efficient performance
together with modest requirements made it suitable for the environment with small compu-
tational power. After cDE, cPSO [4] was proposed in 2013. Unlike the other PSO versions,
it stored neither the positions nor the velocities, and only a particle was employed in the
whole algorithm; what is more, it also employed a normal probabilistic model to simulate
the swarm’s behavior. This modest representation enables cPSO to run in those devices
with limited computational power or limited memory. In 2018, Ming Zhao [5] proposed
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a novel compact cat swarm optimization algorithm based on a differential method, with
better performance than some similar algorithms.

These compact evolutionary algorithms employed a probability distribution to explic-
itly represent the population of the solutions. Normally, a normal distribution function is
introduced. Instead of a large number of populations and variables, only the expectation
and variance of the representative probability model are adopted, a type of probability
model and a particle are adopted and a few variables and limited run spaces are required;
that is, a compact idea is used to design the algorithm. It is known to all that a good
distribution is equivalent to linkage learning [6,7]. A normal distribution model suits the
simulation of those samplings with a large size [8,9]. Obviously, not all of the samplings
could be described by normal distribution. There are still some samplings with non-normal
distribution. If we employ a normal distribution to simulate them compulsively, the perfor-
mance will be barely satisfactory. Therefore, the problems with a small size could probably
be described by a special non-normal distribution.

Inspired by the literature [1–5], we expected to find another non-normal probabilistic
distribution model to represent the samplings, which would have a different mean and
the variance under the different parameters. Updating the rules for the mean and the
variance could help the probabilistic model to generate highly effective solutions. Giving
overall consideration to the features of some non-normal probability models, a gamma
probabilistic distribution function is employed in this study.

Meanwhile, the corresponding evolutionary algorithm will be considered. It will
cooperate with the gamma probabilistic model to try to find the best solution for the opti-
mization problems. Chu et al. [10] proposed a cat swarm optimization (CSO) algorithm in
2007. A novel combination searching strategy was employed in CSO, in comparison with
the corresponding evolutionary algorithms, a higher performance was shown in the stan-
dard test functions. Then, Tsai and his group [10] developed it further and proposed some
improved versions, such as parallel cat swarm optimization (PCSO) [11] and reinforced
parallel cat swarm optimization (EPCSO) [12]. It was also widely used in some application
domains with a pretty good performance [13–15]. It is population-based. There is still
no population-less version for CSO. So, in this paper, we also select CSO to combine the
gamma probabilistic distribution, which is a Small Sample Probability Model. In order to
reduce computing costs and the velocity up convergence rate, a gradient descent method is
introduced to the seeking mode of CSO. Thus, a novel compact cat swarm optimization
scheme with a Small Sample Probability Model (SSPCCSO) is proposed. We will employ
this novel algorithm to test whether it could solve some problems of a small size.

The remainder of this research is organized as follows: Section 2 presents the sampling
mechanism and cat swarm optimization. In Section 3, the proposed compact cat swarm
optimization with gamma distribution and gradient descent method is discussed in detail.
Section 4 displays the experimental results, and Section 5 summarizes this study.

2. Related Work

In this section, the sampling mechanism based on real-valued coding is presented in
detail, and the cat swarm optimization algorithm is also introduced.

2.1. The Sampling Mechanism Based on Real-Valued

As mentioned above, the main feature of compact algorithms is population-less,
see [1–4]; a virtual population based on probabilistic model is introduced to represent
the populations. In real-valued coding compact algorithms [2–4], solutions are generated
through this probabilistic model. Mean and variance are parameters for the probabilistic
density function (PDF). A little modification for the two parameters will affect the solutions
in the next generation. So, this probabilistic model is named as Perturbation Vector (PV). It
is encoded as Formula (1):

PVt = [ut, δt] (1)
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where µ and σ are, respectively, mean and standard deviation values of the corresponding
PDF; top t is generations.

Without losing generality, all of designed variable x should be normalized to interval
[−1,1], for a PDF, its corresponding Cumulative Distribution Function (CDF) may not be
equal to 1 because some of the variables will be out of [−1,1]. An error function [15] is
introduced to solve this problem; thus, the truncated PDF is presented as Formula (2):

PDF(truncated(xi)) =

√
2
π e
− (xi−ui)

2

2(σi)
2

σi(er f ( ui+1√
2σi

)− er f ( ui−1√
2σi

))
(2)

where xi is the i-th dimension of designed variable x; ui and δi are mean and variance
associated with xi. The corresponding CDF value can be obtained through Formula (3).
When a Cumulative Distribution Function value is generated, the corresponding x could
be calculated by computing the inverse function of Formula (3). The sampling mechanism
of PV can be seen in Figure 1.

CDF(xi) =

1∫
−1

PDF(truncated xi)dxi (3)

Figure 1. Sampling Mechanism for Real-Valued Compact.

The sampling procedure could be described as follows. Firstly, a random number
in [0,1] is generated under a normal distribution, and it will be taken as a Cumulative
Distribution Function value; then, computing the inverse function of the Cumulative
Distribution Function, the calculated value is xi. xi is a needed solution, however, the
solution is not generated directly, it was obtained based on e evolutionary computation
and evolutionary computation. The sampling mechanism could be interpreted as Figure 1.

In the real process of sampling, in order to reduce the calculated cost, an approximate
computing for the designed x [i] is implemented, by means of the Chebyshev polynomials [16].

Another highlight for the sampling mechanism of the compact evolutionary algorithms
with real-value is updating the rules for mean and variance. When two individuals are
compared, the winner indicated the one with better fitness, and the other is the loser. A more
effective solution would be expected to be generated from PV through updating mean and
variance. The updating rules are shown as Formulas (4) and (5):

µt+1(i) = µt(i) +
1

Np
[winner(i)− loser(i)] (4)

[
σt+1(i)

]2
=
[
σt(i)

]2
+
[
µt(i)

]2 − [µt+1(i)
]2

+
1

Np

{
[winner(i)]2 − [loser(i)]2

}
(5)

Np is the size of the virtual population, and top t is the generations, i is a dimension of
the designed variable x. The details can be seen in the literature [2–4].



Appl. Sci. 2022, 12, 8209 4 of 22

2.2. Cat Swarm Optimization (CSO)

Inspired by the behavior of cats, Chu and Tsai [10] proposed the cat swarm optimiza-
tion algorithm in 2007. A combination of two search logics is employed in this algorithm,
i.e., the seeking mode and the tracing mode. All of the cats will be divided into two groups
before the iterations. Just like PSO, its update rules are very similar to the traditional
Particle Swarm Optimization (PSO) algorithm; the designed cat represents a solution for
the project to be solved, and each designed cat has its own position and velocity. The
solutions are updated by the cat’s position and velocity, and estimated based on its degree
of adaptability for the project; the global best will be chosen and conduct all of the cats to
seek its next position and velocity. From the perspective of biological group behavior, this
is obviously different from the particle swarm optimization algorithm. The details of the
CSO algorithm will be introduced in the following section.

2.2.1. Seeking Mode

The number of cat populations in the seeking mode is decided by a parameter GR
(group rate), which, normally, is set to be 0.98 [8]. When the cats are in seeking mode, the
GR is used as a minor tune-up for the cats’ position, and does change their velocities. The
following steps will be implemented.

