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Featured Application: The methodology described in this article is applicable to production
planning optimization problems with multiple products that can be processed in any of several
production lines, including storage and limited shelf life constraints.

Abstract: This article introduces a Mixed-Integer Linear Programming model for cost optimization
in multi-product multi-line production scheduling. This model considers discrete time windows
and includes realistic constraints. The NP completeness of the problem is proven. A novel scheme
based on embedding bounds is applied to speed up convergence. The model is tested on 16 input
configurations of a real case study from the top Uruguayan grain production facility. The numerical
results show that the model significantly improves the outcome of the current ad hoc heuristic
planning, reducing on average 10% the overall production costs; and that the introduction of the
embedded bounds-based scheme reduces significantly the elapsed time, on average by 22%.

Keywords: grain facility optimization; multi-product multi-line scheduling; Mixed-Integer Linear
Programming; theoretical bounds analysis

1. Introduction

The fourth industrial revolution, including the digital transformation of production
and business models, is characterized by the concept of Industry 4.0 [1]. Industry 4.0 inte-
grates innovative approaches and new digital technologies, to take advantage of robotics,
automation, data analytics, and computational intelligence to assist in better decision mak-
ing and create added value. The main goal is to anticipate the demands of the market and
customers, providing levels of efficiency and responsiveness that were not achievable in the
traditional industrial model. In turn, the digital revolution also offers many opportunities
for applying sustainable production and sustainable development approaches [2].

National and regional companies are required to adapt their production systems
to consider the technological shift, for example in the agri-food sector [3]. Agricultural
and food companies are encouraged to introduce smart technologies in manufacturing
and production processes, promoting the shift from product-oriented business models to
service-oriented business models [4,5].

Artificial intelligence and optimization models are of paramount importance in the era
of Industry 4.0. Although most media attention is devoted to conceive and develop new
business models, there is still a large space for optimizing production operations, within the
currently applied models. Specifically, in agriculture and related industries, information
technologies are increasingly applied in problems such as production forecast, scheduling,
planning, and distribution [6–8].
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Following this line of research, this article introduces a Mixed-Integer Linear Pro-
gramming (MILP) optimization model based on discrete time windows for a capacitated
multi-product multi-line production scheduling problem. It allows modeling several con-
straints that are typical in the context of grain production, including limited storage space
and shelf life of products. The model is extended by proposing a bounds-based scheme
intended to accelerate convergence to the optimal solution.

The model was tested with real data, taken from the top Uruguayan grain producer
and exporter company and its soybean harvest in 2020. The goal was to plan the production
of 17 products along 16 weeks, using two production lines. Storage, line cleaning times
and limited shelf life constraints are part of this real instance. Significant cost reductions
are achieved when compared to the ad hoc planning so far applied by the company. The
tests also show that significant time reductions are achieved by applying the embedded
bounds-based scheme proposed in this article.

This article contributes toward a relevant research topic by proposing a MILP model
for a relevant grain production problem. The problem is analyzed both theoretically
and empirically, and the presented case study is one of the first reported research of
applying ad hoc systematic optimization models for a real grain production company in
Uruguay. The article extends our previous conference publication ‘A case study of smart
industry in Uruguay: grain production facility optimization’ [9] presented at IV Ibero-
American Congress on Smart Cities, Cancún, México, December 2021. New content and
contributions in this article include: (i) an expanded review of the related literature about
optimization and the application of MILP models for grain production problems; (ii) the
NP-completeness of the problem is demonstrated; (iii) a novel bounds-based scheme for
speeding up convergence is introduced; and (iv) the real test case is run with 16 input sets
where the original variables are altered to illustrate the performance of the algorithm under
different scenarios.

The article is organized as follows. Section 2 reviews relevant related works. Section 3
describes the addressed grain facility optimization problem and the proposed MILP for-
mulation. Section 4 presents a study of the computational complexity of the optimization
problem and computes useful lower bounds. A case study for a real grain production
company in Uruguay is described in Section 5. The experimental evaluation of the pro-
posed model and bounds is reported in Section 6. The computed results are validated by a
comparison with a heuristic ad hoc planning method, applied by the company before the
model was conceived. Finally, Section 8 presents the main conclusions of the research and
formulates the main lines for future research opportunities.

2. Related Work

Several articles in the literature have proposed linear programming (LP) or MILP
models for solving different optimization problems related to grain production, logistics,
and/or chain supply problems.

Early works in the area applied linear and mixed-integer programming models for
problems related to harvesting methods and machinery selection. Al-Soboh et al. [10]
applied MILP for mixed cropping systems, computing an optimal spacing for planting
navy beans. Ait Si Larbi et al. [11] proposed a mathematical model for multi-stage opti-
mization in agri-food supply chain. A real case study in Algeria was solved. The proposed
model significantly outperformed a planning heuristic. A subsequent article by the same
authors [12] applied the Agent Unified Modeling Language (AUML) protocol specification
to build an effective system for production and transportation. The proposed model was
effective to compute accurate values of the optimized functions.

Mendéz et al. [13] introduced a very important survey (until that date) contained
a review of optimization methods for short-term scheduling of batch processes. The
authors introduced general optimization constraints that in particular can be perfectly
instantiated, for example, for the efficient and effective production of a soybean production
plant, among other grains. Allowing the minimization of waiting times, optimizing the
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use of machines online, the hours of the operators, and other parameters that have a
strong impact on the productivity of the plant. In addition, they provide a list of available
academic and commercial software, and tackle the issue of rescheduling capabilities of
the various optimization approaches, and include extensions that go beyond short-term
batch scheduling. Bilgen and Ozkarahan [14] proposed a multi-period MILP model for
minimizing costs of blending and shipping on the wheat supply chain. A real-life case
study demonstrated the approach as effective. An hybrid deterministic/non-deterministic
model was proposed by Granillo et al. [15] for minimizing the building cost of a distribution
network farm. Results reported for the supply chain of barley in Mexico showed that the
model computed accurate solutions.

The analysis and optimization of production lines of a processing plant has an su-
perlative economic value as well as a strategic impact for the industrial market, allowing
an increase in quality and quantity of production in less time, producing more with less
cost. Based on this premise, Belletini et al. [16] used the Method of Problem Analysis and
Solving (MAPS), an efficient set of statistical tools that provides a methodology and an
improvement in process quality, with the goal of optimizing the production line in a wheat
mill, transforming unproductive into productive hours. Using data collection at stops,
at random times, there was an average operations/day value of 60.5% and a best result
of 83%, taken as an objective to be accomplished. The authors found that the problem
of excessive stops focused on four major causes, representing 87% of all cases. Through
the combination of different mathematical strategies as well as knowledge of industrial
practice, it was possible to efficiently attack and solve these four problematic cases of stops.
As a global result, they found that increasing the number of productive hours in 22.5%,
monthly income grew to superlative levels when compared to the corresponding cost of
investing in more hours of feasible dedication of the workers.

Sanches et al. [17] applied a multi-period MIP model for the optimization of production
scheduling of fruit beverages. A case study in Brazil was used for validation of the proposed
approach. Results demonstrated the applicability of the proposed approach under realistic
assumptions. Li et al. [18] studied MILP formulations for the Wheat Blending Problem
and proposed an hybrid Evolutionary Algorithm (EA) including an exact subordinate LP
operator to solve a linear-relaxation of the problem. The method was evaluated on synthetic
instances, outperforming previous results. Aguirre et al. [19] introduced multiple and
efficient MILP-based models for the planning and scheduling of multiproduct multistage
continuous plants with sequence-dependent changeovers in a supply chain network under
demand uncertainty and price elasticity of demand. The authors considered multiple key
parameters and phases associated with the complete production chain of the products for
the different optimization approaches studied. The global problem allows multiple plants,
multiple manufactured products, multiple collection and distribution centers from which
the final products are distributed to the final points of sale. A hybrid discrete/continuous
model was proposed for the global problem and the Hierarchical Model Predictive Control
(HMPC) method was applied to solve scenarios with uncertainty. The effectiveness of the
optimization method was evaluated by comparing the obtained results on a large-scale
instance with the solution delivered by a classic Cutting Plane algorithm.

Hosseini et al. [20] proposed a two-stage mixed-stochastic approach to deal with
uncertainty in costs, demand, and supply in the wheat supply chain network. The first
stage considered the selection of sites for locating silos and waste collection centers. The
second stage optimized the wheat flow in the supply the network, considering uncertainty
on the demand. A real case study in Iran was solved, where the proposed model was able
to outperform a deterministic model. Chakraborty et al. [21] proposed a MILP formulation
to optimize cost in a real-life food transportation problem in India. A heuristic method
was applied for resolution, since authors claimed that commercial optimization software
failed to compute exact solutions for large problem instances in a practical time limit. The
viability of the proposed model was evaluated by solving a case study involving nine
sites and eight relevant costs. For this reduced problem instance, the gap of the proposed
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heuristic over results computed using CPLEX were between 1.57% and 11.71%. No further
comparisons with other resolution methods or real results was presented. León et al. [22]
proposed a MILP formulation for minimizing the total cost of the bioethanol supply chain.
Accurate results were computed to satisfy the demand in a case study considering corn
and barley residues in México. The proposed MILP approach was robust and applicable to
other similar problems. Osaki et al. [23] introduce important theoretical contributions and
suitable models with the aim of understanding the double-crop production systems that
make Brazil one of the world’s leading and most competitive grain-producing countries.
The authors propose a decision support model focused on optimal agricultural planning
that pointed to multiproduct farms under risk conditions and applies this theoretical
model of farm planning that uses operations research and optimization to comprehend
the different productive resource allocations in farms engaged in grain production. The
designed and developed model was used in the region of Sorriso, Brazil, resulting in better
financial results with lower risks for grain producers in that region. As an example, the
efficient frontier curves computed in the financial analysis showed that the representative
farms in this region maximized their production factors. This produced a result of very
high value for investors.

