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Abstract: Unmanned aerial vehicles (UAVs), also known as drones, are increasingly common and
popular due to their relatively low prices and high mobility. The number of areas for their practical
applications is rapidly growing. The most promising are: last-mile delivery, emergency response, the
inspection of technical devices and installations, etc. In these applications, it is often necessary to
solve vehicle routing problems, formulated as a variant of the vehicle routing problems with drones
(VRPD). This study presents a proactive approach to a modified and extended VRPD, including: the
dynamic selection of drone take-off points, bidirectional delivery (delivery and pick up), various types
of shipments, allocation of shipments to drones and drones to vehicles, the selection of the optimal
number of drones, etc. Moreover, a formal model of constraints and questions for the extended
vehicle routing problem with drones (EVRPD) and exact and approximate methods for solving it
have been proposed. The proposed model can be the basis for supporting proactive and reactive
decisions regarding last-mile delivery, particularly the selection of the necessary fleet, starting points,
the identification of specific shipments that prevent delivery with available resources, etc. The study
also includes the results of numerous computational experiments verifying the effectiveness of the
implementation methods. The time to obtain a solution is at least 20 times shorter for the proposed
DGA (dedicated genetic algorithm) than for the mathematical programming solvers such as Gurobi or
LINGO. Moreover, for larger-sized data instances, these solvers do not allow obtaining any solution
in an acceptable time, or they obtain worse solutions.

Keywords: unmanned aerial vehicle (UAV); vehicle routing problem with drones (VRPD); last-mile
delivery; proactive and reactive approach; dedicated genetic algorithm; decision support

1. Introduction

In recent years, the use of unmanned aerial vehicles (UAVs), also known as drones,
has significantly increased in many areas of everyday life, such as: goods delivery, real-time
monitoring, search and rescue, inspecting, remote sensing, etc. This is due to the rapid
development of mobile technologies and the reduction of hardware and software costs (both
purchase and operational). Logistics is the most dynamically developing and promising
area for UAV application. This is the result of the rapid development of the e-commerce
market, which generates a great demand for fast and cheap deliveries, especially in highly
urbanized areas.

Many technology, commercial (Google, JD, Amazon) [1,2], and logistics (UPS, DHL,
FedEx) companies are experimenting with the use of drones for deliveries [3,4]. These
applications were initially related to the delivery of food, medicine, and water for people
in danger or in areas inaccessible to other means of transportation [5], but drones have also
been successfully used to deliver pizza by Flirtey, Chipotle, and Google [6].

Compared with car transportation or even couriers on scooters or bicycles, the use
of drones for last-mile delivery is very attractive and promising because it has many
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advantages, such as: avoiding the congestion of road networks, faster and cheaper delivery,
ecological aspects related to the use of electric drives (low emissions and noise), the
limitation of the human factor, etc. However, some weaknesses in the use of drones for
deliveries should be mentioned. The most important of them includes their limited range,
low-lifting capacity, etc.

Therefore, taking all the advantages and limitations of drones into the context of
delivery within the last mile, their effective use must be combined with other means of
transportation, e.g., trucks [7,8]. Such deliveries are carried out together, i.e., trucks deliver
the drones to the appropriate points or hubs, and from there, the drones take off with the
shipments to customers and then return to the hubs. Many companies such as Amazon,
Wal-Mart, Google, DHL, SF Express, etc., are starting to implement such solutions.

The key questions to be answered when implementing such deliveries (the tandem
truck—drone type) are: (a) How to choose starting points or hubs; (b) how to optimally
choose routes for drones; (c) in what order to carry out deliveries; and (d) are the available
resources (number of drones and other vehicles) sufficient to complete the deliveries? In
order to obtain answers to these and similar questions, the appropriate VRP (vehicle routing
problem) is modeled and solved in this study. We also formulated and modeled the EVRPD
(extended vehicle routing problem with drones).

Our contributions were as follows. Firstly, we presented the assumptions and de-
scription of the EVRPD. Secondly, we constructed a mathematical model for the EVRPD
as a constraint satisfaction problem (CSP) [9] and a set of questions (Q1–8). The proposed
model is universal, flexible, easy to modify, and can be used to support proactive and
reactive decisions. The proposed model has a unique feature: the selection of decision
variables and their allocation in constraints, which means that this model has a solution in
any situation (if any deliveries are not made, we will know which ones). This significantly
facilitates decision-making in emergency cases. Two methods of implementing this model
have been proposed. The first uses the AMPL modeling language [10] and mathematical
programming environments (Gurobi and LINGO), and the second uses a proprietary dedi-
cated genetic algorithm (DGA) based on [11]. Extensive computational experiments were
also presented, which made it possible to verify both the usefulness of the model and the
effectiveness of the proposed implementation methods.

This article is organized as follows: Section 2 is a literature review. Section 3 states
the problem and mathematical model. Section 4 presents the implementation methods.
Section 5 presents computational experiments and discusses the results. The last section
concludes and suggests future work.

2. Vehicle Routing Problem with Drones-Literature Review

The current frequent and varied use of drones in logistics, agriculture, security, in-
spection, etc., results in the need to properly plan their use for the implementation of
specific operations. For example, if the drone needs to visit several locations, this can be
modeled as a traveling salesman problem (TSP) [12,13]. This one is quite common in the
infrastructure industry, where the drone must check selected points of the building; for
example, in agriculture, the drone must collect information on field sampling points, or in
the emergency industry, the drone delivers blood to several hospitals, and in logistics, the
drone delivers to customers in the last mile.

An overview of the possibilities of using drones to carry out various operations is
presented in [14]. There has been a certain classification of operations that could be carried
out with the help of drones. The most important of them are:

(a) Area coverage where sensor or camera drones should monitor (cover) an area that may
take various shapes. This problem occurs in disaster management (assessment of the
damage after an earthquake, flood, tornado, etc.), agriculture (observing vegetation
indexes and creating digital maps of the crop area), aerial archeology, etc. [15]

(b) Search operations where drones need to find a stationary or moving object. In a drone
search, this problem is easily observed in wildlife monitoring and search and rescue



Appl. Sci. 2022, 12, 8255 3 of 21

applications. You need to define a search path for one or more drones to find an object
in an unknown location.

(c) Routing for a set of locations where drones must visit a specific and finite set of
addresses. In many surveillance and delivery applications, drones must tour a certain
set of locations starting and ending at the depot. The resulting planning problems can
be modeled as generalized versions of one of the underlying routing problems, such
as a TSP [16,17], multiple TSPs [18–25], or a VRP [26–30].

(d) Data collection and charging on wireless sensor networks (WSNs) where drones must
collect information from a specific or given set of locations while considering the
communication schedule and limited memory capacity.