Firstly, every cat will copy its own position many times, according to the size of the
parameter SMP, and the position will be stored in the corresponding seeking mode pool
(SMP) unit. Then, each position in the SMP will be recalculated by a mutagenic operator, a
dimension of the expected variable xi could be chosen to mutate, and the range of variation
would be decided by a random number, which is up to 20% of xi. The mutation operation
is described as Formula (6):

xi = xi + ∆xi (6)

The position with the best fitness in the SMP will be chosen to update xi.

2.2.2. Tracing Mode

The evolutionary process for the cats in tracing mode is similar to the particle in the
PSO algorithms. However, they are still somewhat different. Each cat in tracing mode will
only trace the cat with the global best fitness to update its own velocity and position. The
particles in PSO [16] trace both the global best individual and the local best individual. The
updating rule for the tracing mode can be expressed as the Formulas (7) and (8):

vk(t + 1) = ω · vk(t) + Const · random · [xgb(t)− xk(t)] (7)

xk(t + 1) = xk(t) + vk(t + 1) (8)

where xgb is the position of the cat with the best fitness; xk is the position of catk; t is the
generation for iterations. Const is a constant and random is a random number in [0,1].

The cat in seeking mode will be compared with the cat with the best fitness in tracing
mode; the winner would be chosen to update the variable. The final xgb is the required solution.

3. The Proposed Compact Cat Swarm Optimization Scheme Based on Small Sample
Probability Model (SSPCCSO)

In this section, a novel compact swarm optimization scheme based on the Small Sample
Probability Model will be proposed. First, a sampling mechanism with a new gamma
distribution model will be introduced in Section 3.1, then a new differential operation will
be implemented in seeking mode. Another highlight, a gradient descent method, will also
be presented in Section 3.2. Section 3 states the tracing mode, and Section 4 introduces
the SSPCCSO.
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3.1. Virtual Population and Sampling Mechanism with Real-Valued

The main feature of the compact evolutionary optimization algorithms is population-
less. A probabilistic model is employed to represent the distribution of the solution sets,
instead of processing an actual population. A gamma distribution model is employed to
act as the Perturbation Vector (PV). The PV is also a n× 2 matrix and it is expressed as
Formula (1). As is mentioned above, the PV is introduced to generate a new individual.
The sampling mechanism is the same as the PV with a normal distribution (see Figure 1).

Normally, a gamma probability density function (PDF) and its CDF [17] are presented
as Formula (9) or (10):

f (x; k, θ) =
1

Γ(k)θk xk−1e−x/θ (9)

F(x; k, θ) =

x∫
0

f (u; k, θ)du =
1

Γ(k)
γ(k,

x
θ
) (10)

where k and θ are two parameters for Gamma PDF; the PDF curve is shown as Figure 2 [13].

Figure 2. Gamma Probability Density Function.

The lower incomplete Gamma function is defined by γ(s, x) =
x∫

0
ts−1e−tdt (note that

the upper incomplete Gamma function is Γ(s, x) =
∞∫
x

ts−1e−tdt, and the ordinary Gamma

function is defined as Γ(s) = Γ(s, 0) = γ(s, ∞)). Thus, the mean and variance for gamma
PDF is calculated by E[X] = kθ and Var[X] = kθ2.

Most of the variables are in the interval [0,20]. We define [0,20] as an all solution
domain. However, there may still be some potential solutions out of [0,20], so an error
function must be employed to map those potential solutions out of [0,20] into [0,20].
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Without losing generality, all of the variables should be normalized to [−1,1]. As
discussed above, we define the variables x in [0,20], then new variable will be mapped as
y = 10(x + 1). Thus, we consider the truncated Gamma distribution to [0,20], and then:

f (10(x + 1); k, θ) = 10k−1

Γ(k)θk (x + 1)k−1e−10(x+1)/θ

= 1
10Γ(k)( θ

10 )
k (x + 1)k−1e−(x+1)/( θ

10 )

= 1
10Γ(k)tk (x + 1)k−1e−(x+1)/t

= 1
10 f (x + 1; k, t)

(11)

F(10(x + 1); k, θ) =
1

Γ(k)
γ

(
k,

10(x + 1)
θ

)
=

1
Γ(k)

γ

(
k,

x + 1
t

)
(12)

Thus, the new distribution truncated on [−1,1] is represented by Formula (13):

PDF(truncated) = 1
10

f (x+1;k,θ)
1

Γ(k) γ(k, 2
θ )

= 1
10γ(k, 2

θ )θk (x + 1)k−1e−(x+1)/t
(13)

Then, it could ensure that any of the solutions out of [−1,1] could map to [−1,1], see
Figure 3. Its CDF is presented by Formula (14):

CDF(truncated) =
1

Γ(k) γ(k, x+1
θ )

1
Γ(k) γ(k, 2

θ )

=
γ(k, x+1

θ )
γ(k, 2

θ )

(14)

Figure 3. Error mapping for some solutions out of the decision domain.

According to Formulas (13) and (14), the mean and variance could be represented by
µ = kθ

10 and σ = kθ2

100 .
The sampling mechanism of a designed variable could be described as follows:
First, the scheme will generate a random number p between 0 and 1, according to the

uniform distribution model, and the parameters µi and σi for the Perturbation Vector will
be Initialized (µi = 0 and σi = λ). This p is the Cumulative Distribution Function (CDF)
value for the expected variable x, it is a Cumulative Distribution Function value for the
corresponding PDF, then the inverse function of CDF in rand (0, 1) is introduced, according
to Formula (14). Finally, a new x[i] will be obtained.

Apparently, according to the definition of normal distribution, its solutions’ domain
should be [−∞,+∞], but real projects are limited to a specific domain, The optimal solution
obtained by updating the rules may be not located in the definition domain, an error
will be generated for mapping an infinite space to a finite space; the mapping function is
introduced to solve the error for mapping. Because of the particularity of the Cumulative
Distribution Function for Gamma distribution, all of the solutions almost locate in [0,20].
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The mapping problem turns out to be a finite domain into another finite domain, the error
disappears automatically, thus, an error function is not required.

The Perturbation Vector Updating Rule

The PV of the virtual population is designed to create new solutions; the parameters
of PV could be updated to create more significant individuals. The updating rules for
PV are also the same as in the literature [2–4]. They are expressed as Formulas (4) and (5).
There are two very important vectors, winner and loser, in Formulas (4) and (5), in which
winner indicates the individual with best fitness when two solutions are compared. From
Formulas (4) and (5), µ and σ are updated by an vector 1

Np
(winner − loser), this vector

could adjust the values of µ and σ. Apparently, the new vector 1
Np

(winner− loser) conducts
the forward orientation of µ; thus, the µ would approach the winner, in order to obtain
the next solution more effectively; σ is designed to conduct the step size, when the current
solution is far from the best solution, a large size σ could be used. When the current solution
is close to the best solution, a small σ would be used. Thus, a new solution in the next
iteration would be generated more effectively by this updating rule. This can be seen in
Figure 4.

Figure 4. The interpretation for updating rule with winner and loser.

3.2. Seeking Mode

Compared with CSO, the SSPCCSO has two highlights: one is the differential operator,
and the other is the gradient descent method. The details about these will be presented in
this section.

3.2.1. Differential Operator

The cat in seeking mode will update its position by another new way. For the seeking
mode of CSO, the position of a cat will be updated through Formula (6), while in SSPCCSO,
a differential operator is introduced to enhance the search ability of the cat for the local best
solution, and we call this differential operator the Exploration Vector (EV), it is presented
as Formula (15):

x = x + F ∗ (winner− loser) (15)

where F ∈ [1/Np, 0.2] is a scale factor which controls the length of the exploration vector
(winner− loser).