Griffini et al. [24] analyzed and estimated the whole-farm costs of conducting on-farm
trials using a modification of the classic down-time model in an LP framework, compared to
previously estimated potential benefits. From the comparison, the authors highlighted that
after accounting for the whole farm costs there are still benefits to on-farm trials. Moreover,
when on-farm trials cause planting and harvesting field operations to be conducted outside
the optimal time, crop yields may be adversely affected. On the other hand, they affirmed
that farm decision makers should take into account certain research questions that do not
necessitate adversely impacting these windows until experience has been gained. In all
cases, the comparative models used were based on LP to determine optimal solutions to
maximize contribution margins on each considered scenario.

Gameiro et al. [25] introduced an LP mathematical model for assistance in the planning
and management of agricultural production, as well as to assist in estimating potential
gains from the use of integrated systems. They stand out as a strategic point, introducing
diversification in production as a necessary condition for economic viability. The numerical
results obtained support this point. A total cost reduction potential of about 30% was found
when comparing the scenario with lower levels of diversification was contrasted with one
of higher levels. In addition to financial gains, the authors note that the integrated systems
bring benefits to the environment, more precisely with respect to to the reuse of resources.
As example, the model can reuse nitrogen, phosphorus, and potassium present in animal
waste. Another important conclusion is that the diversification model has a clear impact on
the reduction of transaction costs.

Motivated by the little recent research on optimizing seed supply chains (particularly
soybeans) in Canada, Shekarian [26] introduced a novel MILP formulation for a soybean
supply chain network. The objective function considered was to maximize the profit.
The model takes into account constraints involving multiple products, growers, potential
farm company facilities, potential locations of distributers, and customers. In addition,
the author extends the model by adding uncertainty to certain parameters. In order to
measure the effectiveness and efficiency of the optimization model, it was applied on a
soybean supply chain network in Ontario where there are several soybean companies and
growers in this region. The output of the optimization model is displayed by means of
maps, highlighting different characteristics of importance for soybean plantations (e.g.,
showing the optimal soybean supply chain network for certain products).

Susilawati et al. [27] analyzed land use in Sumbawa District (Indonesia) to produce
corn and its effect in the cutting trees as well as on environment. Production and govern-
ment objectives for corn production increase annually and have an indirectly impact on
clearing new land as corn planting land. Using the Simplex linear optimization method,
authors focused on a cutting tree optimization model to enhance the productivity of corn
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and optimize the benefits of corn farmers and investors. Using the proposed method,
maximum production of corn in 2019 increased to 701,984 tons of corn, the paddy field area
to 44,198.5 hectares and 55,292.5 hectares of land not paddy fields.

Fang et al. [28] considered that the grain processing industry often excessively pur-
sues the objective of fine processing, resulting in increasing raw material cost and low
machining efficiency, etc. The authors provided an interesting methodology, applicable to
food and grain production based on a food/grain optimized processing anda data analysis
system which can outperform various previously designed data analysis. The designed
methodology has the following functions: grain processing database is able to store and call
consumer market surveys and data of grain processing enterprises, visualizing the national
diet and grain processing process. Data analysis incorporates within its functionalities
tasks, such as statistical analysis of data sets extracted according to required indicators,
diagnostic optimization based on Data Envelopment analysis, prediction analysis based on
curve fitting, classification analysis based on clustering algorithm, etc. The implementation
in industry of the designed system was shown to outperform other previous approaches.

Taşkıner et al. [29] presented a complete review of optimization models focused on
harvest and production planning for food crops. Optimization models have been used
extensively to provide decision makers with insights on issues related to harvest and
production planning in agri-food supply chains. Taşkıner et al. studied in depth several
neglected topics and provided promising research directions to stimulate research interest
on agri-food supply chains, specifically the planning of harvest and production and other
tasks intrinsically related, such as optimization of the production chain, minimization
of downtime in the plant, maximizing the efficiency of operations within the processing
plant, suitable use of available machinery, etc. Several other articles related to food supply
chain and logistics have applied LP or MILP models for optimization. Soysal et al. [30]
proposed a MILP model for the beef industry, extended to minimize cost and greenhouse
gas emissions in transportation. Mishra et al. [31] applied a nonlinear programming model
to minimize refrigeration cost in the storage process of leafy greens.

This article contributes towards this line of research, by modeling and studying, both
theoretically and empirically, a relevant grain production problem. In turn, the case study
presented in this article is one of the first reported studies applying ad hoc systematic
optimization models for a real grain production company in Uruguay.

3. The Grain Facility Optimization Problem

The problem concerns a real-life grain processing facility, which must treat seeds
using different types of resources, including workers, machinery, storage silos with a
given capacity, etc. The main goal for the company that operates the facility is to meet
pre-planned delivery demands for each harvest. In the grain facility, several varieties of
seeds are processed and delivered. A specific feature of the problem is that some products,
i.e., inoculated products, have a limited shelf life: they expire a certain number of days after
being processed. This issue imposes a restriction concerning the production dates and the
withdrawal dates. Once the products are processed, they are stored in silos, waiting for
clients to withdraw their orders. Orders are based on a planned list of withdrawals that
were previously communicated to the company in the planning phase.

The sales department establishes a calendar of product withdrawals and the planned
production must respect several constraints. One the one hand, there must be enough stock
of each product available at the time of each withdrawal. On the other hand, the processes
required by the seeds are performed by employing a limited number of production lines.
The total throughput (tons/h) is also limited, which imposes a limit on the restocking rate.
In addition, the total storage capacity is limited, which makes it mandatory to alternate
batch production and withdrawals. Some products have a limited shelf life, which imposes
a limit on the time window between their production and withdrawal.

The production lines must be supervised by operators while they are operational.
Machines generally produce at full capacity and operator shifts are established and assigned
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to each line. The number of shifts is set for each week and it does not change within the
same week. Every time a line finishes the production of a certain product, it must be
stopped and cleaned before continuing with the processing of a different product. If the
line stops after a certain demand has been satisfied and then returns to producing the same
product, cleaning is not necessary. The production process covers several weeks per year.
A set of demanded products must be produced and withdrawn each week, according to
the specific constraints determined by the throughput, stocking/restocking availability,
storage capacity, production lines, shelf life and worker shifts.

Taking into account the presented realistic production situation, the model is defined to
minimize production costs. Among other relevant factors, the cost function must consider
the number of production hours, the number of operator shifts, and the number of cleanings
performed on each machine. Furthermore, in order to be applicable in a real commercial
environment, the problem model must guarantee that the production is sufficient for the
withdrawals to be fulfilled, that the expiration periods of those products that expire are
respected, and that the production that is not delivered immediately does not exceed the
available storage capacities. Since inoculated products must be delivered in a limited period
of time, it is important to keep track of their processing dates. The proposed problem model
defines specific variables to distinguish batches of such products belonging to different
dates, as described in the next subsection.

The mathematical formulation of the studied grain facility optimization problem
considers the following elements:

• Sets:

1. Set VI denotes products that expire.

2. Set VT denotes products that do not expire.

3. Set V denotes all products, i.e., V = VI ∪VT .

4. Set L denotes the available production lines.

• Parameters:

1. Parameter S f denotes the number of weeks considered for production scheduling
(the scheduling horizon).

2. Parameter M denotes the maximum number of withdrawals for each product.

3. Parameter C denotes the total storage capacity of the company (measured in
tons).

4. Parameter τ denotes the shelf life of products that expire (measured in weeks).

5. Parameter N denotes the maximum number of shifts per week.

6. Parameter H f denotes the number of productive hours in a shift.

7. Parameter πl denotes the productivity of the production line l ∈ L (measured in
tons/h).

8. Parameter Ll denotes the cleaning time of line l ∈ L (measured in hours).

9. Parameter Bv denotes the number of batches of product v; in case v ∈ VI , if
v ∈ VT then Bv=1.

10. Parameter Sr
v denotes the week in which the r-th withdrawal of product v ∈ V is

located.

11. Parameter δr
v denotes the demand in the r-th withdrawal of product v ∈ V, for

r = 1 · · ·M.

12. Parameter ds
v denotes the demand to withdraw in week s for product v ∈ V.

13. Parameter Ds denotes the working days for each week s. Two cases are consid-
ered: a five day working week (from Monday to Friday) and a five and a half
working week (from Monday to Saturday noon).



Appl. Sci. 2022, 12, 8212 7 of 26

14. Parameters P, Q, and R are weights for each of the three components considered
in the cost function to optimize; they are defined as unit conversion coefficients
that allow expressing the overall cost in a single unit.

• Decision variables:

1. Variable xs,r
v,l ∈ R

+ denotes the quantity of product v ∈ V produced in the line
l ∈ L in the week s for the r-th withdrawal (integer variable, measured in tons).

2. Variable ts
l ∈ Z

+, the number of shifts to consider in line l ∈ L in week s (integer
variable).

3. Variable ys
v,l denotes the production of a given product on a line (binary variable),

defined by

ys
v,l =

 1 if and only if line l is producing any quantity of product v ∈ V in
week s

,

0 otherwise.

4. Variable ps
v,l denotes if a product is the first to be produced in a line (binary

variable), defined by

ps
v,l =

 1 if and only if product v ∈ V is the first product to be produced in
week s in l ∈ L,

0 otherwise.

5. Variable us
v,l denotes if a product is the last to be produced in a line (binary

variable), defined by

us
v,l =

 1 if and only if product v ∈ V is the last product to be produced in
week s in l ∈ L,

0 otherwise.

6. Variable ws
v,l denotes if a product ends a week and starts the next week in the

same line (binary variable), defined by

ws
v,l =

 1 if product v ∈ V ends the week s and starts the week s + 1 in line
l ∈ L,

0 otherwise.