(e) Allocating communication links and computing power to mobile devices with set
(or redirected) drones to provide communication links with mobile devices of suffi-
cient quality.

All the above-mentioned and other applications of drones have a certain weakness:
the fact that they can only spend a very limited time in the air. This results in a significant
reduction in the range of operations carried out by drones. Therefore, drones have become
frequently used in conjunction with other robots and means of transportation (generally
vehicles), leading to increased efficiency and effectiveness in carrying out their operations.

The problem discussed in this article concerns operations that are carried out jointly by
vehicles and drones. In the literature describing the performance of combined operations
by drones and vehicles, they are mostly concerned with the mapping of routes for a set
of locations (c) as used in logistics [31]. Very interesting work in this area was presented
in [32,33]. Routing operations can also take place in precarious or dynamic environments,
such as monitoring disaster regions or suppressing fires [34–36]. Such problems were
classified as a VRPD (vehicle routing problem with drones) [7,37,38].

To a lesser extent, the use of drones concerns other operations, such as the coverage of
an area (a) [39,40] or extension of ground vehicle connectivity [41–44]. Soon, drones may
potentially be supported by ships in search operations (b) [45] and in collecting data from
sensors monitoring underwater pipes (d).

In the VRPD, a fleet of vehicles equipped with drones delivers shipments to customers.
The drones take off from the vehicles, deliver the parcels to the customers, return to the
take-off site or another place the vehicle has moved to, and then return with the truck
to the central depot. The objective of the VRPD is most commonly to minimize the time
(cost) required for the delivery of parcels. Some modifications to the VRPD as described
in [46] were proposed in [47]. It has been proposed that drones allow trucks to perform
tasks in parallel and be able to travel while the drone is in flight. In [48], the authors
analyzed how drones can be combined with conventional delivery vehicles to improve
same-day delivery performance. They proposed a dynamic vehicle routing problem called
the same-day delivery routing problem with heterogeneous fleets of drones and vehicles
(SDDPHF). Some assumptions and constraints have been made in this problem. The most
important were: customers order goods over the course of the day; the shipments can
be delivered either by drones or vehicles; drones are faster but have a limited capacity
as well as charging times; vehicle capacities are unlimited, but vehicles are slow due to
congestion of road networks. On the other hand, the use of drones for last-mile deliveries
is a completely new topic that has not yet been as deeply researched as the classic VRP
variants. Some researchers classify VRPDs into two groups. The first is for variants with
one truck, and the second for ones with many trucks. A review of VRPDs in this aspect
was presented in [31].

It should be noted that planning routes for drones is quite a challenge due to multi-
operability that was not available in classic VRPs. There are the following challenges:
multi-trip operations, calculating energy consumption, recharge planning, etc. In this
context, a multi-trip drone routing problem (MTDRP) was introduced with a time window
that explicitly considers the influence of the payload and distance on flight duration [3].
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What undoubtedly distinguishes the considered EVRPD from the problems discussed
in points (a)–(e) above is the joint-location routing problem (LPR) with a dynamic selection
of starting points for drones and the problem of allocating shipments to drones and drones
to trucks. At the same time, we considered the possibility of two-way deliveries for various
types of shipments.

VRPD variants are most often modeled as a MILP (mixed-integer linear programming),
ILP (integer linear programming), or BIP (binary linear programming). In the area of
modeling, what distinguished the proposed EVRPD model was its structure (a set of
constraints and a set of questions), which facilitates its expansion and selection of decision
variables so that the modeled problem always had a solution.

For example, in [49], the authors proposed two multi-trip VRPs (MTVRPs) for drone
delivery that compensated for each drone’s limited carrying capacity by reusing drones.
The problems were modeled as MILPs and solved based on the simulated annealing heuris-
tic. In [50], the authors proposed a task allocation model for UAVs based on problems
with routing vehicles within time windows (VRPTW). The improved particle swarm opti-
mization (PSO) algorithm was used to solve the problem of assigning multiple constraint
tasks. In [47], the variable-speed Dubins-path vehicle-routing problem (VS-DP-VRP) was
considered, and a model was established that considered the dynamic constraints of UAVs.
Due to their computational complexity (most often combinatorial optimization), heuristics,
metaheuristics, hybrid methods, etc., are usually used to solve them.

The authors proposed a DGA (dedicated genetic algorithm); it had an original method
of coding the modeled problem—routes were not coded, but they provided information
about which drone delivered the package to which customer. The route was calculated
by solving the TSP. This approach significantly simplified the coding of the problem and
reduced the size of the chromosomes. At the same time, the proposed method of building
a chromosome, together with the restrictions on the handling procedures, ensured that
the chromosomes resulting from the use of genetic operators did not violate most of the
model’s constraints.

3. Problem Statement and Mathematical Model

This study presented the main assumptions and features of the extended vehicle rout-
ing problem with drones (EVRPD) and the mathematical model for the EVRPD. Significant
extensions of the presented problem in relation to the VRPD were marked. The proposed
model could be the basis for building a decision support system or ad hoc decision support
for both proactive and reactive decisions for deliveries within the last mile.

3.1. Problem Statement

The EVRPD was defined as follows:

• Recipients (customers) were defined (the location of each recipient was known, which
translated into the determination of the distance–cost grid (network) between recipi-
ents and the travel time from recipient to recipient);

• Shipments (parcels) must be delivered or picked up from the customer;
• Several shipments (parcels) could be addressed to a customer (parcels should be

delivered at once; if there are too many of them, e.g., the capacity of the drone was
reached, we replaced one customer with two or more (we introduced the so-called
virtual customers who had the same location)), which created significant novelty in
relation to the VRPD;

• Various types of shipment were considered;
• Mobile points (mobile hubs—MHs) were used for drone take-offs;
• Drones and vehicles (i.e., trucks) were used to transport shipments (trucks to deliver

drones to MHs and drones to deliver shipments to customers);
• The number of MHs was limited;
• Locations for MHs were known;
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• The selection of MHs was optimized for a given set of shipments which created novelty
in relation to VRPD;

• The number of drones and trucks was limited;
• Each drone was characterized by:

# Load capacity (which determined the number of shipments (parcels) it could carry);
# The maximum range (which determined the time in which the parcels must

be delivered);

• In general, a drone could visit several clients, which was especially useful for a network
of clients, e.g., a network of pharmacies, a network of car repair shops, etc.;

• The delivery route for all drones was minimized;
• The allocation of shipments to drones and drones to vehicles was determined, which

introduced novelty in relation to the VRPD;
• If it was impossible to deliver a set of shipments, the shipments preventing delivery

were found;
• Situations where a specific drone dx was damaged or unavailable and could not take

part in deliveries were also considered.