It had to re-mention the vector (winner− loser), the updating rule for seeking in the
CSO is described as Formula (6); according to Formula (6), x will be changed from the
view of x itself, that is to say, the updating vector (x + ∆x) is only a simple amplification
or reduction in the scalar on its direction. It can find the better solution based on two
directions, it can be seen on the left of Figure 5, according to the proposed Formula (15),
where it could search for the best solution in all directions. It can also be seen on the right
of Figure 5.
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Figure 5. The search direction for different updating rules.

(Winner-loser) is an exploration vector, it could face in all of the potential directions,
and it has challenges in seeking for a better solution, see on the right of Figure 5.

With reference to the literature [10–12], the proportion for cats in the seeking mode
and cats in the tracing mode is 98:2, and the size of memory pool is five times of the
current cat. However, in the proposed SSPCCSO, a cat is only in seeking mode or in tracing
mode. In order to mimic the search logic of the CSO algorithm, the updating rule would be
implemented 245 times in each iteration; thus, the computing cost may be too high to be
accepted. A gradient descent method [18,19] is introduced to reduce the computing cost
and obtain the real local solution for the designed x. The details will be discussed in the
following section.

3.2.2. Gradient Descent Method

As mentioned in the previous section, the updating rule in seeking mode will be
implemented many times, and the process will be run with a higher computing cost. It
may not be accepted for some of the engineering problems. With full consideration of these
factors, a gradient descent method (GD) [19,20] is introduced. Firstly, a convergence rate
(CR) is shown as Formula (16):

CR =
| f itness(t + 2)− f itness(t + 3)|
| f itness(t)− f itness(t + 1)| (16)

where f itness(t) is the fitness for the cat in t generation. When CR < 1, it means that the
acquired solution begins to converge [20].

When the selection for the local best solution is being implemented, and the termi-
nation condition is not met, and meanwhile the local best cat is not updated for many
generations, the rest loop would be unnecessary. Even though the local best solution is
frequently to obtain a differential operator, sometimes this local best solution is not actually
the local best solution. Based on these factors, much unnecessary computing cost could be
reduced, and a more effective solution could be found with less time. Thus, a gradient is
introduced and is defined as Formula (17).

∇ f = [
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

] (17)

where n is the dimension of designed variable x. It is known to all that the real local best
solution of variable x will be quickly obtained, according to the gradient vector of the
function, and it can be calculated by Formula (18):

x(t + 1) = x(t) +∇ f · d (18)

where d is the step length, and it could firstly be set as the vector (winner-loser), then it can
be optimized by processing max( f (xi +∇ f · d). The flow chart of the steepest gradient
descent method is shown as Figure 6.
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Figure 6. The flow chart for gradient descent method in seeking mode.

When the evolutionary procedure of the designed x goes into the gradient descent
phase, the computing cost will be highly reduced, and the real local best solution will be
quickly obtained.

3.3. Tracing Mode

The cat’s behavior in tracing mode is simulated to the particle in the PSO algorithm,
but each cat only traces the cat with the global best position to update its own velocity and
position. The updating rule of tracing mode could be presented as Formulas (7) and (8).
All of the parameters are the same to the original CSO [9].

The combination of seeking mode and tracing mode could ensure that the cat swarm
optimization algorithm converges quickly and prevents the solution from the local optimum.

A cat with the best fitness will be chosen to compare which is the final best solu-
tion. When the iterations meet the termination condition, the final xgb is the solution for
the problem.

3.4. The Procedure and Pseudo Code for SSPCCSO

For the proposed SSPCCSO, normally, all of the variables would be mapped into the
intervals [−1,1], µ and σ are initialized as µi = 0 and σi = λ, a random number in the range
[−1,1] is chosen as the global best xgb. Then, the cat would be randomly grouped into
a mode.
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In the iteration phase, when the cat is in tracing mode, a local best solution xlb is
generated from PV, the cat’s position and velocity is updated by Formulas (7) and (8), and
the comparison between xlb and cat.xt+1 is used to determine which is winner and which is
loser. Then, winner and loser are applied to updating the PV. Another comparison between
the cat.xt+1 and xgb is used to decide who is xgb. When the cat is in seeking mode, firstly,
a new candidate solution xlb from PV would compare with cat.x; it is also employed to
determine the winner and loser, as winner and loser in this case are applied to update cat.xt+1

by Formula (12) and PV. These steps would be reduplicated for many times in a loop. When
this loop is stagnation, a gradient descent method is involved to reduce the computing cost
and find the real local best. No matter which mode the cat is in, a xgb would be chosen in
each run. For the sake of clarity, the pseudo code for SSPCCSO is shown in Figure 7.

Figure 7. The pseudo-code for SSPCCSO.
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4. Experimental Results and Analysis

With reference to the literature [4,20], the SSPCCSO would be tested on 47 benchmark
functions, which include those where their coordinates had been transformed and their
shifted [21]. The composition test functions [22] are also introduced; all of the benchmark
functions are listed in the Appendix A.

SSPCCSO is a compact optimization algorithm based on small size samplings. Firstly,
we select rcGA, cDE and cPSO as the compared algorithms. As SSPCCSO is also a member
of evolutionary algorithms, traditional DE [23], PSO [24] and CSO [9] should be considered.
From the perspective of saving memory, ISPO [25] is an indispensable object; it should be
one of the objects of comparison with SSPCCSO.

All of the experiments were carried out on a personal computer with MATLAB
language, which is equipped with Pentium (R) dual core E6600 CPU, 3.06 GHz and 2.96 gb
RAM. The operation system is set at windows XP platform. Each comparison algorithm will
select a set of parameters through which the best results can be obtained. With reference
to the literature [4,26], all of the parameters for each compared algorithm are listed in
Table 1. For all of the real population-based algorithms, the population size is 60, for all
of the virtual population-based algorithms, the population size is 300. To achieve a truly
fair comparison for all of the compared algorithms, all of the algorithms involved in the
comparison were evaluated by taking the average value after running for over 30 times.
In all of the tables, each value represents the corresponding mean value and the standard
deviation value calculated for each comparison algorithm within 30 times, and “+”, “−”
and ”=“ have the same implication as in the literature [2].

Table 1. Selected parameters list for all compared algorithms in this projection.

Algorithm Parameters Literature Algorithm Parameters Literature

rcGA Np = 300 [1] DE Np = 60, F = 0.5, Cr = 0.9 [23]

cDE
Np = 300, F = 0.5

Cr = 0.3 [2] PSO
φ1 = −0.2, φ2 = −0.07, φ3 = 3.74

γ1 = γ2 = 1, Np = 60 [24]

cPSO
φ1 = −0.2, φ2 = −0.07, φ3 = 3.74

γ1 = γ2 = 1, Np = 300 [3] ISPO
A = 1, P = 10, B = 2, S f = 4

H = 30, εε = 1.0× 10−5 [25]

CSO
Np = 60, c1 = c2 = 2

W = 0.9 [10] SSPCCSO
w = −0.4, c1 = 2, c2 = −0.07

Np = 300

The remains of this section are described as below: first, a comparison for memory
usage is listed in Table 2. Then, the comparisons for the memory-saving algorithms are
presented. Next to this, the comparisons between the population-based algorithms and
SSPCCSO will be shown; the analyses of the results for SSPCCSO are summarized in the
final section.

Table 2. Running memory space for all compared algorithms.