7. Variable cs
l denotes if a cleaning is avoided in a line (binary variable), defined by

cs
l =

{
1 if in the week s, one cleaning of the line l ∈ L is avoided,

0 otherwise.

Considering the previously defined sets, parameters, and variables, the mathematical
formulation of the problem as a Mixed-Integer Linear Programming (MILP) problem is
presented in Equations (1)–(16).
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min P ∑
l∈L

S

∑
s=1

ts
l + Q ∑

l∈L

1
πl

∑
v∈V

Bv

∑
r=1

xs,r
v,l + R ∑

l∈L
Ll(

S

∑
s=1

∑
v∈V

ys
v,l −

S−1

∑
s=1

cs
l ), (1)

subject to
Sr

v

∑
z=Sr

v−τ
∑
l∈L

xz,r
v,l − δr

v ≥ 0, ∀v ∈ VI , r = 1 · · · Bv, (2)

Sr
v

∑
z=1

∑
l∈L

xz,1
v,l −

Sr
v

∑
z=1

dz
v ≥ 0, ∀v ∈ VT , r = 1 · · ·M, (3)

s

∑
z=1

∑
v∈V

∑
l∈L

Bv

∑
r=1

xz,r
v,l −

s

∑
z=1

∑
v∈V

dz
v ≤ C ∀s = 1 · · · S, (4)

ts
l ≤ N ∀l ∈ L, ∀s = 1 · · · S (5)

ds
v.ys

v,l −
Bv

∑
r=1

xs,r
v,l ≥ 0 ∀l ∈ L, ∀vs. ∈ V, ∀s = 1 · · · S, (6)

Bv

∑
r=1

xs,r
v,l − ys

v,l ≥ 0 ∀l ∈ L, ∀vs. ∈ V, ∀s = 1 · · · S, (7)

ys
v,l − ps

v,l ≥ 0 ∀l ∈ L, ∀vs. ∈ V, ∀s = 1 · · · S, (8)

∑
v∈V

ps
v,l ≤ 1 ∀l ∈ L, ∀s = 1 · · · S, (9)

ys
v,l − us

v,l ≥ 0 ∀l ∈ L, ∀vs. ∈ V, ∀s = 1 · · · S, (10)

∑
v∈V

us
v,l ≤ 1 ∀l ∈ L, ∀s = 1 · · · S, (11)

2ws
v,l − us

v,l − ps+1
v,l ≤ 0 ∀l ∈ L, ∀vs. ∈ V, ∀s = 1 · · · S− 1, (12)

cs
l − ∑

v∈V
ws

v,l ≤ 0 ∀l ∈ L, ∀s = 1 · · · S− 1, (13)

|V|ps
v,l + |V|u

s
v,l + ∑

v1∈V,v1 6=v
ys

v1,l ≤ 2|V| ∀l ∈ L, ∀vs. ∈ V, ∀s = 1 · · · S (14)

πl(Ds H f ts
l − Ll ∑

v∈V
ys

v,l − cs
l )− ∑

v∈V

Bv

∑
r=1

xs,r
v,l ≥ 0 ∀l ∈ L, ∀s = 1 · · · S− 1 (15)

πl(DS H f tS
l − Ll ∑

v∈V
yS

v,l)− ∑
v∈V

Bv

∑
r=1

xS,r
v,l ≥ 0 ∀l ∈ L, (16)

The objective function of the problem is expressed in Equation (1). It proposes minimiz-
ing the generalized cost of production for the considered grain facility. The cost is composed
of three different terms, to properly model the costs associated with labor, production, and
cleaning. The generalized cost is defined as a number that summarizes these three cost
sources for each production cycle. The first term of the objective function represents the
labor cost, which is proportional to the total number of shifts (of operators) to be employed
for the scheduled production, for all the considered machines that operate each production
line. The second term of the objective function represents the costs associated with the time
during which the machines produce, other than labor. Some relevant costs included in the
second term are energy and amortization costs, as well as other variable costs. The third
term of the objective function represents the costs incurred every time a line is cleaned,
other than labor. Some relevant costs included in the third term are supplies costs and
energy costs. Energy costs for cleaning have a different hourly consumption pattern than
the energy costs for production (included in the second term). A linear combination ap-
proach is applied to add the three components of the cost function, considering the weights
defined by parameters P, Q, and R. The parameter P accounts for the labor cost of one shift
during one week serving one line. The parameter Q accounts for the variable costs (other
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than labor) of using one line to produce during one hour. The parameter R accounts for
the variable costs per hour (other than labor) of every cleaning procedure on one line. The
linear combination approach is appropriate since all considered costs are variable and vary
in a directly proportional manner with respect to the decision variables, e.g., labor cost is
proportional to the number of scheduled shifts; energy, supplies and amortization costs
are proportional (considering different rates) to the machines operational hours and to the
cleaning hours, respectively.

Equations (2)–(16) formulate the constraints of the optimization problem. The con-
straint in Equation (2) states that production must be greater than demand, guaranteeing
that there is sufficient production of inoculated products to be delivered. Since inoculated
products have an expiration date, the model must ensure that the number of weeks elapsed
since inoculated products are produced until they are delivered does not exceed the shelf
life for expiring products, given by parameter τ. The constraint in Equation (3) guarantees
that enough treated products are produced to satisfy the demand. In the same way as for
constraint in Equation (2), the production must be greater than the demand, but in this case
the products can be produced at any moment of the production cycle, since shelf life is not a
constraint for treated products. The constraint in Equation (4) controls the storage capacity.
The first term on the left side of the inequality corresponds to the overall production of
week s and the second term corresponds to the deliveries scheduled for that week. The
difference between production and delivery must be positive and cannot exceed the total
storage capacity, given by parameter C, to guarantee that the surplus of production can
be stored. The constraint in Equation (5) specifies a limit for the number of shifts to be
performed for each production line in each week.

The group of constraints in Equations (6)–(11) controls the activation of binary vari-
ables ys

v,l ps
v,l , us

v,l y ws
v,l . These variables are used as auxiliary variables for the calcu-

lation of the number of cleanings avoided in the production lines. The constraints in
Equations (6) and (7) operate together to activate the variable ys

v,l if and only if some
quantity of a certain product v is produced on the line l in the week s. The constraint in
Equation (8) states that the necessary condition for the variable ps

v,l to be activated (meaning
that v is the first product to be produced on line l in week v) is that some quantity of product
v has been produced in the week s. The constraint in Equation (9) assures that the first
product produced in week s on line l is unique, thus guaranteeing a consistent definition
for variable ps

v,l . Inequalities in Equations (10) and (11) are analogous to the constraints in
Equations (8) and (9), but in this case are applied to the last product produced in the week.
To assure the existence of a last product v to be produced on the line l in week s, there must
be a production of said product v. Furthermore, Equation (9) guarantees that the existing
last product is unique. The constraint in Equation (12) forces the variable ws

v,l to take the
value 1 only if the production of product v is split on two weeks, i.e., product v is the last
product of week s and the first of the week s + 1 for the production line l. The inequality in
Equation (13) controls the cleaning variable cs

l , which indicates whether a cleaning is saved
on production line l for week s. The sum of variables cs

l appears in the objective function
with a negative sign, therefore, the optimization model presses for this quantity to have
the maximum possible value. The set of constraints in Equation (14) guarantees that if a
certain product v is the first and the last produced on week s for a production line l, no
other product v1 6= v is produced on line l in the same week.

The set of constraints in Equation (15) indicates that the maximum production capacity
of line l must be greater than the quantity produced in that line for every week. Two terms
are subtracted from the productivity of the production line l: the stop times needed and the
cleanings saved, according to a correct sequencing of the products to be produced. Finally,
constraint in Equation (16) is analogous to the previous one, but in this case formulated to
cover the particular case of the last week, where there are no savings in cleaning (no more
productions are to be scheduled after reaching the production horizon).
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4. Problem Complexity and Lower Bounds

This section presents a study of the computational complexity of the proposed grain fa-
cility optimization problem and computes useful lower bounds to speed up the
problem resolution.

4.1. NP-Completeness

This subsection presents a demonstration of the NP-completeness of the decision
problem of determining if there is a solution whose cost is smaller than a given value C.
Let this decision problem be called SOJA(C). The first important remark is that SOJA(C) is
in NP, since it takes a polynomial time to verify the feasibility of a solution. Therefore, it
is enough to polynomially reduce SOJA(C) to any NP-Complete problem. Let the chosen
problem be the PARTITION problem, i.e., the one of deciding, given positive integers
n1, . . . , nk, whether there is a subset of them that sum h := (n1 + · · ·+ nk)/2, i.e, if there is
a subset S ⊂ {1, · · · , k} of the indices such that Equation (17) holds.

∑
i∈S

ni = ∑
i 6∈S

ni = h. (17)

We consider two production lines of equal productivity, i.e., π1 = π2 = 1 tons
per week; k product types; equal week withdrawals for all the products, i.e., r = 1 and
Sr

i = T + h + 1 weeks; demands d1
i = di = ni with i = 1, · · · , k; equal cleaning times

L1 = L2 = 1/k and cleaning cost R > 0. Next it is proven that if PARTITION has a solution,
then SOJA(C) has solution if and only if C ≥ 2h + R(k− 2); and that conversely, if there
exists a solution to SOJA(2h + R(k− 2)), then PARTITION has a solution.

The following statement holds: if line 1 produces a0, · · · , ak1 tons of products of type
t0, · · · , tk1 with ti 6= ti+1 and line 2 produces b0, · · · , bk2 tons of products of type t′0, · · · , t′k2
with t′i 6= t′i+1, then the total number of cleaning is k1 + k2 and the total time T′ spend on
production is given by Equation (18).