The load capacity was balanced at individual road stages, i.e., after the shipment was
delivered or picked up from the customer, its value was updated.

3.2. Mathematical Model

The model for the EVRPD was formulated as a CSP (constraint satisfaction problem)
with a set of questions. Ultimately, depending on the question, the model took the form
of a CSP or BIP (binary integer programming). Table 1A presents questions Q1–8 for the
presented version of the model. Both the set of questions and the set of constraints may be
modified in subsequent versions of the model.

Table 1. (A) Set of questions for the EVRPD. (B) Description of the modeled problems with the use of
the EVRPD model.

(A)

Symbol Description P/R
Q1 Is it possible to make deliveries? P/R
Q2 What is the minimum cost of deliveries? P/R
Q3 Is it possible to make deliveries within the given time T? P/R
Q4 What is the minimum cost of deliveries in the given time T? P/R

Q5 What is the minimum number of mobile points (mobile hubs—MHs) required to make
deliveries? P

Q6 What is the minimum number of drones needed to make deliveries? P
Q7 Can deliveries be made if the drone dx is damaged? P

Q8 Is it possible to make deliveries if it is not possible to use the mobile point mx? P

P/R—proactive/reactive

(B)

Question Set of constraints Problem type Model type Decision Variable

Q1 (2)–(8) and (10)–(15) feasible CSP Rs

Q2 (1a) and (2)–(8) and (10)–(15) optimal BIP Xh,d,c,j, Rs

Q3 (2)–(15) feasible CSP Rs

Q4 (1a) and (2)–(15) optimal BIP Xh,d,c,j, Rs

Q5 (2)–(8) and (10)–(15) and min MS optimal BIP Zh

Q6 (1b) and (2)–(8) and (10)–(15) optimal BIP Yh,d,c,j,s

Q7 (2)–(8) and (10)–(15) and VCdi = 0 feasible CSP Rs, Yh,d,c,j,s

Q8 (2)–(8) and (10)–(15) and VKmx = 0 feasible CSP Zh, Xh,d,c,j
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The way the model was formulated as questions and constraints, along with the nature
of the proposed questions, enables a proactive way of using the model in the decision
support process. Models for the VRPD known from the literature are usually reactive
in nature.

For the proposed model, questions Q1–4 may be of both a proactive and reactive
nature, depending on the data set and the time the question is asked. On the other hand,
questions Q5–8 are typically proactive (Table 1A).

In the current version, the proposed EVRPD model made it possible, depending on
the choice of question (Q1–8), subset of constraints, and corresponding decision variables,
to model eight different problems, the characteristics of which are presented in Table 1B.

The sets of the model indices, parameters, and decision variables, along with their de-
scriptions, are presented in Table 2. The descriptions and meanings of the model constraints
formulated in (1a)–(15) are presented in Table 3.

min ∑
d∈D

∑
c∈C∪H

∑
j∈C∪H

∑
h∈H

FAc,j · Xh,d,c,j (1a)

min ∑
h∈H

∑
d∈D

∑
c∈M

∑
j∈C

Xh,d,c,j (1b)

∑
j∈c∪H

Xh,d,c,j = ∑
j∈c∪H

Xh,d,j,c∀h ∈ H, d ∈ D, c ∈ C∪M (2)

Xh,d,c,j ≤ ∑
k∈K

Yh,d,c,j,s,∀h ∈ H, d ∈ D, c ∈ C, j ∈ C (3)

Yh,d,c,j,s ≤ Xh,d,c,j∀h ∈ H, d ∈ D, c ∈ C∪M, j ∈ C∪M, s ∈ S (4)

∑
s∈S

VSk · Yh,d,c,j,s ≤ VCd∀d ∈ D, c ∈ C∪M, j ∈ C∪M (5)

∑
h∈H

∑
d∈D

∑
c∈C∪m

Yh,d,c,j,s = RAs,c − Rs∀j ∈ O, s ∈ S : RAs,c = 1, UAs = 1

∑
h∈H

∑
d∈D

∑
c∈O∪m

Yh,d,j,c,s = RAs,c + Rs∀j ∈ O, s ∈ S : RAs,c = 1, UAs = 0
(6)

∑
h∈H

∑
c∈M

∑
j∈C

Xh,d,c,j ≤ 1∀d ∈ D (7)

∑
h∈H

∑
j∈C

∑
d∈D

Yh,d,j,c,s − ∑
h∈H

∑
j∈C

∑
d∈D

Yh,d,o,j,s = RAs,c − Rs∀c ∈ C, s ∈ S : UAs = 1

∑
h∈H

∑
j∈C

∑
d∈D

Yh,d,j,c,s − ∑
h∈H

∑
j∈C

∑
d∈D

Yh,d,o,j,s = −RAso + Rs∀C ∈ C, s ∈ S : UAs = 0
(8)

∑
h∈H

∑
c∈C∪m

∑
j∈C∪m

TAc,j · Xh,d,c,j ≤ TX∀d ∈ D (9)

∑
h∈H

∑
d∈D

∑
c∈O

Yhdhcs = 1∀s ∈ S : UAs = 1

∑
h∈H

∑
d∈D

∑
c∈O

Yhdcms = 1∀s ∈ S : UAs = 0
(10)

∑
h∈H

∑
d∈D

∑
j∈C

Xh,d,j,c = 1∀c ∈ C (11)

Xh,d,c,j = 0∀h ∈ H, d ∈ D, c ∈ M, j ∈ C : h 6= c (12)

Zh · ST ≥ ∑
d∈D

∑
c∈C∪M

∑
j∈C∪M

Xh,d,c,j∀h ∈ H (13)

MS ≥ ∑
h∈H

Zh (14)
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Yh,d,c,j,s = {0, 1}∀h ∈ H, d ∈ D, c ∈ C∪M, j ∈ C∪M, s ∈ S
Xh,d,c,j = {0, 1}∀h ∈ H, d ∈ D, c ∈ C∪M, j ∈ C∪M

Zh = {0, 1}∀h ∈ H
Rs = {0, 1}∀s ∈ S

(15)

Table 2. Indices, sets, parameters, and decision variables.

Symbol Description

Indices and Sets

C The set of customers
S The set of all items (shipments, parcels)
D The set of all drones
H A set of possible locations for mobile points (mobile hubs—MHs)
c, j Delivery point (customer) index (c, j ∈ C)
s Shipment index (s∈S)
d Drone index (d∈D)
h Mobile point index (h∈K)

Parameters

VSs Parcel volume (volumetric weight) s (s∈S)
VCd Drone’s d payload (d∈D)
RAs,c If parcel k should be delivered to customer o, then RAs,c = 1, otherwise RAs,c = 0 (s∈S, c∈C)
FAc,j Cost of travel between customers c and j (c, j ∈ C∪M)—average values include 2D and 3D
TAc,j Transfer time between customers c and j (c, j ∈ C∪M)—average values include 2D and 3D
TX Time within which the delivery should be made
MS Maximum number of mobile points (mobile hubs—MHs)
ST A large constant

UAs
If parcel s was delivered from the mobile point (MH) to the customer, then UAs = 1; otherwise, UAs = 0 (s∈S). The
parameter value determined the delivery direction.