Algorithm Components Memory Slots

ISPO Single individual, 1 global best 2

rcGA One individual, persistent elitism, 1 sampling 4

cDE 3 sampling, 1 global best 4

cPSO 1 sampling, 5 persistent variables 5

SSPCCSO The same to cPSO 5

PSO Population-based, history and current individuals 2NP

DE Population-based, current individuals only NP

CSO Population-based, history and current individuals 2NP
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4.1. Comparison for Memory Usage

The proposed SSPCCSO scheme adopts a gamma probability distribution model to
represent the population, and only a cat is used. The cat has the same data structure as the
particle of cPSO, so it will also have the same memory space as the cPSO, in which only
five persistent variables are required for storing the whole algorithm. The memory usage
status for all of the compared algorithms can be seen in Table 2.

From the data in Table 2, it can be seen that SSPCCSO, cPSO, cDE, rcGA and ISPO
have modest memory requirements. They belong to compact optimization algorithms. In
relation to memory usage, the SSPCCSO is better than the CSO which is population-based.

4.2. Comparisons for Compact Optimization Algorithms

The experimental data in Table 3 display the results for the SSPCCSO and other
compared compact bio-inspired algorithms. In all of the experimental results of the 47 test
functions, the SSPCCSO exhibited quite good performance. Compared with the cPSO,
SSPCCSO is outperformed on 30 test functions, on the contrary, the cPSO exceeds SSPCCSO
only on 17 benchmark functions. Among all of the memory-saving algorithms, SSPCCSO
is out-performed by the other compared algorithms over 24 functions. From the view
of the mathematics method, it lies in two factors, first of all, a differential operator in
seeking mode is introduced to substitute for the original mutation operator. The difference
between a solution cat.x[i] and another variable may generate a moving direction, it may
be a 360 degree angle transformation for the existing solution; the magnitude for the cat.x[i]
variation is decided by the size of the vector (winner− loser). The potentially more efficient
solution around cat.x[i] will be found according to this searching method, which was
similar to the cDE algorithm. Secondly, SSPCCSO also kept the search logic of the PSO,
that is to say, the proposed SSPCCSO has the search ability of both the cPSO and cDE. It
combines these two searching abilities; thus, it is not surprising that its search performance
exceeds these two algorithms.

Table 3. Comparison for memory-saving algorithms.

Function rCGA cDE ISPO cPSO W SSPCCSO

fu1 1.427 × 104 ±
9.27 × 103

8.73 × 10−28 ±
1.86 × 10−28

8.437 × 10−31 ±
3.31 × 10−31

6.471 × 101 ±
2.28 × 101 + 6.170 × 10−3 ±

1.05 × 10−3

fu2 2.851 × 104 ±
6.58 × 103

3.778 × 103 ±
1.85 × 103

1.184 × 101 ±
5.92 × 100

2.560 × 103 ±
2.37 × 103 + 3.625 × 102 ±

7.02 × 102

fu3 1.282 × 109 ±
1.58 × 109

1.291 × 102±
1.84 × 102

2.026 × 102 ±
3.28 × 102

1.320 × 105 ±
7.46 × 104 + 5.776 × 10−1 ±

7.01 × 100

fu4 1.874 × 101 ±
3.59 × 10−1

8.694 × 10−2 ±
2.97 × 10−1

1.942 × 101 ±
1.57 × 10−1

3.728 × 100 ±
3.71 × 10−1 + 5.574 × 10−1 ±

3.07 × 10−2

fu5 6.434 × 10−3 ±
1.31 × 10−2

4.289 × 10−3 ±
1.38 × 10−2

1.124 × 101 ±
1.77 × 101

9.63 × 10−8 ±
3.07 × 10−8 − 1.613 × 10−2 ±

2.37 × 10−3

fu6 1.963 × 102 ±
2.85 × 101

7.944 × 101 ±
1.48 × 101

2.548 × 102±
4.23 × 101

2.94 × 101 ±
7.94 × 100 + 2.399 × 10−2 ±

4.09 × 10−3

fu7 2.312 × 103 ±
2.47 × 103

4.983 × 103 ±
3.78 × 103

2.254 × 103 ±
8.62 × 102

4.614 × 102 ±
2.40 × 102 + 2.991 × 102 ±

1.75 × 10−1

fu8 3.194 × 103 ±
8.01 × 102

1.673 × 103 ±
4.48 × 102

5.768 × 103 ±
5.38 × 102

3.160 × 103 ±
9.75 × 102 + 1.248 × 101 ±

1.90 × 100

fu9 1.008 × 104 ±
2.35 × 103

8.548 × 103 ±
2.14 × 103

2.755 × 104 ±
6.08 × 103

1.344 × 104 ±
1.74 × 103 − 1.111 × 105 ±

5.29 × 104

fu10 3.697 × 105 ±
1.78 × 105

4.265 × 104 ±
2.35 × 104

4.326 × 103±
4.54 × 103

1.040 × 106 ±
1.16 × 105 + 9.390 × 105 ±

1.13 × 104

fu11 1.851 × 101 ±
4.37 × 10−1

1.708 × 100 ±
1.11 × 100

1.948 × 101 ±
1.89 × 10−1

3.699 × 100 ±
3.53 × 10−1 + 8.328 × 10−2 ±

8.23 × 10−2
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Table 3. Cont.