T′ = max
{

k1

k
+ A,

k2

k
+ B

}
with A =

k1

∑
i=0

ai, and B =
k2

∑
i=0

bi. (18)

The overall cost of production is Ĉ = 2h + (k1 + k2)R, which is at least 2h + (k− 2)R.
For proving that if PARTITION has a solution, then SOJA(C) has a solution of cost

2h + R(k − 2), consider the solution S to PARTITION, with parameters k1 = |S| − 1,
k2 = k− k1 − 2, ai = ni for i ∈ A and bi = ni for i ∈ Sc. With this assignment, the total time
is given by Equation (19), so the solution is feasible.

T′ = max
{

k1

k
+ h,

k2

k
+ h
}

= h + max
{

k1

k
,

k2

k

}
≤ h +

k− 2
k

< h + 1. (19)

The overall cost Ĉ = 2h + (k1 + k2)R = 2h + (k − 2)R is optimal, so SOJA(C) has
solution if and only if Ĉ ≤ C.

Conversely, if SOJA(2h + (k − 2)R) has a solution, then PARTITION has as well.
Indeed, first observe that k1 + k2 = k − 2 since k1 + k2 ≥ k − 1 and the cost is at least
2h + (k− 1)R. Therefore, since the number of cleanings (k− 2) is the minimum possible, all
product types should be different, and for each i there exists one and only one ji such that
ai = nji , and the same for bi. Finally, since the solution is feasible, then A + k1/k < h + 1
and B + k2/k < h + 1, thus A < h + (1− k1/k) < h + 1 and B < h + (1− k2/k) < h + 1,
i.e., A ≤ h and B ≤ h. However, A + B = 2h, then A = B = h, and PARTITION has
solution S = {ji : i = 0, · · · , k1}.
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4.2. Lower Bound

Computing bounds on the exact optimal value for an optimization problem is a typical
challenge to complement the design of both exact and approximation algorithms [32]. Such
bounds are useful values for determining the maximum error of an approximation method
or to speed up the algorithm when using exact methods. Several techniques are applied for
bound calculation (e.g., witnesses/theoretical proofs, relaxation, and coarsening/restricting
the original problem). Bound calculation is a traditional tool in operations research and
it has been applied in many articles related to production, scheduling and planning, and
other engineering problems [33–37].

A lower bound to the objective function is computed by bounding each of the three
terms of that function, i.e., the total number of shift, the time of production and the total
number of cleanings. First, consider the total number of cleanings. A lower bound for the
objective function arises from Section 4.1 (Equation (20)).

∑(1− cs
l ) ≥ |VI |+ |VT | − |L|. (20)

The production time is greater or equal to the total demand divided by the productivity
of the quickest line (Equation (21), where π̂ = minl πl).

∑
l∈L

1
πl

∑
v∈V

Bv

∑
r=1

xs,r
v,l ≥

1
π̂ ∑

r,v
δr

v. (21)

Thus, a lower bound to the number of shift is the integer part of the total working
hour divided by the number of hours per week (Equation (22), where D̂ = maxl Dl .).

S

∑
s,t

ts
l ≥

⌈
1

D̂l

1
π̂ ∑

r,v
δr

v

⌉
. (22)

Taking into account all previously described lower bounds, the lower bound for the
objective function described in Equation (23) is obtained, where L̂ = minl Ll .

P

⌈
1
D̂

1
π̂ ∑

r,v
δr

v

⌉
+ Q

1
π̂ ∑

r,v
δr

v + RL̂(|VI |+ |VT | − |L|). (23)

The presented lower bound is valuable from a theoretical point of view. In turn, the
computed bound was useful in the real case scenario of the grain facility optimization
problem (described in Section 5), improving over the bounds computed by the resolution
approach using CPLEX. However, the bound was not as effective in the defined variations
of the case study. For this reason, the theoretical bound was not considered/included in
the resolution approach described in Section 7.

5. A Real-World Case Study: Optimization in a Grain Processing Facility in Uruguay

A specific real-world case study is considered to evaluate the proposed MILP model.
The case study corresponds to the production planning of a company that processes and
sells soybeans. The main details of the considered scenario are presented in this section.

5.1. Description of the Case Study

The case study corresponds to an Uruguayan agricultural company, specifically Bar-
raca Erro. This is a very relevant real-world case study in Uruguay. Among other products
and services, Barraca Erro produces grains and seeds (soybeans, wheat, barley, etc.). The
company is one of the main producers and exporters in Uruguay. In 2021, Barraca Erro
exported goods for a total amount of 248 million USD, which represented 15% of the total
Uruguayan exports within its sector of economic activity and 2.5% of the total exports of
the Uruguayan economy.
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The considered case study accounts for producers who send orders for 17 different
kinds of soybeans for each harvest (i.e., |V| = 17). The soybeans must be processed and
delivered according to a schedule that extends over a period of 19 weeks (i.e., S f = 19),
which defines the annual soybean harvest. The main problem that the company faces when
the orders are received is the accurate planning of production and the proper preparation
the deliveries in a timely manner.

The company has two production lines (line 1 and line 2, i.e., |L| = 2) with a processing
capacity of 6.165 and 6.65 tons per hour, respectively, (i.e., π1 = 6.165 and π2 = 6.650).
Both lines are capable of producing any of the 17 products considered. Every time the
machines finish processing a product, they must be stopped and cleaned in the case that
a different product is to be processed next. The duration of the stoppage and cleaning
times is 6 h for production line 1 and 8 h for production line 2 (i.e., L1 = 6 and L2 = 8).
The company stops producing during the period of time that the machines are down for
cleaning, and therefore reducing this downtime is of the utmost importance to improve
production efficiency and profit. The adequate quantity to be produced, as well as the
correct sequencing of the products that must enter each of the two production lines, help
to reduce stoppages and generates important savings in time and associated costs. Two
important decisions make it possible to reduce downtime and generate significant savings
in production times and associated costs: (i) determining the appropriate quantity of each
product to be produced and (ii) determining the correct sequencing of the products that
must enter each of the two production lines.

A proper production sequencing strategy often involves producing more soybeans than
withdrawals in particular weeks. In this case, surplus soybeans must be stored. For storage
purposes, the company owns silos with a total storage capacity of 2700 tons of grain. Using
machinery efficiently and taking advantage of the available storage silos, the company must
produce and store enough grain to cover the withdrawals required by its customers.

In the defined case study, the two types of products defined in Section 3 are considered.
Processed products are categorized into two classes: inoculated and treated. This catego-
rization implies an additional control that the company must resolve. Products within the
inoculated class (7 out of the 17 products considered, i.e., |VI | = 7) have an expiration time.
Therefore, these products cannot be manufactured and stored too far in advance, due to the
proximity of their expiration date. In the case study considered, the expiration time is two
weeks, which imposes an important limitation for the planning of the inoculated products.
This restriction does not apply to treated products, since there is no expiration time for
products within the treated class (10 out of the 17 products considered, i.e., |VT | = 10).

The company has personnel (operators) who carry out the two main tasks for a
correct development of the production process: the supervision of the machinery during
production and the cleaning tasks of the production lines. The operators work in shifts, a
total of 7.5 effective hours in each shift. The company has defined a set of management
policies for its workers, which imply certain rules. Given a week w and a specific line l, the
operators must work the same number of shifts (1, 2 or 3) from Monday to Friday and half
of those shifts on Saturday of that week. The number of shifts can be set to different values
for each combination of week and line (w, l).

The parameters that define the case study are summarized in Table 1.
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Table 1. Parameters for the considered case study.

Parameter Variable Value

number of production lines L 2
processing capacity line 1 π1 6.175 tons/h
processing capacity line 2 π2 6.650 tons/h
cleaning time line 1 L1 6 h
cleaning time line 2 L2 8 h
total storage capacity C 2700 tons

number of inoculated products |VI | 7
shell life of inoculated products τ 2 weeks
number of treated products |VT | 10

operators shift (Monday to Friday) H f 7.5 h
operators shift (Saturday) 3.75 h
number of shifts 1 to 3

5.2. Conception of the Model

This subsection describes the process followed to conceive the model introduced in
this article.

The primary need of the company was to improve the efficiency of the batch pro-
duction scheduling process, in terms of minimizing the related costs while meeting all
constraints. The company had been using a non-formalized production planning procedure,
based on common sense and intuitive criteria, referred to hereafter as ad hoc.

With the purpose of better understanding the problem and providing the company
with a primary quick tool to improve the planning, a simple model of the problem was
created using a Microsoft Excel spreadsheet. Several cells played a role equivalent to that of
decision variables x and t of the mathematical formulation in Section 3. The spreadsheet was
organized with rows representing the weeks and columns representing (tons of) products
to produce on each line. The spreadsheet allowed for manually changing values on each
cell, while controlling the corresponding use of lines and storage capacities, and showing
eventual constraint violations using conditional formats. A heuristic procedure (described
in Section 6.3) was conceived on top of the spreadsheet and used to create the real 2020
production plan followed by the company. The heuristic method conveyed a reduction of
20% on the number of cleaning cycles needed when compared to the ad hoc planning that
the company had already devised. The spreadsheet was of paramount importance to help
the company managers and the consultant team to agree on all details of the problem and
its further modeling as a MILP optimization problem. Heuristic production planning is
used as a reference baseline to compare the results computed by the proposed MILP model,
as described in the next section.

6. Experimental Evaluation

This section presents the experimental evaluation of the proposed model for the
considered case study.

6.1. Evaluation Methodology

The proposed formulation was implemented using the AMPL modeling program
language and solved with IBM CPLEX Solver ver. 20.1.0.0. The model was executed on
an Intel Core i9-9900K CPU @ 3.60GHz, 16 processors with 64 Gb. of RAM. The operating
system was CentOS Linux release 7.7.1908.

All executions were run with a preset amount of time, chosen as one of the stopping
criteria in the experiments. The other criterion for stopping the execution is the gap between
the best integer solution found by the solver and the best value of the objective function
computed so far (CPX_PARAM_EPGAP parameter), set to 1 × 10−5.