Decision variables

Xh,d,c,j
If a drone d traveled from customer c to customer j and took off from MH, h then Xh,d,c,j = 1, otherwise Xh,d,c,j = 0,
(h∈H, d∈D, c,j∈C∪M).

Yh,d,c,j,s
If a drone d traveled from customer c to customer j and took off from MH, h carrying parcel s, then Yh,d,c,j,s = 1,
otherwise Yh,d,c,j,s = 0, (h∈H, d∈D, c, j∈C∪M).

Rs
If parcel s could not be delivered, then Rs = 1 otherwise Rs = 0 (s∈S). (The introduction of this decision variable meant
that the model will always be solvable.)

Zh If there were take-offs from mobile point h, then Zh = 1; otherwise, Zh = 0.

Table 3. Description of the constraints.

Constraints Description

(1a) Delivery cost (for Q2 and Q4, it is an objective function (FC1) and is minimized)
(1b) Number of drones used (for Q6, it is an objective function (FC2) and is minimized)
(2) Determined the arrival and departure of the drone at and from the delivery point (customer)
(3) If no items were to be carried on the route, then a drone did not travel that route.
(4) If a drone did not travel along a route, no items were to be carried on that route.
(5) In no route segment could a drone carry more parcels than its payload.
(6) Items were delivered to and from mobile points, h∈H.
(7) Ensured a single run of the drone
(8) Items were picked up or delivered to customers. This constraint prevented sub-tours.
(9) Runs were executed within the required time.

(10) Each drone picked up or delivered parcels from or to a source (MH); the first component of the constraint was responsible for the
delivery of parcels to the customer, while the second was responsible for the pick up from the customer.

(11) Ensured the drone was at a point only once (no returns).

(12) Ensured the drone took off and returned to the MH point. (We excluded the possibility that the drone left the parcel with a given
customer and another took it to the next customer).

(13) Determined the value of the decision variable Zh. This variable determined mobile point h∈H from the drone take-off point (in this
version of the model, we did not introduce capacity limits for trucks, so Zh = 1 determined both the MH point and the truck).

(14) Drone take-offs could not take place from more mobile points h∈H than the number of vehicles (trucks).
(15) Binarity
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The proposed version of the model (Q1–8, (1a)–(15)) supported a wide range of
decisions related to last-mile logistics. The most important included: (a) the optimal route
determination for drones (due to the routes traveled or costs), (b) the optimal selection of
the set of mobile points (MH) at which vehicles (trucks) parked and drones took off, (c) the
optimal selection of the set of drones used, (d) checking whether the set of resources (drones
and vehicles) allowed the execution of a given set of orders (packages), (e) determining
the actual needs for drones and trucks to fulfill a given set of orders, (f) determining
the actual delivery time for a given set of orders, (g) determining the optimal cost of the
implementation of a given set of orders, and (h) identifying those shipments (parcels) that
prevented the implementation of a given set of orders using available resources (vehicles
and drones). Moreover, decisions (a)–(h) could be considered with an additional condition
for a given delivery time T.

4. Materials and Methods—Implementation of the EVRPD Model

Two approaches have been proposed for the implementation of the EVRPD model
(Section 3.2). The first (Section 4.1) is a classic approach that uses AMPL (a mathematical
programming language) [10] and mathematical programming solvers (Gurobi and LINGO).
The second approach is a dedicated genetic algorithm (Section 4.2).

4.1. AMPL and Mathematical Programming

The first approach belongs to the exact methods. Its main purpose was to obtain
results that will enable the verification of the approximate methods used for this model and
the basis for analysis of the operator using small-sized examples. Its essential feature and
important element is coding constraints (1a)–(15) and questions Q1–8 of the model using
AMPL. The AMPL model is universal, and it can be solved by many mathematical program-
ming solvers such as: CPLEX, Gurobi, Xpress, Baron, Ilog, and LINDO (commercial solvers),
as well as Neos, Gecode, and CBC (open source) [10]. The AMPL model for the EVRPD is
included in Appendix A. However, Gurobi is the fastest and most powerful mathematical
programming solver available for LP (linear programming), QP (quadratic programming),
MILP (mixed integer programming), MIQP (mixed integer programs with quadratic terms
in the objective function), and MIQCP (mixed integer programs with quadratic terms in
the constraints) problems. Two mathematical programming environments, Gurobi [51] and
LINGO [52], were used for the implementation.

Gurobi has an extensive set of algorithms, and its own procedures and functions
were used to solve discrete optimization problems. Like other solvers, it uses variants
of known methods such as branch-and-bound, cutting planes, etc. Solving the discrete
optimization problem using Gurobi was divided into certain steps and blocks. The first step
was pre-solving, which aimed to tighten the formulation and reduce the problem size (the
procedures and functions used were: Presolve, PrePasses, AggFill, Aggregate, DualReductions,
PreSparsify, and ImproveStartTime). The next step was to solve the continuous relaxations
(the procedures and functions used were: Method and NodeMethod). At this stage, ignoring
integrity occurred, and a bound was given on the optimal integral objective. The next
step was to cut off relaxation solutions (the procedures and functions used were: Cuts,
CutPasses, CutAggPasses, and GomoryPasses). After which, the branching variable selection
took place, which was crucial for limiting the search tree size. Here the VarBranch procedure
was applied. In the last step, primal heuristics (Heuristics, MinRelNodes, PumpPasses, RINS,
SubMIPNodes, and ZeroObjNodes) were used to find integer-feasible solutions.

LINGO is a comprehensive tool designed to make building and solving linear, non-
linear (convex, nonconvex, and global), quadratic, quadratically constrained, second-
order cone, semi-definite, stochastic, and integer optimization models faster, easier, and
more efficient.

It should be mentioned that more than 2500 companies in over 40 industries turn data
into smarter decisions with Gurobi products [51]. By contrast, the number of researchers
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and educational institutions using this product is difficult to estimate. A schematic diagram
of the exact proposed approach is shown in Figure 1.
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4.2. Dedicated Genetic Algorithm

In contrast, the proposed dedicated genetic algorithm (DGA) is metaheuristic and is
designed to solve real- and industrial-sized examples of the EVRPD. It is an approximate
method like any other metaheuristic. The proposed genetic algorithm (Figure 2) was an
alternative to the MP solver.
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What distinguishes this algorithm from classical GA is: the dedicated representation
of the EVRPD (Section 4.2.1), dedicated selection of the initial population (Section 4.2.2),
constraint handling procedure (Section 4.2.3) and an evaluation procedure (Section 4.2.4)
which contain elements of pre-solving the problem being solved.