Function rCGA cDE ISPO cPSO W SSPCCSO

fu12 5.769 × 10−2 ±
1.05 × 10−1

2.395 × 10−1 ±
2.03 × 10−1

0.001 × 10−1±
0.01× 100

9.567 × 10−8 ±
2.69 × 10−8 + 1.018 × 10−8±

2.61 × 10−9

fu13 2.154 × 102 ±
3.96 × 101

1.314 × 102 ±
1.87 × 101

2.566 × 102 ±
4.15 × 101

3.924 × 101 ±
2.31 × 101 − 2.70 × 102 ±

1.81 × 10−5

fu14 3.246 × 101 ±
4.53 × 100

2.988 × 101 ±
3.47 × 100

4.777 × 101 ±
4.34 × 100

3.943 × 101 ±
1.15 × 100 − 7.142 × 102 ±

2.37 × 10−1

fu15 5.251 × 100 ±
5.19 × 100

2.315 × 10−16 ±
5.65 × 10−16

1.184 × 10−6 ±
2.89 × 10−17

1.778 × 100 ±
4.27 × 10−1 + 9.427 × 10−3 ±

6.15 × 10−3

fu16 −1.001 × 102 ±
4.43 × 10−9

−1.001 × 102 ±
1.63 × 10−9

−1.001 × 102 ±
8.38 × 10−15

−1.001 × 102 ±
8.45 × 10−5 = −1.001 × 102 ±

0.00 × 100

fu17 1.452 × 100 ±
1.88 × 100

2.817 × 10−23 ±
3.16 × 10−23

9.994 × 10−1 ±
1.56 × 100

1.702 × 100 ±
7.08 × 10−1 + 9.518 × 10−5 ±

1.57 × 10−6

fu18 −5.485 × 10−1 ±
1.11 × 100

−1.150 × 100 ±
4.98 × 10−16

−2.258 × 10−1 ±
1.28 × 100

−1.030 × 100±
7.56 × 10−1 − −4.104 × 10−1±

8.97 × 10−4

fu19 4.338 × 102 ±
4.75 × 101

2.603 × 102 ±
3.04 × 101

4.044 × 102 ±
4.15 × 101

4.403 × 101 ±
3.44 × 101 − 4.500 × 102 ±

2.60 × 10−3

fu20 −1.517 × 101 ±
2.76 × 100

−3.347 × 101 ±
1.87 × 100

−3.348 × 101 ±
1.64 × 100

−2.063 × 101 ±
2.33 × 100 − −1.988 × 101 ±

2.33 × 10−1

fu21 8.372 × 103 ±
1.62 × 103

5.343 × 103 ±
8.47 × 102

9.679 × 103 ±
1.09 × 103

4.784 × 103 ±
1.09 × 103 − 1.42 × 100 ±

2.26 × 100

fu22 2.014 × 101 ±
1.48 × 10−1

1.787 × 101 ±
2.89 × 10−1

1.951 × 101 ±
7.51 × 10−2

3.899 × 10−1 ±
5.19 × 10−1 + 7.139 × 10−2 ±

4.17 × 10−2

fu23 1.645 × 102 ±
2.36 × 101

4.042 × 101 ±
1.41 × 101

1.247 × 10−13±
1.01 × 10−14

4.657 × 10−2±
2.39 × 10−2 = 7.319 × 10−2 ±

5.17 × 10−3

fu24 8.488 × 104 ±
8.14 × 103

2.941 × 103 ±
1.59 × 103

1.252 × 10−30±
3.09 × 10−31

6.918 × 10−2 ±
2.54 × 10−2 − 8.961 × 10−3 ±

1.46 × 10−2

fu25 −6.349 × 10−3±
3.24 × 10−4

−9.161 × 10−3 ±
6.27 × 10−4

−4.551 × 10−3 ±
3.79 × 10−4

−7.85 × 10−1 ±
1.60 × 10−14 − 0.000 × 100 ±

0.00 × 100

fu26 −2.178 × 101 ±
3.09 × 100

−4.938 × 101 ±
3.54 × 100

−6.556 × 101 ±
3.18 × 100

−2.920 × 101 ±
2.53 × 100 = −3.970 × 101 ±

1.52 × 10−1

fu27 2.524 × 105 ±
2.58 × 104

1.051 × 104 ±
6.31 × 103

3.498 × 10−30±
8.75 × 10−31

2.217 × 10−2 ±
4.04 × 10−3 − 1.033 × 10−2 ±

1.39 × 10−2

fu28 1.166 × 103 ±
7.35 × 101

4.218 × 102 ±
3.72 × 101

7.942 × 102 ±
7.69 × 101

8.776 × 10−3 ±
2.88 × 10−3 = 6.631 × 10−3 ±

1.24 × 10−4

fu29 6.906 × 1010 ±
1.38 × 1010

5.643 × 108 ±
4.98 × 108

3.503 × 102 ±
3.91 × 102

1.220 × 102 ±
2.81 × 101 + 1.286 × 100 ±

2.50 × 100

fu30 1.297 × 1011 ±
2.63 × 1010

7.066 × 1010 ±
1.19 × 1010

9.702 × 109 ±
3.26 × 109

4.928 × 106 ±
6.56 × 105 − 1.109 × 108 ±

3.44 × 108

fu31 2.148 × 104 ±
2.51 × 103

1.842 × 104 ±
1.29 × 103

1.971 × 104 ±
1.28 × 103

1.045 × 104 ±
2.94 × 103 − 4.989 × 104 ±

8.38 × 104

fu32 1.591 × 103 ±
1.27 × 103

1.062 × 10−5 ±
9.78 × 10−6

2.684 × 10−30±
4.75 × 10−31

1.531 × 10−2 ±
3.80 × 10−3 = 1.774 × 10−2 ±

2.89 × 10−2

fu33 1.258 × 102 ±
6.44 × 100

8.948 × 101 ±
6.18 × 100

1.773 × 102 ±
5.91 × 100

7.370 × 101 ±
3.32 × 100 + −9.9 × 101 ±

0.00 × 100

fu34 5.331 × 1010 ±
3.51 × 1010

8.041 × 109±
4.88 × 109

2.476 × 102 ±
2.13 × 103

4.896 × 105 ±
2.21 × 105 + 1.790 × 100 ±

2.67 × 100

fu35 9.384 × 102 ±
1.78 × 102

5.578 × 102 ±
8.53 × 101

1.612 × 103 ±
2.32 × 102

6.701 × 102 ±
6.36 × 101 + 1.046 × 10−2±

1.66 × 10−2

fu36 7.462 × 102 ±
2.32 × 102

2.422 × 102 ±
8.72 × 101

−1.273 × 102±
3.77 × 100

−1.082 × 102 ±
4.21 × 100 − 3.137 × 10−2 ±

6.55 × 10−2

fu37 5.5078 × 102 ±
1.83 × 10−1

5.478 × 102 ±
9.65 × 10−1

5.498 × 102 ±
4.64 × 10−2

5.492 × 102 ±
2.51 × 10−1 + 6.525 × 10−2 ±

4.01 × 10−2

fu38 −1.201 × 103 ±
4.77 × 101

−1.407 × 103 ±
3.24 × 101

−1.267 × 103 ±
5.18 × 101

−1.284 × 103 ±
3.90 × 101 − 0.000 × 100 ±

0.00 × 100

fu39 6.157 × 104 ±
1.54 × 104

4.98 × 10−27 ±
4.22 × 10−27

1.445 × 10−30±
5.58 × 10−31

4.314 × 10−3 ±
1.24 × 10−3 − 8.704 × 10−3 ±

2.16 × 10−4
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Table 3. Cont.

Function rCGA cDE ISPO cPSO W SSPCCSO

fu40 7.518 × 104 ±
1.08 × 104

3.316 × 104 ±
8.12 × 103

5.665 × 102 ±
2.19 × 102

4.375 × 100 ±
9.83 × 10−1 + 1.463 × 10−1

± 2.02 × 10−1

fu41 1.044 × 1010 ±
4.34 × 109

1.098 × 103 ±
1.86 × 103

2.575 × 102 ±
3.11 × 102

8.941 × 101 ±
5.26 × 101 − 1.397 × 100 ±

5.03 × 100

fu42 1.949 × 101 ±
2.59 × 10−1

8.003 × 100 ±
4.31 × 100

1.949 × 101±
1.48 × 10−1

1.277 × 100 ±
3.68 × 10−1 + 7.812 × 10−2

± 3.72 × 10−2

fu43 2.978 × 10−1±
3.723 × 10−1

1.354 × 10−1 ±
2.31 × 10−1

6.857 × 100 ±
1.06 × 101

1.084 × 100 ±
3.16 × 10−1 + 2.039 × 10−2±

3.72 × 10−2

fu44 4.707 × 10−3 ±
7.38 × 10−3

0.001 × 100 ±
0.01 × 100

0.001 × 100 ±
0.01 × 100

0.001 × 100 ±
0.01 × 100 = 0.001 × 100 ±

0.01 × 100

fu45 4.258 × 104 ±
4.15 × 104

2.534 × 104 ±
6.28 × 103

4.066 × 103 ±
9.66 × 102

5.051 × 101 ±
4.28 × 101 + 1.433 × 101 ±

1.92 × 101

fu46 2.368 × 104 ±
3.45 × 103

2.01 × 104 ±
3.04 × 103

3.776 × 104 ±
6.47 × 103

2.320 × 104 ±
3.38 × 103 + 3.577 × 103 ±

8.68 × 103

fu47 2.087 × 106 ±
7.97 × 105

4.588 × 105 ±
1.69 × 105

1.589 × 104 ±
1.74 × 104

1.395 × 106 ±
1.14 × 106 − 3.749 × 106 ±

2.47 × 106

4.3. Comparison between the Corresponding Population-Based Algorithms and SSPCCSO

In addition to the comparison with memory saving algorithms, another group of
comparisons between memory-saving and non-memory-saving algorithms are also used to
test the performance of the algorithms; The comparison between sspccso, CSO, PSO and
de will be arranged in this group of experiments. Table 4 presents the comparison results
of the 47 test functions. SSPCCSO did better in 10 benchmarks, even when only one cat
was employed. This status also happens in comparison between DE [23], cDE [2], PSO [24]
and cPSO [4]. Obviously, Compared with population-based bio-inspired algorithms, the
search ability of a single individual in SPCCSO is limited, and there is no large popula-
tion collective cooperative search. However, the performance of SPCCSO still exceeds
other algorithms.