The performance of the proposed method is evaluated using two metrics: an execution
time threshold and the gap of the solution found with respect to a certain lower bound computed
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by the solver. The gap is related to the execution time; an inversely proportional relationship is
expected, as increasing the total execution time of the model allows computing more accurate
results. For the considered case study, several executions of the proposed model are performed
considering as stopping criterion 1, 5, 30, 60, 120, 180, and 240 min, respectively.

6.2. Description of the Real-World Problem Instance Solved

The experimental evaluation of the proposed MILP model for grain production opti-
mization was performed on the specific instance of the case study described in Section 5.

According to the values presented in Table 1, the parameters values that define the
considered problem instance are as follows:

• VI = {1, · · · , 7}; VT = {8, · · · , 17}; V = VI ∪VT ; τ = 2.
The seven inoculated products products of the real case are coded with an index 1 . . . 7.
The treated products are coded as 8 . . . 17. The τ parameter specifies the shelf life of
the inoculated products and it is set to 2 weeks.

• L = {1, 2}; πl = {6.165, 6.5}; Ll = {6, 8}, with l ∈ L.
These parameters correspond to the set of machines available, their production capac-
ity, and their cleaning times in hours, respectively.

• S f = 19; C = 2700; N = 3; H f = 7.5; Ds = 5.5∀s.
The real case harvest spans 19 weeks, therefore, the parameter S f is set to 19. The
storage capacity of processed grains (parameter C) is set to 2700 tons, the maximum
number of operator shifts (parameter N) is set to 3, and the number of productive
hours in a shift (parameter H f ) is set to 7.5. The number of working days for each week
(parameter Ds) is set to 5 days (i.e., from Monday to Friday and a half day at Saturday).

• The maximum number of withdrawals for each product (parameter M) is set to 10.

• The number of batches corresponding to the inoculated products is Bv={6, 7, 8, 4, 5, 2, 2}
with v ∈ VI and the treated products belonging to a single batch is Bv = 1 ∀vs. ∈ VT .

• The parameters P, Q, R of the objective function are, respectively, set to be 1000, 10
and 15, so that their linear combination properly accounts for the real incurred costs
expressed in USD.

The demands of each product in every week are set based on the clients orders and
estimates of the company’s sales department. They are summarized in Table 2. The
algorithm is fed with this table, where every value corresponds to an amount of a certain
product to be handed over to the clients in a certain week. The inoculated products are
labeled 1 to 7. The remaining are treated products, i.e., no shelf life limit applies to them.
Table 2 allows also to generate the final pair of input parameters: (Sr

v) that represent the
week in which the r-th withdrawal of product v is located, and (δr

v) that represents the
demand for product v in its r-th withdrawal.

Several variations of the input parameters are combined building a set of 16 test cases.
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Table 2. Description of the real-world problem instance solved: demand (ds
v, in tons) for 17 products

(v) in each week (s).

Products

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8 20 600 60 200
9 80 140 100 60 600 120 200
10 40 120 400 100 80 120 600 140 60 24 200
11 160 200 120 600 80 120 400 40 140 24 60 40
12 240 400 120 360 120 200 120 40 200 60 80 120
13 36 240 440 300 120 200 40 140 60 60 80
14 60 160 440 400 20 48 40
15 80 160 280 400 24
16 40 80 120 40
17 100 40 80 80
18 40

6.3. Heuristic Algorithm Currently Used by the Firm

In this subsection, the heuristic algorithm carried on by the planning engineers to craft
the production plan is presented. The resulting plan for 2020 is then compared with the
output yielded by the optimization algorithm here proposed.

The engineers work on an Excel workbook where they input the number of shifts
per week and production line and the amount of each product to be produced in every
combination of week, line, and product. Several cells are computed that show the capacity
usage, overflows and eventual stock breaks, so that they can play until an acceptable plan
is devised. The ad hoc steps so far followed by the engineers are as follows:

1. All cells that account for the number of shifts are set equal to 3.
2. All cells that account for the amount of tons of every product and line are zeroed, and

this is done for every week.
3. Next, the demand of every combination of product and week p and w are copied into

the cells that account for the amounts to produce. They are not split between lines,
they are put in the line with the highest productivity.

4. As a result of the above, the computed cells of the worksheet will show that the plan
exceeds both production capacity and space in several weeks and lines. This is solved
by the next iterations.

5. Go to any week with production capacity overflow. Choose any product that is
programmed that week and take it to another line, completely or partially trying to
not lead to overflow the latter. Perform this step with other weeks until no further
such movements solve any remaining overflow problem.

6. Look at any week w and a “treated” product p with exceeded capacity (regarding
space or productivity). Take the amount produced to previous weeks, in order to
lower down the excess. Perform this step for other combinations of p and w trying to
eliminate as many overflows as possible.

7. Perform the previous step, now considering the “inoculated” instead of treated prod-
ucts. Be careful not to move the production more than the allowed shelf life of the
product, since this step deals with the inoculated products.

8. Take every cell that accounts for shift numbers to its minimum possible integer value
(3, 2, 1 or 0), taking care not to introduce new production capacity overflows.

Once the previous steps are performed, the engineers go through the worksheet,
looking for further swaps or splittings that might help to improve the production plan while
respecting all problem constraints. The planning engineer spent 20 h performing the ad hoc
procedure here described (4 to create the worksheet and the remaining to iterate through
all steps). The solution finally found had 319 shifts and implied 34 cleaning procedures.
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6.4. Numerical Results

The presented instance of the real case study was solved using the CPLEX imple-
mentation of the proposed MILP solver, considering the parameter values described in
Section 6.1.

6.4.1. Analysis of the Computed Solution

The computed solution is described in Tables 3–5. Table 3 reports the production
schedule (in tons), i.e., the quantity of products to be processed each week, in each line,
and for each product, in order to meet the formulated demand, subject to the defined
constraints for production capacity of the machinery and the storage volume of the facilities.
In addition, additional information is presented describing the hours each production
requires, if a cleaning must be performed after the product has been processed, if a clean
was avoided, and the stored stock of the product at the time of finalizing the corresponding
production, after subtracting the withdrawals for the week (if any).

Table 3. Production schedule (in tons) by week for the considered case study.

Week Line Product Production (Tons) Hours Cleans Cleans Saved Stockpiled

3 2 9 320 48.12 1 0 320
3 2 11 175.43 26.38 0 1 175.43
4 2 11 548.62 82.5 0 1 724.05
5 2 11 274.31 41.25 0 1 998.36
6 2 11 822.94 123.75 0 1 1821.3
7 2 11 274.31 41.25 0 1 2095.61
8 1 12 254.72 41.25 0 1 254.72
8 2 10 360 54.14 1 0 360
8 2 11 104.39 15.7 1 0 2200
8 2 16 252.15 37.92 0 1 252.15
9 1 4 155.59 25.2 0 1 155.59
9 1 6 200 32.39 1 0 200
9 1 12 105.28 17.05 1 0 300
9 1 14 168 27.21 1 0 168
9 2 5 421.89 63.44 0 1 421.89
9 2 16 347.85 52.31 1 0 400

10 1 3 295.7 47.89 1 0 295.7
10 1 4 284.41 46.06 1 0 360
10 1 13 109.94 17.8 0 1 109.94
10 2 5 822.94 123.75 0 1 1104.83
11 1 13 450.06 72.88 1 0 500
11 1 15 200 32.39 1 0 200
11 1 17 40 6.48 0 1 40
11 2 2 214.56 32.27 0 1 214.56
11 2 5 555.17 83.48 1 0 1260
12 1 7 240 38.87 1 0 240
12 1 8 200 32.39 0 1 200
12 1 17 240 38.87 1 0 240
12 2 2 425.44 63.98 1 0 480
12 2 3 344.3 51.77 0 1 400
13 1 1 127.11 20.58 0 1 127.11
13 1 8 600 97.17 1 0 600
13 2 3 769.15 115.66 0 1 769.15
14 1 1 73.56 11.91 1 0 164.66
14 1 2 160 25.91 0 1 160
14 1 14 192 31.09 1 0 192
14 2 3 274.31 41.25 0 1 603.46
15 1 2 254.72 41.25 0 1 254.72
15 2 3 316.54 47.6 1 0 480
15 2 8 400 60.15 1 0 400
16 1 1 155.34 25.16 1 0 180
16 1 2 25.28 4.09 1 0 120
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A relevant feature of the computed solution is the proposed sequencing for each
production line of every product to be processed within the same week. For every week
and line, if the value reported in the column cleans saved takes the value 1, it means that the
last product processed in the week in that line is also the first product to be processed in
the following week, therefore, the machine does not need to be cleaned (and one cleaning
is avoided).

Table 4 reports relevant indicators for each of the two considered production lines: the
total number of operator shifts used, the number of products produced, the total production
hours per line, the number of cleanings required for machines, the number of cleanings
avoided in the computed solution, and the total hours spent on effective cleanings. Results
show that a significant number of cleanings are avoided when applying the proposed MILP
model for solution optimization. The cleanings saved have an important impact on the
overall production costs.

Table 4. Production and cleanings for the considered case study.

Line Shifts Production (Tons) Hours per Line Cleanings Saved Cleanings Cleaning Hours

1 20 4531.70 733.88 14 8 84
2 31 8024.30 1206.66 8 12 64

total 51 12556 1940.54 22 20 148

Table 5 describes each week of the harvest, reporting the quantity of products stored
(computed as the total production minus the withdrawn products), and the storage capacity
available in the facility. According to the weekly production plan obtained in Table 3 and
the demand established in Table 2, it can be seen that the occupation of the maximum
storage capacity occurs in week 9, with 96.48% occupancy (2,605 tons) and the average
space occupied during the entire period is 38.53%.