4.2.1. Dedicated Representation of Individuals for the EVRPD

This algorithm used an appropriate representation of individuals for the EVRPD,
which, considering the knowledge of the problem, reduced the number of unfulfilled
constraints during the operation of the algorithm. Everyone in the population was deter-
mined by customer index j∈C which was assigned to a specific drone d∈D. Thus, it was
a two-dimensional representation with delivered shipments and parcels s∈S assigned in
pairs (j, d). The proposed representation is shown in Figure 3. It should be emphasized that
the index s has been included in Figure 3 to better demonstrate the proposed representation.
In practice, the pair (j, d) was enough to code an individual.
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Using this representation, the number of unfulfilled constraints was reduced. This
representation of an individual meant that only the following constraints were not fulfilled:
constraint (5)—the drone’s payload; constraint (9)—the drone’s run was executed within
the required time; constraint (14)—take-offs were only from the allowed number of MH
points. Therefore, in the developed genetic algorithm (Figure 2) for the generation of
individuals, corrections were proposed that eliminated individuals who did not fulfill
constraints (a)–(c). A detailed description of individual DGA elements is presented in
Sections 4.2.1 and 4.2.4.

4.2.2. Initiation—Selection of the Initial Population

The selection of the initial population was carried out in two steps. In the first step,
shipments were grouped into packages. Grouping was completed according to customers.
For each package of shipments, a drone was selected to deliver it to the customer. This was
an element of pre-solving because before we started solving the problem, we simplified
and reduced it. We operated on packages already assigned to customers and drones, which
reduced the space of the solutions. In the second step, the constraint handling procedure
(Section 4.2.4) was run to check that the drone’s payload was not exceeded. The same
procedure was run after the genetic operations and the generation of a new population.

4.2.3. Evaluation Procedure

The evaluation procedure assessed the newly generated population. The basic criterion
for evaluation was cost, but the distance was also considered. In the proposed genetic
algorithm (DGA), the evaluation procedure consisted of solving the TSP multiple times
(through dedicated heuristics) for subsequent MHs. In detail, this procedure worked in
two steps:

• Step 1: The traveling salesman problem (TSP) was solved for each MH starting point
and each drone. The route was determined in such a way that the cost of delivery was
the lowest, and the delivery time was within the set time.

• Step 2: The MH starting points were selected in such a way that the total cost of
deliveries was as low as possible and that the number of allowed starting points was
not exceeded. This step also ensured that constraint (14) was satisfied.

Step 2 of the evaluation procedure also performed the pre-solving of the modeled
problem by eliminating some starting points from the solution space.

4.2.4. Constraint Handling Procedure

The constraint handling procedure for the DGA checks that the drone’s payload was
not exceeded. It worked as follows: If the drone’s payload was smaller than the assigned
load, the parcels were transferred to another drone for which the allocation would not
result in exceeding its payload (the direction of the parcel was considered, i.e., whether it
was a delivery or pick up).

If it was not possible to execute the allocation, the largest package of shipments was
divided in half, and the procedure was repeated. If there were no more packages to be
divided and the allocation could not be determined, and the capacity of the drones was
too small in relation to the number of shipments, the algorithm would be stopped. This
procedure ensured that both constraints (5) and (9) were satisfied.
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4.2.5. Genetic Operators

Traditional genetic operators were used in the DGA—tournament selection, one-point
crossover, and mutation. For tournament selection, individuals from the current population
were randomly selected into groups of two (tournament size equal to two). The number
of groups for the selection must be equal to the size of the population. The selection
operator chose one individual from each group (the algorithm worked on a fixed number
of individuals in the population). For the individual to be placed in a mating pool, its
objective function value must be lower than that of the other individuals in the group. In
the next step, mating pairs were randomly selected from the mating pool to undergo a
one-point crossover in accordance with the set crossover probability (a constant moderate
level of the crossover rate was adopted in this study). In this case, the crossover involved
the exchange of fragments between parent individuals at a randomly generated crossover
point. The new individuals (two new individuals are produced for each pair of parents)
satisfied the problem assumptions. The new individuals were subject to uniform mutation
according to the set moderate level of mutation probability. The practical implementation
of the mutation operator in the presented problem consisted of the random selection of a
parcel and then the random generation of a drone number for the parcel.

The genetic algorithm terminated when it reached the number of iterations set by the
program’s user, or an additional stop criterion was defined by the lack of improvement in
the quality of the best individual in the population in the next 50 generations.

In this study, the population size was selected empirically with respect to the dimen-
sions of the problem. However, some assumptions were made. The population could not
be less than the number of customers (c∈C). However, the number of generations was not
less than twice the number of customers. For smaller data instances, these values were
greater than these thresholds, and for smaller ones, they were close to them. The remaining
values of the parameters of the genetic algorithm were also experimentally determined,
inspired by the research described in [53]. Thus, the crossover probability was set at 0.5
and the mutation probability at 0.1.

5. Computational Examples

The computational experiments were carried out in two stages. The first stage concerned
the verification of the scope of the decisions supported by the model (constraints (1)–(15) and
questions Q1–6). At this stage of the experiments, the model with questions Q7 and Q8 was
not tested. For this purpose, computational experiments E01–32 were performed for different
data instances. Customer location data were taken from the available benchmarks [54]. For
all experiments of this phase, customer location data from the 10.10.1.txt instance were used.
The test data had been supplemented with MH points (MH1–3). The remaining values of the
model parameters were adopted as in the AMPL model (as shown in Appendix A) as well as
the same data in tabular form in Appendix B. Data instances E01–16 differed in the number of
trucks, drones, MH points, etc., and questions Q1–6 were under consideration. The cost and
method of deliveries were sought. Two approaches were used to implement the models. The
first was AMPL with the Gurobi solver (Section 4.1), while the second was the proprietary
DGA (Section 4.2). The obtained results of the experiments are presented in Table 4.

Additionally, they were illustrated for selected data instances as drone routes in
Appendix C (see Figures A1–A6). Due to the typically proactive nature of Q5 and Q6
questions, the obtained answers could be successfully used as input data for the remaining
questions. Additionally, for these questions, considering drone routes was irrelevant, and
they were not part of the decision for these questions. The obtained results (FC value)
differed for Q1 and Q3 (see E01, E03, E05, E09, E13, and E16). These were feasible solutions,
and the DGA found better solutions each time. For the remaining experiments, both
approaches generated the same FC value. As for the computation time, for these sizes of
problems, it was similar for both approaches and ranged from a second to about a minute.
An interesting result, in addition to the FC value obtained and the method of deliveries
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(routes), was information on the number of trucks and drones used (noted in parentheses)
and the actual delivery time in relation to the nominal values of the parameters mentioned.