Table 4. Comparison among SSPCCSO, CSO, PSO and DE.

Benmark DE PSO W CSO W SSPCCSO

fu1 8.269 × 101 ±
1.90 × 101

1.095 × 104 ±
2.30 × 103 − 0.000 × 100±

0.00 × 100 − 6.170 × 10−3 ±
1.05 × 10−3

fu2 3.063 × 104 ±
3.70 × 103

4.232 × 104 ±
1.84 × 103 + 0.000 × 100±

0.00 × 100 − 3.625 × 102 ±
7.02 × 102

fu3 2.715 × 100±
1.11 × 106

1.103 × 109 ±
5.07 × 108 + 2.890 × 101 ±

1.394 × 10−2 − 5.776 × 10−1 ±
7.01 × 100

fu4 4.072 × 101 ±
1.98 × 10−1

1.639 × 101 ±
1.21 × 100 + 0.001 × 100±

0.00 × 100 − 5.574 × 10−1 ±
3.07 × 10−2

fu5 7.195 × 101 ±
9.73 × 100

0.001 × 100±
0.001 × 100 − 0.001 × 100±

0.01 × 100 − 1.613 × 10−2 ±
2.37 × 10−3

fu6 2.151 × 102±
9.08 × 100

2.887 × 102±
3.28 × 101 + 0.001 × 100±

0.00 × 100 − 2.399 × 10−2 ±
4.09 × 10−3

fu7 2.408 × 105 ±
4.96 × 104

1.321 × 105 ±
1.03 × 104 + 2.990 × 102 ±

0.00 × 100 = 2.991 × 102 ±
1.75 × 10−1

fu8 6.328 × 103 ±
2.36 × 102

6.677 × 103 ±
6.44 × 102 − 3.161 × 103 ±

9.76 × 102 − 1.248 × 100±
1.90 × 100

fu9 1.633 × 104 ±
1.13 × 103

1.305 × 104 ±
3.17 × 103 + 1.344 × 104 ±

1.74 × 103 + 1.111 × 105 ±
5.29 × 104

fu10 8.508 × 105±
9.24 × 104

9.716 × 105 ±
1.57 × 105 − 3.222 × 106 ±

1.68 × 105 + 9.390 × 105 ±
1.13 × 104
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Table 4. Cont.