Table 5. Stored production and available capacity by week for the case study.

Week 1 2 3 4 5 6 7 8 9 10

stored production (tons) 0 0 495 1044 1318 2141 2415 2506 2605 2234
available capacity 2700 2700 2205 1656 1382 559 285 194 95 466

week 11 12 13 14 15 16 17 18 19

stored production (tons) 1710 1100 880 412 439 339 39 0 0
available capacity 990 1600 1820 2288 2261 2361 2661 2700 2700

6.4.2. GAP Evolution and Cost Improvements

Table 6 presents an analysis of the GAP and objective function value evolution of
the solution computed using the proposed MILP model for the case study, when using
different fixed-effort time stopping criteria. The table reports the values of the objective
function and the (percentage) GAP computed in seven executions of the proposed model
with different time limits, from 60 to 14,400 s. It is useful to determine how much execution
time is worth to spend in order to obtain improved solutions.

During the first hour of execution, the best solutions found are significantly improved.
After one hour, the reduction in the objective function value and gap are close to 1200 units
and 2.3% with respect to the solution found in few seconds (60). With higher execution
times, both the gap and the objective function value almost stagnate. The variable costs
involved in a typical soy harvest, which correspond to the objective function in the model,
amount to approximately USD 200,000; 66% to labor, 30% to energy and consumables for
production and 4% to energy and consumables for line cleaning. Therefore, a reduction of
1200 units represents a cost saving of USD 3300. The fact that most of the improvements
are reached in few hours has very relevant practical consequences. Once the harvest has
begun and some weeks have passed, there might be minor changes in the withdrawal
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dates. Storms and strikes are among the most frequent reasons. Should this happen, the
algorithm might be quickly run again to re-optimize the remaining part of the harvest in
light of the modified expected withdrawals.

Table 6. Analysis of the GAP evolution of the solution computed for the case study.

Execution Objective Function Value GAP Time (s)

1 73,839 3.46% 60
2 73,700 3.02% 300
3 72,740 1.31% 1800
4 72,683 1.11% 3600
5 72,625 0.96% 7200
6 72,625 0.92% 10,800
7 72,625 0.88% 14,400

The graph in Figure 1 graphically presents the evolution of the GAP metric for the
real problem instance solved, for a range of 0 to 14,000 s (4 h). The shape of the curve
indicates that the convergence speed towards the global optimum is faster in the first
30 min, then it decreases significantly up to two hours, and finally it stagnates for execution
times greater than two hours (the percentage of improvement in the last two hours was just
0.1%). A logarithmic regression analysis confirmed that the GAP evolution closely matches
a logarithmic function f (x) = a + b · ln(x), where GAP= f (x) and x is the solver execution
time, considering parameters a = 5.63 and b = −0.52. The correlation coefficient (defined
by Equation (27)) is r = 0.97, suggesting a high similitude between the empirical results
and the considered logarithmic function.

r =

∣∣∣∣∣ Sxy√
Sxy
√

Syy

∣∣∣∣∣, (24)

Sxx = ∑
i
(ln xi − ln x)2 = ∑

i
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2
, (25)
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i
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i
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Figure 1. GAP evolution for the considered case study.
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Overall, the GAP value obtained after four hours of execution of the proposed
model (0.88%) is considered to be an excellent approximation to the global optimum
for practical purposes.

6.4.3. Comparison with the Ad Hoc Heuristic Results

Table 7 reports the number of the number of operator shifts, number of cleanings
needed, maximum storage used, and overall cost for the solutions computed by the pro-
posed MILP model implemented in CPLEX, and the comparison with the ad hoc heuristic
method considered to be a reference baseline. The ∆ metric reports the reductions computed
by the proposed method in each relevant indicator (in absolute value) and ∆% indicates
the percent value of improvement over the heuristic result,

Table 7. Relevant metrics of the plans computed by the proposed MILP method and the comparison
with the heuristic method considered to be a reference baseline.

Heuristic Proposed MILP ∆ ∆%

shifts 58 51 7 12.1%
cleanings 34 22 12 35.3%
maximum storage used (tons) 3666 2605 1061 29.4%

overall cost (monetary units) 81,070 72,625 8445 10.4%

The overall cost (objective function) is expressed in monetary units for all minimized
and duly weighted elements that define the considered objective function. This unit is in
accordance with the criteria applied by the company and in order to maintain confidentiality,
because the reported optimization corresponds to a real harvest.

The results in Table 7 indicate that the proposed MILP formulation implemented in
CPLEX was able to compute significant improvements over the solution computed by the
ad hoc heuristic. The MILP method computed plans that reduced the number of operator
shifts by more than 12%, the number of cleanings by more than 35%, and the maximum
storage needed for production by almost 30%. The computed results demonstrate the
accuracy of the computed plans. Indicators directly imply a better management of resources,
which is crucial for improving competitiveness and minimizing operation costs. The plans
computed by the proposed MILP model improved the overall values of production cost
by 10.4% (approximately USD 20,000) over the heuristic planning and by more than 30%
(USD 60,000) over the original manual planning.

7. Overall Improvement of Solution Time and Solution Quality Using
Pre-Computed Bounds

This section describes a method for speeding up the resolution time, even improving
the quality of the computed solutions, for optimization problems such as the one addressed
in this article, using pre-computed bounds.

The proposed method is called the “bounds scheme” and its rationale is to compute
bounds for the decision variables of the problem and using the bounds as constraints in
the original problem. Depending on the variables bounded, the method is able to improve
the two metrics described in Section 6.1, since adding constraints reduces the solution
space to explore. On the one hand, the bounds scheme allows speeding up convergence,
considering the total execution time (including the time for computing the bounds and the
time for solving the problem with the added constraints). On the other hand, the bounds
scheme allows reducing the gap between the objective function value of the best solution
found and a lower bound computed by the solver.
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The proposed method is described next. We consider the optimization problem P
defined in Equation (28).

problem P) min c1x1 + · · ·+ cnxn, with ci > 0, (28)

subject to h(x1, . . . , xn) ≥ 0.

The bounds scheme consists of two steps. The first step considers the set of ancillary
problems Pi, with index i in some subset S ⊂ {1, . . . , n}, defined in Equation (29). Problems
Pi are used to find lower bounds for the values of xi

problem Pi) min xi, (29)

subject to h(x1, . . . , xn) ≥ 0.

Problems Pi are solved to find solutions x∗i , for i ∈ S. Clearly x∗i = min{xi :
h(x1, . . . , xn) ≥ 0}, therefore, h(x1, . . . , xn) ≥ 0 implies xi ≥ x∗i Then, the second step
considers the original problem P, but including the new set of |S| constraints defined by
Ci) xi ≥ x∗i , with i ∈ S. In case a given problem Pi is not solved to optimality, and just a
lower bound x̂i, i.e., x∗i ≥ x̂i is found, then the new constrains Ci turns to be C′i) xi ≥ x̂i.
Since h(x1, . . . , xn) ≥ 0 implies xi ≥ x̂i, then, including the new constraints C′i does not
modify the problem P. Summarizing, the new formulation of problem P is in Equation (30).

problem P) min c1x1 + · · ·+ cnxn, (30)

subject to h(x1, . . . , xn) ≥ 0,

xi ≥ x̂i, ∀i ∈ S.

Further improvements are obtained by relaxing some constrains in problem P. When the
bounds are computed, the time can be lowered by relaxing the constraints h(x1, . . . , xn) ≥ 0.
This can be done, for instance, setting an unlimited storage capacity, though at the expense
of a trade-off regarding the quality of the computed bound.

The proposed method is instantiated for the grain production optimization problem
addressed in this work. The considered objective function is linear with positive coefficients;
thus, it verifies the hypothesis of problem P). When the proposed MILP model is executed
using CPLEX, either the method finds the exact solution x∗i or it provides a feasible solution
xi and a gap gi, from which a lower bound is computed as x̂i = xi(1− gi). In the considered
optimization problem, there are two families of variables, namely the number of production
hours and the number of operator shifts. Thus, four possible scenarios S are defined: (i) the
empty set, where no bound scheme is applied (the “NoBounds” scenario); (ii) a scenario that
considers bounds just for the production hours (the “HoursBound” scenario); (iii) a scenario
that considers bounds just for the numbert of shifts (the “ShiftsBound” scenario); and (iv) a
scenario that combines bounds for both families of variables (the “AllBound” scenario).

Starting from the real instance (the soy harvest by the company in 2020), 16 test cases
were generated, by combining two possible values for each of four parameters. The values
were given by the production manager as realistic variations taking into account alternative
products and production lines. These cases, numbered 1 to 16, are shown in Table 8, were
the four parameters and their set values are as follows:

• spd: speeds in tons/h; 6.175 and 6.65 tons/h for lines 1 and 2, respectively, in half of
the tests, 8.075 and 4.75 in the other half

• τ: expiration time in weeks for inoculated products; 2 and 3 weeks for each half of
tests, respectively

• cleans: hours needed for cleaning; 6 and 8 h for lines 1 and 2, respectively, in half of
the tests, 3 and 10 h in the other half
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• mix, cap: mix of inoculated and treated products and storage capacity; 7 inoculated,
10 treated products and 2700 tons of storage capacity in half of the tests; 4 inoculated,
5 treated and 1700 tons in the other half.

Case number 1 corresponds to the real instance while cases 2 to 16 are obtained
changing one or more parameters to their alternative values.

Table 8. Instance numbers as a function of parameters spd, τ, mix, cap and clean.