Table 4. The results of the first stage of the experiments for the 10.10.1.txt instance and various Q,
N_MH, ST, MI, SC.

E Q N_MH ST
MI

(MO) SC TR
AMPL+Gurobi DGA

TX V T FC TX T FC

E01 Q1 1 1 10 (10) 1 30 26 1211 1 56 22 2 48
E02 Q2 1 1 10 (10) 1 30 16 1211 1 34 16 25 34
E03 Q3 1 1 10 (10) 1 16 16 1221 1 42 16 4 35
E04 Q4 1 1 10 (10) 1 16 16 1211 1 34 16 25 34
E05 Q1 1 1 10 (10) 4 30 15 4841 2 55 18 1 51
E06 Q2 1 1 10 (10) 4 30 16 4841 2 34 16 24 34
E07 Q3 1 1 10 (10) 4 10 7 4841 15 52 7 3 52
E08 Q4 1 1 10 (10) 4 10 9 4841 35 40 9 25 40
E09 Q1 3 2 10 (10) 4 30 19 17,427 3 75 18 4 66
E10 Q2 3 2 10 (10) 4 30 15 17,427 3 33 15 25 33
E11 Q3 3 2 10 (10) 4 10 6 17,427 67 41 6 8 41
E12 Q4 3 2 10 (10) 4 10 7 17,427 85 37 7 25 37
E13 Q1 3 3 10 (10) 4 30 18 17,427 2 42 15 10 38
E14 Q2 3 3 10 (10) 4 30 15 17,427 7 33 15 25 33
E15 Q3 3 3 10 (10) 4 8 7 17,427 8 52 5 12 50
E16 Q4 3 3 10 (10) 4 8 5 17,427 12 40 5 25 40
E17 Q5 1 1 10 (10) 1 30 — 1211 2 1 — 2 1
E18 Q6 1 1 10 (10) 1 30 — 1211 2 1 — 2 1
E19 Q5 1 1 10 (10) 1 16 — 1211 2 1 — 2 1
E20 Q6 1 1 10 (10) 1 16 — 1211 2 1 — 2 1
E21 Q5 1 1 10 (10) 4 30 — 4841 2 1 — 2 1
E22 Q6 1 1 10 (10) 4 30 — 4841 2 1 — 2 1
E23 Q5 1 1 10 (10) 4 16 — 4841 4 1 — 4 1
E24 Q6 1 1 10 (10) 4 16 — 4841 34 2 — 27 2
E25 Q5 3 2 10 (10) 4 30 — 17,427 3 1 — 3 1
E26 Q6 3 2 10 (10) 4 30 — 17,427 4 1 — 4 1
E27 Q5 3 2 10 (10) 4 30 — 17,427 48 2 — 23 2
E28 Q6 3 2 10 (10) 4 30 — 17,427 92 3 — 25 3
E29 Q5 3 3 10 (10) 4 30 — 17,427 3 1 — 3 1
E30 Q6 3 3 10 (10) 4 30 — 17,427 1 1 — 1 1
E31 Q5 3 3 10 (10) 4 30 — 17,427 34 2 — 24 2
E32 Q6 3 3 10 (10) 4 30 — 17,427 67 4 — 28 4

E—index of the experiment, N_MH—number of mobile points (MHs), ST—number of trucks, T—computation
time in seconds, MO—number of recipients (customers), MI—number of shipments (parcels), SC—number of
drones, FC—for Q1–4 delivery cost, for Q5 minimum number of mobile points, and for Q6 minimum number of
drones, TR—acceptable delivery time, TX—delivery time, V—number of decision variables.

In the second stage, the experiments verified the usefulness of both proposed ap-
proaches to model implementation (mathematical programming solvers, Gurobi, LINGO,
and the proprietary DGA). Therefore, they were performed on a larger number of data
instances, often of larger sizes (10.10.1.txt, 10.10.3.txt, 12.10.1.txt, 20.10.1.txt, 50.10.1.txt,
100.10.1.txt) [54] for questions Q2, Q4, Q5, and Q6. This is because these questions were
computationally very demanding (combinatorial optimization). The individual experi-
ments F1–24 differed, e.g., the number of packages and the number of drones. The obtained
results are presented in Table 5. After analyzing the results, it could be concluded that
the exact approach (AMPL+Gurobi and AMPL+LINGO) works and is acceptable only for
small data instances (F1–16). For the remaining data instances, either no solution could
be obtained (F21–24) or solutions were obtained after stopping calculations (F17–20) with
a worse FC value. Therefore, for larger instances of data, the recommended approach is
DGA, which made it possible to obtain a solution in an acceptable time. This was due, on
the one hand, to the general properties of this metaheuristic, but also to the adaptation to
this problem.
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Table 5. The results of the second stage of the experiments for the various F, Q, ST, MI, SC.