Benmark DE PSO W CSO W SSPCCSO

fu11 4.217 × 100 ±
1.58 × 10−1

1.707 × 101± 1.73
× 100 + −1.84 × 10−6 ±

0.01 × 100 − 8.328 × 10−2 ±
8.23 × 10−2

fu12 6.536 × 101±
1.02 × 101

1.139 × 101 ±
3.08 × 101 + 9.568 × 10−8±

2.68 × 10−8 = 1.018 × 10−8 ±
2.61 × 109

fu13 2.586 ×
102±1.12 × 101

3.155 × 102±
2.19 × 101 + 2.701 × 102 ±

0.01 × 100 = 2.70 × 102±
1.81 × 10−5

fu14 4.003 × 101 ±
1.09 × 100

3.966 × 101±
1.18 × 100 − 7.049 × 102±

2.22 × 100 = 7.142 × 102 ±
2.37 × 10−1

fu15 7.443 × 10−2 ±
1.89 × 10−5

4.083 × 100 ±
2.23 × 100 + 0.001 × 100±

0.01 × 100 − 9.427 × 10−3 ±
6.15 × 10−3

fu16 −9.942 × 10−8±
1.08 × 10−1

−1.001 × 102±
0.01 × 100 = −1.001 × 102±

8.46 × 10−5 = −1.000 × 102±
0.00 × 100

fu17 9.424 × 10−8±
5.16 × 10−8

1.046 × 101 ±
5.08 × 100 − 1.631 × 100 ±

5.84 × 10−1 − 9.518 × 10−5 ±
1.57 × 10−6

fu18 −1.151 × 100±
3.37 × 10−7

3.502 × 103 ±
9.85 × 103 + 5454 × 10−1 ±

3.27 × 10−1 + −4.104 × 10−1 ±
8.97 × 10−4

fu19 4.701 × 102 ±
1.44 × 101

6.107 × 102 ±
3.43 × 101 + 4.501 × 102±

0.01 × 100 = 4.500 × 102 ±
2.60 × 10−3

fu20 −1.278 × 101 ±
4.28 × 10−1

−1.936 × 101 ±
1.72 × × 100 + −1.103 × 101 ±

1.08 × 100 + −1.988 × 101 ±
2.33 × 10−1

fu21 1.268 × 104 ±
3.62 × 102

9.691 × 103 ±
1.14 × 103 − 4.785 × 103 ±

1.48 × 102 − 1.42 × 100 ±
2.26 × 100

fu22 1.828 × 101 ±
4.24 × 101

2.004 × 101 ±
3.75 × 10−1 + 0.001 × 100±

0.01 × 100 − 7.139 × 10−2 ±
4.17 × 10−2

fu23 1.611 × 102 ±
6.39 × 100

1.815 × 101 ±
1.01 × 101 + 4.658 × 10−2±

2.38 × 10−2 − 7.319 × 10−2 ±
5.17 × 10−3

fu24 2.386 × 104 ±
3.48 × 103

6.501 × 104 ±
9.68 × 103 + 0.001 × 100±

0.01 × 100 − 8.961 × 10−3 ±
1.46 × 10−2

fu25 −1.119 × 10−2±
1.29 × 10−3

−7.493 × 10−3 ±
1.06 × 10−3 − 0.001 × 100 ±

0.01 × 100 = 0.000 × 100 ±
0.00 × 100

fu26 −1.589 × 101 ±
5.26 × 10−1

−2.677 × 101 ±
2.01 × 100 − −1.978 × 101 ±

1.43 × 100 = −3.970 × 101 ±
1.52 × 10−1

fu27 8.899 × 104 ±
8.79 × 103

1.925 × 104 ±
1.93 × 104 + 0.001 × 100±

0.01 × 100 − 1.033 × 10−2 ±
1.39 × 10−2

fu28 1.177 × 103 ±
2.54 × 101

1.279 × 103± 4.45
× 101 + 0.001 × 100±

0.01 × 100 − 6.631 × 10−3 ±
1.24 × 10−4

fu29 2.636 × 1010 ±
5.09 × 109

3.854 × 1010 ±
1.42 × 1010 + 9.899 × 101±

1.85 × 100 − 1.286 × 100 ±
2.50 × 100

fu30 1.477 × 1011 ±
1.27 × 1010

1.017 × 1011 ±
1.96 × 1010 + 0.001 × 100±

8.36 × 100 − 1.109 × 108 ±
3.44 × 108

fu31 3.026 × 104 ±
4.79 × 102

2.368 × 104 ±
1.89 × 103 − 1.046 × 104±

2.95 × 103 − 4.989 × 104 ±
8.38 × 104

fu32 2.094 × 105 ±
1.64 × 104

1.138 × 104 ±
1.68 × 103 + 1.532 × 10−2±

3.81 × 10−3 − 1.774 × 10−2 ±
2.89 × 10−2

fu33 1.186 × 102 ±
2.84 × 100

1.407 × 102 ±
1.28 × 101 + 7.371 × 103 ±

3.33 × 100 + −9.9 × 101 ±
0.00 × 100

fu34 8.197 × 1010 ±
1.12 × 1010

7.765 × 1010 ±
2.17 × 1010 + 9.898 × 102 ±

2.25 × 10−2 + 1.790 × 100 ±
2.67 × 100

fu35 1.398 × 103 ±
4.25 × 101

1.055 × 103 ±
1.48 × 102 + 0.001 × 100±

0.01 × 100 − 1.046 × 10−2 ±
1.66 × 10−2

fu36 1.567 × 103 ±
1.34 × 102

1.242 × 103 ±
2.45 × 102 + 1.083 × 102 ±

4.22 × 100 + 3.137 × 10−2 ±
6.55 × 10−2

fu37 5.507 × 102 ±
1.25 × 10−1

5.508 × 102 ±
1.71 × 10−1 + 5.493 × 102± 2.51

× 10−1 + 6.525 × 10−2 ±
4.01 × 10−2
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Table 4. Cont.

Benmark DE PSO W CSO W SSPCCSO

fu38 −1.056 × 103 ±
1.09 × 101

−1.283 × 103 ±
2.18 × 102 −

−1.285 ×
103± 3.91 ×

101
− 0.000 × 100 ±

0.00 × 100

fu39 8.338 × 103 ±
1.12 × 103

1.201 × 103 ±
2.18 × 102 + 0.001 × 100±

0.01 × 100 − 8.704 × 10−3 ±
2.16 × 10−4

fu40 8.969 × 104 ±
7.75 × 103

1.701 × 104 ±
3.08 × 103 + 0.001 × 100±

0.01 × 100 − 1.463 × 10−1 ±
2.02 × 10−1

fu41 2.142 × 109 ±
5.71 × 108

1.784 × 107 ±
5.52 × 106 + 4.898 × 101 ±

1.38 × 10−2 − 1.397 × 100±
5.03 × 100

fu42 1.364 × 101 ±
4.46 × 10−1

6.878 × 100 ±
4.73 × 10−1 + 0.001 × 100±

0.01 × 100 − 7.812 × 10−2 ±
3.72 × 10−2

fu43 3.711 × 10−2 ±
3.27 × 101

2.555 × 10−2 ±
4.98 × 101 − 0.001 × 100±

0.01 × 100 − 2.039 × 10−2 ±
3.72 × 10−2

fu44 4.684 × 102 ±
1.35 × 101

0.001 × 100±
0.01 × 100 = 0.001 × 100±

0.01 × 100 = 0.001 × 100 ±
0.01 × 100

fu45 2.539 × 106 ±
2.09 × 105

1.134 × 106 ±
2.17 × 103 + 0.001 × 100±

0.01 × 100 − 1.433 × 101 ±
1.92 × 101

fu46 3.152 × 104 ±
1.18 × 103

1.888 × 104 ±
2.17 × 103 + 0.0010 × 100±

0.01 × 100 − 3.577 × 103 ±
8.68 × 103

fu47 4.675 × 106 ±
2.19 × 105

2.183 × 106±
4.01 × 105 − 1.694 × 107 ±

4.31 × 106 + 3.749 × 106 ±
2.47 × 106

4.4. Comparison against Swarm-Based Version Algorithms Based on Iterations and Solution

Another indicator of the algorithm’s performance is the convergence rate; after several
iterations, different algorithms will converge to different results. A comparison of the
convergence results based on the same test function and the same number of iterations is
shown in Table 5. Test function 1 [22] is selected.

Table 5. The convergence results on test function 1 based on the same iterations.

Iterations PSO CSO cPSO SSPCCSO

I 100 8202.6317 0.000000 55.695 5.809

I 200 3754.9483 0.000000 19.852 4.277

I 1000 1417.4688 0.000000 0.61648 0.03692

I 2000 1414.2868 0.000000 0.36894 0.000032

Table 5 shows that the SSPCCSO exceeds the other compared algorithms with a faster
convergence rate, except for CSO. It ensures gradual convergence in the early iterations.
Table 6 shows that the SSPCCSO is also much better than the PSO and CPSO in terms of
the convergence results

Table 6. The convergence results on test function 4 based on the same iterations.

Iterations PSO CSO cPSO SSPCCSO

I 100 14.38578 8.88 × 10−16 6.3458 10.602

I 200 12.03479 8.88 × 10−16 4.6725 4.942

I 500 10.31688 8.88 × 10−16 3.3370 3.824

I 1000 9.05237 8.88 × 10−16 2.3393 1.427

Due to space constraints, no more comparison results are displayed. This situation
also could be obtained with other test functions results.
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Because of too many local cycles in the seeking mode, there is not any advantage
shown in the computing costs. However, the gradient descent method introduced can make
up for this shortcoming. It can end unnecessary calculations in advance, so the algorithm
achieves a better performance in less running time.

5. Conclusions

A novel compact cat swarm optimization scheme based on gradient descent is pro-
posed in this study. It kept the search logic of CSO, but introduced a gradient descent
method into the scheme to seek for the optimal solution. According to the experimental
results, this scheme could greatly reduce the computing costs. It also outperformed all
of the relative compact optimization algorithms in most of the test benchmark functions.
More significantly, its design is based on gamma probability distribution for solving small
size sampling problems, so it probably suggests a new solution for optimization problems
with small sampling.
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Appendix A

(1) Test function 1:

f1(y) =
D

∑
i=1

z2
i zi = y− o; D = [−100, 100]30

(2) Test function 2:

f2(y) =
D

∑
i=1

(
i

∑
j=1

xj)
2zi = x− o; D = [−100, 100]30

(3) Test function 3:

f3(x) =
n−1

∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2], D = [−100, 100]30

(4) Test function 4:

f4(x) = −20e
−0.2

√
1
n

n
∑

i=1
zi
− e

1
n

n
∑

i=1
cos(2∗pi∗zi)

+ 20 + e, zi = x− o; D = [−32, 32]30

(5) Test function 5:

f5(x) =
n

∑
i=1

z2
i

4000
−

n

∏
i=1

cos(
zi√

i
) + 1, zi = x− o; D = [−600, 600]30,
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(6) Test function 6:

f6(x) = 10n +
n

∑
i=1

[z2
i − 10 cos(2πzi)], zi = x− o, o = [o1, o2, o3, . . . on], D = [−5, 5]30

(7) Test function 7:

f7(x) =
M
∑

i=1
[y2

i − 10 cos(2πyi)] + 10n

yi =

{
zi i f |zi|< 1/2
round(2zi)/2 i f |zi|> 1/2

zi = x− o; D = [−500, 500]30

(8) Test function 8:

f8(x) = 418.9829n +
n

∑
i=1

(−xi sin |xi|), D = [−500, 500]30

(9) Test function 9:

f9(x) = maxi(|Aixi − Bi|), Bi = Ai × oi,D = [−100, 100]30

(10) Test function 10:

f10(x) =
n

∑
i=1

(Aixi − Bi(x))2

(11) Test function 11:

f11(x) = −20e
−0.2

√
1
n

n
∑

i=1
zi
− e

1
n

n
∑

i=1
cos(2∗pi∗zi)