Cleans (Mix, Cap)

(7i10t, 2700) (4i5t, 1700)

spd τ 6–8 3–10 6–8 3–10

6.175–6.65
2 1 2 3 4

3 5 6 7 8

8.075–4.75
2 9 10 11 12

3 13 14 15 16

As Table 9 reports, for each problem instance #I and bounds scenario, the precomputed
hours LBH and shifts lower bounds LBS, as well as the computational times TLBH and TLBS
is spent to do it, respectively. The table also reports the actual number of hours (H) and
shifts (Sh) in the best feasible solution x to P, the value obj of the objective function in x,
the corresponding gap for this solution (gap), the lower bound for the objective derived
from them (bestLB = obj − gap), as well as the computational time (TBF) required to obtain
x. Finally, the total execution time is reported in the last column (T). All execution times
are reported in seconds. For example, considering the results reported for instance 3 and
scenario AllBounds, the lower bound obtained for hours was 64 and for shifts was 33,
whereas the best feasible solution computed has 82 h and 33 shifts. In this case, the optimal
number of shifts was computed, since the gap with its lower bound is zero. The lower
bound for the number of hours was computed in just one second. In turn, the lower bound
for the number of shift was computed in 33 s, whereas 225 s were required to obtain the
feasible solution with objective function value of 46,923. The overall execution time was
249 s.

Table 9. Solution quality and execution time for the 16 considered problem instances using the four
proposed bound scheme scenarios.

#I Scenario LBH LBS H Sh obj Gap bestLB TLBH TLBS TBF T

1

NoBounds 154 51 72,683 1.114% 71883 3600 3600
HoursBound 136 166 51 72,844 1.920% 71,445 271 3600 3871
ShiftsBound 50 154 51 72,709 1.136% 71,842 3600 3600 7200
AllBounds 136 50 156 52 73,680 3.040% 71,440 271 3600 3600 7471

2

NoBounds 94 50 71,012 0.320% 70,785 3600 3600
HoursBound 87 94 50 71,012 0.494% 70,977 29 3600 3629
ShiftsBound 50 94 50 71,012 0.095% 70,945 256 3600 3856
AllBounds 87 50 94 50 71,012 0.080% 70,955 29 256 3600 3885

3

NoBounds 82 33 46,921 0.010% 46,916 2076 2076
HoursBound 64 82 33 46,921 0.024% 46,910 1 3600 3601
ShiftsBound 33 82 33 46,921 0.007% 46,918 23 87 110
AllBounds 64 33 82 33 46,923 0.009% 46,919 1 23 225 249

4

NoBounds 47 33 46,686 0.769% 46,327 3600 3600
HoursBound 40 47 33 46,686 0.073% 46,652 2 3600 3602
ShiftsBound 33 47 33 46,686 0.001% 46,686 12 50 62
AllBounds 40 33 47 33 46686 0.001% 46,686 2 12 83 97
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Table 9. Cont.

#I Scenario LBH LBS H Sh obj Gap bestLB TLBH TLBS TBF T

5

NoBounds 162 51 72,775 1.667% 71,562 3600 3600
HoursBound 134 150 51 72,601 1.740% 71,338 348 3600 3948
ShiftsBound 50 150 51 72,598 1.250% 71,691 3411 3600 7011
AllBounds 134 50 156 51 72,713 1.885% 71,342 348 3411 3600 7359

6

NoBounds 94 50 70,986 0.429% 70,681 3600 3600
HoursBound 87 91 50 70,967 0.630% 70,520 429 3600 4029
ShiftsBound 50 91 50 70,967 0.010% 70,960 3600 2326 5926
AllBounds 87 50 91 50 70,967 0.111% 70,888 429 3600 3600 7629

7

NoBounds 76 33 46,807 0.441% 46,600 3600 3600
HoursBound 62 76 33 46,807 0.740% 46,461 2 3600 3602
ShiftsBound 33 76 33 46,807 0.009% 46,803 18 18 36
AllBounds 62 33 76 33 46,807 0.010% 46,802 2 18 24 44

8

NoBounds 44 33 46,641 1.036% 46,156 3600 3600
HoursBound 37 44 33 46,641 0.099% 46,595 2 3600 3602
ShiftsBound 33 44 33 46,641 0.010% 46,636 3 19 22
AllBounds 37 33 44 33 46,641 0.010% 46,636 2 3 21 26

9

NoBounds 154 44 62,542 2.756% 60,818 3600 3600
HoursBound 124 170 44 62,545 3.130% 60,587 27 3600 3627
ShiftsBound 43 170 44 62,430 1.887% 61,252 3600 3600 7200
AllBounds 124 43 166 43 61,412 0.216% 61,279 27 3600 3600 7227

10

NoBounds 82 41 58,088 1.074% 57,464 3600 3600
HoursBound 74 82 41 58,088 1.159% 57,415 15 3600 3615
ShiftsBound 41 82 41 58,088 0.010% 58,082 86 1517 1603
AllBounds 74 41 82 41 58,088 0.010% 58,082 15 86 2118 2219

11

NoBounds 72 27 38,378 0.010% 38,374 68 68
HoursBound 62 72 27 38,378 0.010% 38,374 2 217 219
ShiftsBound 27 72 27 38,378 0.000% 38,378 7 5 12
AllBounds 62 27 72 27 38,378 0.010% 38,374 2 7 13 22

12

NoBounds 36 26 36,838 0.010% 36,834 70 70
HoursBound 36 36 26 36,838 0.010% 36,834 1 1141 1142
ShiftsBound 26 36 26 36,838 0.004% 36,836 2 4 6
AllBounds 36 26 36 26 36,838 0.000% 36,838 1 2 4 7

13

NoBounds 158 44 62,350 2.600% 60,729 3600 3600
HoursBound 124 158 44 62,350 2.981% 60,491 62 3600 3662
ShiftsBound 43 156 44 62,442 2.007% 61,189 3600 3600 7200
AllBounds 124 43 162 43 61,495 0.509% 61,182 62 3600 3600 7262

14

NoBounds 91 41 58,033 1.036% 57,432 3600 3600
HoursBound 71 91 41 58,033 1.214% 57,328 14 3600 3614
ShiftsBound 41 91 41 58,033 0.010% 58,027 24 3600 3624
AllBounds 71 41 91 41 58,033 0.017% 58,023 14 24 3600 3638

15

NoBounds 72 27 38,378 0.010% 38,374 1137 1137
HoursBound 62 72 27 38,378 0.010% 38,374 2 1211 1213
ShiftsBound 27 72 27 38,378 0.010% 38,374 11 9 20
AllBounds 62 27 72 27 38,378 0.010% 38,374 2 11 81 94

16

NoBounds 36 26 36,838 0.100% 36,801 780 780
HoursBound 36 36 26 36,838 0.438% 36,677 2 3600 3602
ShiftsBound 26 36 26 36,838 0.009% 36,835 1 5 6
AllBounds 36 26 36 26 36,838 0.000% 36,838 2 1 28 31

The results reported in Table 9 demonstrate that the bound schemes were able to
improve the best objective value computed in all instances except one (instance 1). Re-
garding gaps, the bound schemes reduced the gap metric in all cases, except for instances
1 and 5. The gap was even zero in three cases: instance 11 with ShiftsBound scenario,
instance 12 with AllBounds scenario, and instance 16 with AllBounds scenario. In instances
3, 4, 7, 12, and 16 the gap was below the considered value of CPX_PARAM_EPGAP parameter
(1 × 10−5), with scenarios ShiftsBound, AllBounds or both, depending on the instance.
For the three instances where a gap of zero was achieved (instances 11, 12, and 16), the
computed objective value is the same for all bound scenarios. In these cases, the bound
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schemes allow guaranteeing optimality, i.e., that the optimal value for the optimization
problem is computed.

Efficiency results also demonstrate that the largest reductions in the execution time
are computed when using the ShiftsBound scenario (e.g., in problem instances 4, 7, 11,
12, 15, and 16). These results suggest that the number of shifts has a higher impact on
solution quality than the number of hours. Execution times results confirm that using
the proposed bounds schemes improved the global computation times in half the cases.
For some instances, significantly large improvements were achieved (e.g., for instances
3, 4, 7, 8, 11, 12, 15, and 16). In those three instances where a gap zero was achieved, the
bounds scheme also helped to reduce the overall computational time by 82%, 90% and 96%,
respectively. A similar situation occurred for those cases where the computed gap is lower
than the considered value of CPX_PARAM_EPGAP parameter, achieving time improvements
between 88% and 99%. The NoBounds scenario was able to achieve the CPLEX halting gap
in just three instances (instances 3, 11, and 12), without spending the one hour time limit.
Even in this instances, the ShitfBound and AllBounds scenarios were able to reduce the
computational time significantly.

In summary, the proposed bounds scheme improved the quality of the solutions
attained, while reducing the computational time in 15 out of the 16 instances solved. The
average and best improvements to the execution time for those instances, as well as the
average and best objective value improvements respect to the original formulation without
pre-computed bounds are reported in Table 10.

Table 10. Improvements of bound schemes over the NoBounds scenario.

Scenario
Time Objective

Average Best Average Best

HoursBound −139% 0% 0.040% 0.000%
ShiftBound 22% 99% −0.949% 0.000%
AllBounds 14% 99% 1.914% 1.807%

The results in Table 10 indicate that the best time reductions were obtained when
pre-computing bound for shifts, with an average time improvement of 22% and a best
improvement of 99%. Pre-computing bounds for production hours did not yield to im-
provements in the execution time. However, when combined with bounds on shifts, large
execution time improvements were required. Hence, results indicate that it is worth evaluat-
ing different scenarios of the bounds scheme to determine the best variable (or combination
of variables) that is suitable to be prebounded. This task can be performed by applying
parallel computing techniques using over high performance infrastructures [38], in order to
further speed up the computation. The proposed bounds scheme is also combinable with
relaxation techniques to be applied in the constrains to further reduce the execution time.

8. Conclusions and Future Work

This article addressed a relevant problem for production in the agriculture field. In
this context, efficient and accurate models are needed for resource management, in order to
minimize operation costs and enhance competitiveness.