F (Instance) Q MI (MO) SC TR
AMPL+Gurobi AMPL+LINGO DGA

V TX T FC T FC TX T FC

F1 (10.10.1.txt) Q2 10 (10) 4 30 17,427 15 3 33 34 33 15 25 33
F2 (10.10.1.txt) Q4 10 (10) 4 8 17,427 7 67 37 134 37 7 25 37
F3 (10.10.1.txt) Q5 10 (10) 4 8 17,427 — 4 1 35 1 — 8 1
F4 (10.10.1.txt) Q6 10 (10) 4 8 17,427 — 54 1 145 1 — 14 1
F5 (10.10.3.txt) Q2 10 (10) 4 30 17,427 14 6 29 41 29 14 24 29
F6 (10.10.3.txt) Q4 10 (10) 4 10 17,427 7 68 36 145 36 7 25 36
F7 (10.10.3.txt) Q5 10 (10) 4 10 17,427 — 6 1 45 1 — 10 1
F8 (10.10.3.txt) Q6 10 (10) 4 10 17,427 — 3 1 189 1 — 13 1
F9 (12.10.1.txt) Q2 12 (12) 4 30 28,395 16 145 32 456 32 16 34 32
F10 (12.10.1.txt) Q4 12 (12) 4 10 28,395 10 345 35 678 35 10 33 35
F11 (12.10.1.txt) Q5 12 (12) 4 10 28,395 — 67 2 189 2 — 23 2
F12 (12.10.1.txt) Q6 12 (12) 4 10 28,395 — 345 2 867 2 — 34 2
F13 (20.10.1.txt) Q2 20 (20) 4 30 116,424 18 567 67 956 67 18 61 67
F14 (20.10.1.txt) Q4 20 (20) 4 12 116,424 10 754 82 1256 82 10 62 82
F15 (20.10.1.txt) Q5 20 (20) 4 12 116,424 — 134 2 565 2 — 55 2
F16 (20.10.1.txt) Q6 20 (20) 4 12 116,424 — 534 3 987 3 — 57 3
F17 (50.10.1.txt) Q2 50 (50) 4 30 1,727,485 28 1800 * 132 1800 * NFSF 26 78 128
F18 (50.10.1.txt) Q4 50 (50) 4 25 1,727,485 24 1800 * 156 1800 * NFSF 24 76 141
F19 (50.10.1.txt) Q5 50 (50) 4 25 1,727,485 — 1800 * 2 1800 * NFSF — 77 2
F20 (50.10.1.txt) Q6 50 (50) 4 25 1,727,485 — 1800 * 3 1800 * NFSF — 79 3
F21 (100.10.1.txt) Q2 100 (100) 6 35 19,318,893 - 1800 * NFSF 1800 * NFSF 34 87 194
F22 (100.10.1.txt) Q4 100 (100) 6 30 19,318,893 - 1800 * NFSF 1800 * NFSF 28 89 210
F23 (100.10.1.txt) Q5 100 (100) 6 30 19,318,893 — 1800 * NFSF 1800 * NFSF — 86 1

F24 (100.10.1.txt) Q6 100 (100) 6 30 19,318
893 — 1800 * NFSF 1800 * NFSF — 85 2

F—index of the experiment (file of data instance), T—computation time in seconds, MO—number of recipients
(customers), MI—number of shipments (parcels), SC—number of drones, FC—for Q1–4 delivery cost, for Q5
minimum number of mobile points, and for Q6 minimum number of drones, TR—acceptable delivery time,
TX—delivery time, V—number of decision variables, * calculations were interrupted (here after 1800s).

A comparative analysis of the proposed implementation methods was made in terms
of computation time. The computation times for the selected data instances were compared
and presented in the form of a bar chart. A comparison was made between Q2 and Q4 and
is presented in Figures 4 and 5, respectively.
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The computational experiments used AMPL, Gurobi 9.1, LINGO 19, proprietary
DGA implementation, and a computer with the following parameters: Intel (R) Core (TM)
i5-4200M CPU @ 2.50 GHz, 8 GB RAM, Win 64×.

6. Conclusions

The proposed model for the EVRPD could be the basis for building decision support
systems for last-mile delivery or urban logistics. It could also be used to answer ad
hoc questions related to last-mile delivery and, with minor changes, to other types of
vehicles [55–57].

In this version, the presented model supported the decisions related to the optimization
of routes, the number of drones and vehicles, delivery costs, etc. (Section 3.2).

An important innovation was the flexible structure (a set of constraints and a set
of questions that could be easily extended) and great versatility of the presented model,
as well as the introduction of the decision variable Rs, causing the proposed model to
always have a solution. The introduction of this variable allows you to manage undelivered
shipments, e.g., deciding to outsource their deliveries to third parties, short-term rental of
additional drones or vehicles, etc.

The method of parameterization of the model and its structure allowed, in subsequent
versions, to consider weather conditions, routes in 3D dimension, etc.

This study also proposed two methods of implementing the modeled problem. The
first was an exact method and was characterized by high versatility, which resulted from
the use of the universal AMPL. This resulted in the possibility of using most of the MP
solvers available on the market for the solution. Nevertheless, due to the combinatorial
nature of the problem, a second method, DGA, has been proposed.

The presented metaheuristics were adjusted to the EVRPD, e.g., in terms of problem
representation, coding, evaluation, and constraint handling procedures. Both procedures
used elements of pre-solving the modeled problem, which reduced the space and shortened
the time until the solution. All this made it possible to solve much larger problems (up to
20 times) compared with the first method within an acceptable time (Table 5).

Further work will focus on expanding the EVRPD model by adding new questions
and new constraints which consider the specificity of drone technology (the range of the
drone depending on the weather conditions, cargo delivered, etc.), and road traffic between
MHs, etc. Research on appropriate DGA-tuning based on [53] will also be undertaken.

Author Contributions: Conceptualization, P.S. and J.W.; Data curation, J.W.; Formal analysis, P.S.;
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Writing—review & editing, M.J. All authors have read and agreed to the published version of the
manuscript.
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Appendix A. AMPL Model for the EVRPD (Files Ready to Use for the Gurobi Solver)

File r.mod
set SH;
set SP;
set SC;
set SS;
set SD;
param VS{SS};
param UA{SS};
param VC{SD};
param RA{SS,SP};
param FA{SP,SP};
param TA{SP,SP};
param MXX;
param ST;
param N_MH;
var Z{SH} >=0, binary;
var X{SH,SD,SP,SP} >=0, binary;
var Y{SH,SD,SP,SP,SS} >=0, binary;
var FC1A;
var FC1B;
var TX;
var R{SS};
minimize fc: FC1A;
subject to C1a: sum{h in SH, d in SD, j in SP, c in SP}

FA[c,j]*X[h,d,c,j]=FC1A;
subject to C1b: sum{h in SH, d in SD, j in SP, c in SP:c<=N_MH}

X[h,d,c,j]=FC1B;
subject to C2 {h in SH, d in SD, c in SP}:

sum{j in SP} X[h,d,c,j] = sum{j in SP} X[h,d,j,c];
subject to C3 {h in SH, d in SD, c in SP, j in SP : c> N_MH and j> N_MH

and c<>j}: X[h,d,c,j]<=sum{s in SS} Y[h,d,c,j,s];
subject to C4 {h in SH, d in SD, c in SP, j in SP, s in SS: c<>j}:

Y[h,d,c,j,s]<=X[h,d,c,j];
subject to C5 {h in SH, d in SD, c in SP, j in SP}:

sum{s in SS} VS[s]*Y[h,d,c,j,s]<=VC[d];
subject to C6a {s in SS, j in SP: UA[s]=1 and RA[s,j]=1}:

sum{d in SD, c in SP, h in SH} Y[h,d,c,j,s] = RA[s,j]-R[s];
subject to C6b {s in SS, j in SP: UA[s]=0 and RA[s,j]=1}:

sum{d in SD, c in SP, h in SH} Y[h,d,j,c,s] = RA[s,j]+R[s];
subject to C7 {d in SD}:

sum{h in SH, c in SP, j in SP:c<= N_MH } X[h,d,c,j] <= 1;
subject to C8a {c in SP, s in SS: UA[s]=1}:

sum{j in SP, d in SD, h in SH: c<>j} Y[h,d,j,c,s]-
sum{j in SP, d in SD, h in SH: c<>j} Y[h,d,c,j,s]