+ 20 + e, zi = M(x− o), Cond(M) = 1 , D = [−32, 32]30

(12) Test function 12:
f12(x) =

n
∑

i=1

z2
i

4000 −
n
∏
i=1

cos( zi√
i
) + 1

zi = M(x− o), Cond(M) = 3, o = [o1, o2, o3, . . . on], D = [−600, 600]30

(13) Test function 13:

f13(x) = 10n +
M
∑

i=1
[z2

i − 10 cos(2πzi)]

zi = M(x− o), Cond(M) = 3, o = [o1, o2, o3, . . . on], D = [−5, 5]30

(14) Test function 14:

o = [o1, o2, o3, . . . on]

f14(x) =
n
∑

i=1

kmax
∑

k=0
(ak cos(2πbk(zi + 0.5)))− n

kmax
∑

k=0
ak cos(2πbk) ∗ 0.5

a = 0.5, b = 0.3, kmax = 20, z = M(x− o), M = 5, D = [−0.5, 0.5]30

(15) Test function 15:

f15(x) =
n

∑
i=1
|xi| −

n

∏
i=1
|xi|, D = [−10, 10]10

(16) Test function 16:

f16(x) =
n

max
i=1
|xi|, D = [−100, 100]10

(17) Test function 17:
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f17(x) = π
n {10 ∗ sin2 πy1 +

n
∑

i=1
((yi − 1)2(1 + 10 sin2 πyi)) + (yn − 1)2}+

n
∑

i=1
u(xi, 10, 100, 4)

where yi = 1 + 1
4 (xi + 1), and u(x, a, k, m) =


k(xi − a)m i f xi > a

0 f |xi| ≤ a
k(−xi − a)m i f xi < −a

D = [−50, 50]10

(18) Test function 18:

f18(x) =
1
10

{
sin2 3πx1 +

n−1

∑
i=1

((xi − 1)2(1 + sin2 3πxi+1))

}
+

1
10

{
(xn − 1)(1 + sin 2πxn)

2
}
+

n

∑
i=1

u(xi, 5, 100, 4)

where D = [−50, 50]10

(19) Test function 19:

f19(x) = 10n +
n

∑
i=1

[z2
i − 10 cos(2πzi)], zi = x− o; D = [−5, 5]50

(20) Test function 20:

f20(x) = −
n

∑
i=1

sin(xi)[sin(
ix2

i
π

)]

2m

, m = 10, D = [0, π]50

(21) Test function 21:

f21(x) = 418.9829n +
n

∑
i=1

(−xi sin(
√
|xi|)), D = [−500, 500]30

(22) Test function 22:

f22(x) = −20e
−0.2

√
1
n

n
∑

i=1
zi
− e

1
n

n
∑

i=1
cos(2∗pi∗zi)

+ 20 + e, zi = x− o; D = [−32, 32]100

(23) Test function 23:

f23(x) =
n

∏
i=1

sin(xi)

√
n

∏
i=1

(xi), D = [−10, 10]100

(24) Test function 24:

f24(x) =
n

∑
i=1

(i · x2
i ), D = [−10, 10]100

(25) Test function 25:

f25(x) = −
1 + cos(12

√
n
∑

i=1
x2

i )

1
2

n
∑

i=1
x2

i + 2
, D = [−5.12, 5.12]100
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(26) Test function 26:

f26(x) = −
n

∑
i=1

sin(xi)[sin(
ix2

i
π

)]

2m

, m = 10, D = [0, π]100

(27) Test function 27:

f27(x) =
n

∑
i=1

5i · x2
i , D = [−5.12, 5.12]100

(28) Test function 28:

f28(x) = 10n +
n

∑
i=1

[z2
i − 10 cos(2πzi)], zi = x− o; D = [−5.12, 5.12]100

(29) Test function 29:

f29(x) =
n−1

∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2], D = [−100, 100]100

(30) Test function 30:

f30(x) =
n

∑
i=1

i

∑
j=1

x2
j , D = [−65536, 65536]100

(31) Test function 31:

f31(x) = 418.9829n +
n

∑
i=1
−xi sin(

√
|xi|), D = [−500, 500]100

(32) Test function 32:

f32(x) =
D

∑
i=1

z2
i , zi = x− o; D = [−5, 5]100

(33) Test function 33:

f33(x) = max
i
|zi|, zi = x− o; D = [−100, 100]100

(34) Test function 34:

f34(x) =
n−1

∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2], D = [−100, 100]100

(35) Test function 35:

f35(x) = 10n +
n

∑
i=1

[z2
i − 10 cos(2πzi)], zi = x− o, o = [o1, o2, o3, . . . on], D = [−5, 5]30

(36) Test function 36:

f36(x) =
1

4000

n

∑
i=1

z2
i −

n

∏
i=1

cos(
zi√

i
) + 1, zi = x− o, o = [o1, o2, o3, . . . on], D = [−600, 600]100

(37) Test function 37:
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f37(x) = −20e
−0.2

√
1
n

n
∑

i=1
zi
− e

1
n

n
∑

i=1
cos(2∗pi∗zi)

+ 20 + e, zi = x− o, o = [o1, o2, o3, . . . on], D = [−5, 5]100

(38) Test function 38:

f38(x) =
n
∑

i=1
f ractal1D(xi + twist(x(imodn)+1)

twist(x) = 4(x4 − 2x3 + x2)

f ractal1D(x) ≈
3
∑

k=1

2k−1

∑
1

ran2(0)
∑
1

doubledip(x, ran1(0), 1
2k−1(2−ran1(0))

)

doubledip(x, c, s) =
{

(−6144(x− c)6 − 3088(x− c)4 − 392(x− c)2 + 1)s 0.5 < x < 0.5
0 otherwise

D = [−1, 1]100

(39) Test function 39:

f39(x) =
D

∑
i=1

z2
i , zi = x− o, o = [o1, o2, o3, . . . on], D = [−100, 100]50

(40) Test function 40:

f40(x) =
n

∑
i=1

(
i

∑
j

zi)
2, zi = x− o, o = [o1, o2, o3, . . . on], D = [−100, 100]50

(41) Test function 41:

f41(x) =
n−1

∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2], D = [−100, 100]50

(42) Test function 42:

f42(x) = −20e
−0.2

√
1
n

n
∑

i=1
zi
− e

1
n

n
∑

i=1
cos(2∗pi∗zi)

+ 20 + e, zi = x− o, o = [o1, o2, o3, . . . on], D = [−32, 32]50

(43) Test function 43:

f43(x) =
n

∑
i=1

z2
i

4000
−

n

∏
i=1

cos(
zi√

i
) + 1, zi = x− o, o = [o1, o2, o3, . . . on], D = [−600, 600]50

(44) Test function 44:

f44(x) = 10n +
n
∑

i=1
[z2

i − 10 cos(2πzi)]

zi = x− o, o = [o1, o2, o3, . . . on], D = [−5, 5]50

(45) Test function 45:

f45(x) =
M
∑

i=1
[y2

i − 10 cos(2πyi)] + 10n

yi =

{
zi i f |zi| < 1/2
round(2zi)/2 i f |zi| > 1/2

zi = x− o, o = [o1, o2, o3, . . . on], D = [−500, 500]50
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(46) Test function 46:

f46(x) =
n

∑
i=1

(
i

∑
j=1

xj)
2, D = [−100, 100]50

(47) Test function 47:

f47(x) =
n

∑
i=1

(Aixi − Bi(x))2, D = [−π, π]50
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