A MILP optimization model based on discrete time windows was proposed for a
capacitated multi-product multi-line production scheduling problem. The model incorpo-
rates relevant constraints in the context of grain production, considering both treated and
inoculated products. A theoretical analysis of the NP-completeness of the optimization
problem was developed. In turn, a bounds-based scheme was proposed to accelerate the
convergence to the optimal solution of the optimization problem.

The proposed MILP model was implemented in AMPL and solved using CPLEX. The
model was evaluated on a real-life case study, considering real data from the 2020 soybean
harvest of the top Uruguayan grain producer and exporter. Many real-life situations were
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taken into account, including multiple products, multiple production lines, limited shelf
life, storage facilities, operator shifts, and cleaning of the machinery.

The main results of the experimental evaluation indicated that the computed solutions
achieved an efficient storage capacity, significantly reducing the number of cleaning stops
for machinery and the number of operator shifts required. The plan computed by the
proposed model achieved significant cost reductions (more than 10%, USD 20,000) over
the ad hoc planning heuristic applied by the company. Furthermore, the computed plans
also improving storage occupancy and costs of machinery cleaning supplies. The proposed
bounds-based scheme was useful to speed up the resolution of the optimization problem
in two scenarios: in a factor of 1.28× using the ShiftsBound type and in a factor of 1.17×
using the AllBounds type. Conversely, execution times were worse using the HoursBound
type (a factor of 0.41×).

The proposed bound scheme was useful to accelerate the resolution of the considered
optimization problem. The approach based on embedding bounds in the optimization
problem is suitable to be applied in any problem where the objective function is an aggre-
gation of monotone increasing functions. In that case, the proposed method is directly
applicable as we did in our research, even if the functions are not linear. Overall, the
approach is also a useful idea that can be applied to other optimization problems. In this
regard, the validation of the proposed model should be extended by considering new
problem instances and different grain production problems, subject to the availability of
data, by working with other companies in the agri-food sector.

The main lines of future work are related to improve the optimization model, and
expand the case studies to properly reflect the current reality of grain production companies.
The optimization model can be improved by including additional realistic features in the
optimization model, such as silo farms for raw grains, shared to store the processed grains
and uncertainty on demands. Regarding the discretization step considered to determine
production, a problem model to plan days will certainly allow for more accurate production
planning, further optimization of machinery cleanings, operator shift costs, and improved
storage management. The proposed model should be adapted to take into consideration
these new features and related new constraints. For executing the exact model including
additional features and larger case studies, the application of parallel computing over high
performance computing infrastructures is also an interesting line for future work. Finally,
the design of suitable problem instances that represent realistic situations and have diverse
features to perform a correct evaluation must be addressed. Both theoretical and empirical
knowledge are needed to build meaningful problem instances for the evaluation of the
proposed and related models.

Author Contributions: Conceptualization, F.R. and P.S.; Data curation, G.B. and P.S.; Formal analysis,
E.C. and S.N.; Investigation, E.C. and G.B.; Methodology, S.N. and F.R.; Project administration, S.N.;
Software, G.B.; Supervision, F.R.; Validation, P.S.; Writing—original draft, S.N. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ustundag, A.; Cevikcan, E. Industry 4.0: Managing The Digital Transformation; Springer International Publishing: Berlin/Heidelberg,

Germany, 2018.
2. Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [CrossRef]
3. Grosso, C.; Checchinato, F.; Finotto, V.; Mauracher, C. Configuration challenges for the “Made in Italy” Agrifood industry. Int. J.

Ind. Eng. Manag. 2021, 12, 151–162. [CrossRef]
4. Guido, R.; Mirabelli, G.; Palermo, E.; Solina, V. A framework for food traceability: Case study—Italian extra-virgin olive oil

supply chain. Int. J. Ind. Eng. Manag. 2020, 11, 151–162. [CrossRef]
5. Zivlak, N.; Rakic, S.; Marjanovic, U.; Ciric, D.; Bogojevic, B. The Role of Digital Servitization in Transition Economy: An SNA

Approach. Tehnicki Vjesn.-Tech. Gazette 2021, 28.

http://doi.org/10.1016/j.jclepro.2019.119869
http://dx.doi.org/10.24867/IJIEM-2021-3-284
http://dx.doi.org/10.24867/IJIEM-2020-1-252


Appl. Sci. 2022, 12, 8212 25 of 26

6. Woodruff, D.; Voß, S. Introduction to Computational Optimization Models for Production Planning in a Supply Chain; Springer:
Berlin/Heidelberg, Germany, 2006.

7. Rossit, D.; Toncovich, A.; Rossit, D.; Nesmachnow, S. Solving a flow shop scheduling problem with missing operations in an
Industry 4.0 production environment. J. Proj. Manag. 2020, 6, 33–44. [CrossRef]

8. Rossit, D.; Nesmachnow, S.; Rossit, D. A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop
Scheduling Problem in the Context of Industry 4.0. Int. J. Math. Eng. Manag. Sci. 2021, 7, 433–454. [CrossRef]

9. Bayá, G.; Sartor, P.; Robledo, F.; Canale, E.; Nesmachnow, S. A Case Study of Smart Industry in Uruguay: Grain Production
Facility Optimization. In Smart Cities; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 101–115.

10. Al-Soboh, G.; Srivastava, A.; Burkhardt, T.; Kelly, J. A Mixed-Integer Linear Programming (MILP) Machinery Selection Model for
Navybean Production Systems. Trans. ASAE 1986, 29, 81–84. [CrossRef]

11. Ait Si Larbi, E.; Bekrar, A.; Trentesaux, D.; Bouziane, B. Multi-stage optimization in supply chain: An industrial case study. In
Proceedings of the 9th International Conference on Modeling, Optimization & Simulation, Bordeaux, France, 6–8 June 2010.

12. Ait Si Larbi, E.; Ghani, B.; Trentesaux, D.; Bouziane, B. Supply Chain Management Using Multi-Agent Systems in the Agri-Food
Industry. In Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics; Studies in Computational Intelligence;
Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 544, pp. 145–155.

13. Méndez, C.; Cerdá, J.; Grossmann, I.; Harjunkoski, I.; Fahl, M. State-of-the-art review of optimization methods for short-term
scheduling of batch processes. Comput. Chem. Eng. 2006, 30, 913–946. [CrossRef]

14. Bilgen, B.; Ozkarahan, I. A Mixed-Integer Linear Programming model for bulk grain blending and shipping. Int. J. Prod. Econ.
2007, 107, 555–571. [CrossRef]

15. Granillo, R.; Gonzalez, I.; Martinez, J.; Caballero, S.O.; Olivarez, E. Hybrid model to design a distribution network in contract
farming. DYNA 2019, 86, 102–109. [CrossRef]

16. Bellettini, M.B.; Fiorda, F.A.; Vítola, F.D.; Teixeira, G.L.; Ferreira, R.R.; Alvarez, D.C. Optimization of Production Lines in Wheat
Mills using the Method of Problem Solving Analysis. Braz. J. Food Res. 2012, 3, 95–103.

17. Sanches, M.; Morabito, R.; Oliveira, M. Otimização da programação da produção de bebidas à base de frutas por meio de modelos
de programação inteira mista. Gestão Produção 2016, 24, 64–77.

18. Li, X.; Reza, M.; Michalewicz, Z.; Barone, L. A Hybrid Evolutionary Algorithm for Wheat Blending Problem. Sci. World J. 2014,
2014, 1–13.

19. Aguirre, A.; Liu, S.; Papageorgiou, L. Optimisation approaches for supply chain planning and scheduling under demand
uncertainty. Chem. Eng. Res. Des. 2018, 138, 341–357. [CrossRef]

20. Hosseini, S.; Ghatreh, M.; Saadi, F. Strategic optimization of wheat supply chain network under uncertainty: A real case study.
Oper. Res. 2019, 21, 1487–1527.

21. Chakraborty, S.; Bhattacharjee, K.; Sarmah, S.P. An Effective MILP Model for Food Grain Inventory Transportation in India—A
Heuristic Approach. In Asset Analytics; Springer: Singapore, 2019; pp. 361–376.

22. León, E.; Minor, H.; Aguilar, O.; Sánchez, D. Optimization of the Supply Chain in the Production of Ethanol from Agricultural
Biomass Using Mixed-Integer Linear Programming (MILP): A Case Study. Math. Probl. Eng. 2020, 2020, 1–25.

23. Osaki, M.; Batalha, M.O. Optimization model of agricultural production system in grain farms under risk, in Sorriso, Brazil.
Agric. Syst. 2014, 127, 178–188. [CrossRef]

24. Griffin, T.; Mark, T.; Dobbins, C.; Lowenberg, J. Estimating whole farm costs of conducting on-farm research on midwestern US
corn and soybean farms: A linear programming approach. Agric. Syst. 2014, 127, 21–27.

25. Gameiro, A.H.; Rocco, C.D.; Filho, J.C. Linear Programming in the economic estimate of livestock-crop integration: Application
to a Brazilian dairy farm. Rev. Bras. Zootec. 2016, 45, 181–189. [CrossRef]

26. Shekarian, S.; Amin, S.H.; Shah, B.; Tosarkani, B.M. Design and optimisation of a soybean supply chain network under uncertainty.
Int. J. Bus. Perform. Supply Chain. Model. 2020, 11, 176. [CrossRef]

27. Susilawati, T.; Mikhratunnisam, M. Optimization of corn production using the simplex method in Sumbawa Regency. Proc. J.
Phys. Conf. Ser. 2019, 1315, 012063. [CrossRef]

28. Fang, H.; Zhou, K.; Zou, Y.; Deng, W.; He, X.; Zhou, J. A diagnosis optimization system for grain processing based on multiple
data analysis algorithms. Syst. Sci. Control. Eng. 2019, 7, 96–107. [CrossRef]
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