=RA[s,c]-R[s];
subject to C8b {c in SP, s in SS: UA[s]=0}:

https://zenodo.org/record/2572764#.YYvxmmDMKUk
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sum{j in SP, d in SD, h in SH: c<>j} Y[h,d,j,c,s]-
sum{j in SP, d in SD, h in SH: c<>j} Y[h,d,c,j,s]

=-RA[s,c]+R[s];
subject to C9 {d in SD}:

sum{h in SH, c in SP, j in SP} TA[c,j]*X[h,d,c,j]<=TX;
subject to C10a {s in SS :UA[s]=1}:

sum{h in SH, d in SD, j in SP} Y[h,d,h,j,s]=1;
subject to C10b {s in SS :UA[s]=0}:

sum{h in SH, d in SD, j in SP} Y[h,d,j,h,s]=1;
subject to C11 {c in SC}:

sum{h in SH, d in SD, j in SP} X[h,d,j,c+ N_MH]=1;
subject to C12 {h in SH, d in SD, c in SP, j in SP:c<= N_MH and h<>c}:

X[h,d,c,j]=0;
subject to C13 {h in SH}:

Z[h]*ST>=sum{d in SD, c in SP, j in SP} X[h,d,c,j];
subject to C14 :

MXX>=sum{h in SH} Z[h];

FILE r.dat
data;
set SH :=1 2 3 ;
set SP :=1 2 3 4 5 6 7 8 9 10 11 12 13 ;
set SC :=1 2 3 4 5 6 7 8 9 10 ;
set SD :=1 2 3 4 ;
set SS :=1 2 3 4 5 6 7 8 9 10 ;
param VS:= 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1;
param UA:= 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1;
param VC:= 1 10 2 10 3 10 4 10;
param TX=50;
param MXX=2;
param N_MH=3;
param ST=1000;
param RA: 1 2 3 4 5 6 7 8 9 10 11 12 13:=

1 0 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1

;
param FA: 1 2 3 4 5 6 7 8 9 10 11 12 13:=

1 0 2 4 3 6 7 5 3 1 5 3 4 3
2 2 0 5 4 5 9 6 5 1 7 4 2 3
3 4 5 0 4 7 3 5 4 5 2 2 7 6
4 3 4 4 0 8 7 2 1 3 4 5 5 3
5 6 5 7 8 0 8 10 8 6 9 4 7 8
6 7 9 3 7 8 0 8 7 8 3 4 10 9
7 5 6 5 2 10 8 0 2 5 5 7 7 4
8 3 5 4 1 8 7 2 0 4 4 5 5 3
9 1 1 5 3 6 8 5 4 0 6 5 2 2



Appl. Sci. 2022, 12, 8255 17 of 21

10 5 7 2 4 9 3 5 4 6 0 4 9 7
11 3 4 2 5 4 4 7 5 5 4 0 7 6
12 4 2 7 5 7 10 7 5 2 9 7 0 3
13 3 3 6 3 8 9 4 3 2 7 6 3 0

;
param TA: 1 2 3 4 5 6 7 8 9 10 11 12 13:=

1 0 1 2 1 3 3 2 1 1 3 2 2 1
2 1 0 3 2 2 4 3 2 1 4 2 1 2
3 2 3 0 2 3 2 3 2 2 1 1 4 3
4 1 2 2 0 4 4 1 0 2 2 3 2 1
5 3 2 3 4 0 4 5 4 3 4 2 3 4
6 3 4 2 4 4 0 4 3 4 1 2 5 5
7 2 3 3 1 5 4 0 1 3 2 3 3 2
8 1 2 2 0 4 3 1 0 2 2 2 3 2
9 1 1 2 2 3 4 3 2 0 3 2 1 1
10 3 4 1 2 4 1 2 2 3 0 2 4 4
11 2 2 1 3 2 2 3 2 2 2 0 3 3
12 2 1 4 2 3 5 3 3 1 4 3 0 1
13 1 2 3 1 4 5 2 2 1 4 3 1 0

model r.mod;
data r.dat;
option solver gurobi;
solve;

Appendix B. Data for EVRPD
k 1 2 3 4 5 6 7 8 9 10
Vkk 1 1 1 1 1 1 1 1 1 1
UAk 1 1 1 1 1 1 1 1 1 1

k 1 2 3 4
VCd 10 10 10 10

WAk,o
o

1 2 3 4 5 6 7 8 9 10 11 12 13

k

1 0 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1
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FAo,j
j

1 2 3 4 5 6 7 8 9 10 11 12 13

o

1 0 2 4 3 6 7 5 3 1 5 3 4 3
2 2 0 5 4 5 9 6 5 1 7 4 2 3
3 4 5 0 4 7 3 5 4 5 2 2 7 6
4 3 4 4 0 8 7 2 1 3 4 5 5 3
5 6 5 7 8 0 8 10 8 6 9 4 7 8
6 7 9 3 7 8 0 8 7 8 3 4 10 9
7 5 6 5 2 10 8 0 2 5 5 7 7 4
8 3 5 4 1 8 7 2 0 4 4 5 5 3
9 1 1 5 3 6 8 5 4 0 6 5 2 2
10 5 7 2 4 9 3 5 4 6 0 4 9 7
11 3 4 2 5 4 4 7 5 5 4 0 7 6
12 4 2 7 5 7 10 7 5 2 9 7 0 3
13 3 3 6 3 8 9 4 3 2 7 6 3 0

TAo,j
o

1 2 3 4 5 6 7 8 9 10 11 12 13

j

1 0 1 2 1 3 3 2 1 1 3 2 2 1
2 1 0 3 2 2 4 3 2 1 4 2 1 2
3 2 3 0 2 3 2 3 2 2 1 1 4 3
4 1 2 2 0 4 4 1 0 2 2 3 2 1
5 3 2 3 4 0 4 5 4 3 4 2 3 4
6 3 4 2 4 4 0 4 3 4 1 2 5 5
7 2 3 3 1 5 4 0 1 3 2 3 3 2
8 1 2 2 0 4 3 1 0 2 2 2 3 2
9 1 1 2 2 3 4 3 2 0 3 2 1 1
10 3 4 1 2 4 1 2 2 3 0 2 4 4
11 2 2 1 3 2 2 3 2 2 2 0 3 3
12 2 1 4 2 3 5 3 3 1 4 3 0 1
13 1 2 3 1 4 5 2 2 1 4 3 1 0

TX=50;
MXX=2;
N_MH=3;
ST=1000;
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