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Abstract: We present a novel mathematical programming model to address a team-oriented worker
assignment problem, called the team formation and worker assignment problem (TFWAP). The model
establishes a multi-skilled team with high group cohesion to meet cell operational requirements. To
this end, we developed a two-stage decision methodology based on an adaptive large neighbourhood
search (ALNS) method as a solution approach. The first stage was a team formation problem that
maximised workers’ skills. The second stage was a worker assignment problem that minimised
the total inventory level and variations in the average cell worker’s idle time. The performance
of the two-stage ALNS method was assessed on ten cell formation benchmarks selected from the
literature. The computational results show that the two-stage ALNS method could provide a solution
equivalent to the exact method based on the heuristic-based brute force search (HBBFS) for small
instances in the team formation stage. Moreover, the two-stage ALNS method outperformed the
non-dominated sorting genetic algorithm-II (NSGA-II)-based single-stage decision methodology on
all ten cell formation benchmarks in the worker assignment stage. Finally, the two-way analysis
of variance (ANOVA) test highlighted the impact of the cell-cohesion requirement on performance
when forming a team in a cell.

Keywords: adaptive large neighbourhood search; cellular manufacturing system; cross-trained
workers; sociometry; team formation; worker assignment

1. Introduction

In a cellular manufacturing system (CMS), a group of multi-skilled workers plays an
important role because they create a capacity buffer in response to fluctuations in workforce
demand and supply [1–3]. Workers are required to work as a team under the design
of a dual resource-constrained manufacturing cell [1,4,5], a teamwork environment that
creates a high degree of worker interaction. Under a team structure, cell team members are
cross-trained and work together toward a common goal, which requires team dynamics
and synergies in performing tasks [1]. Successful teams require high-quality taskwork,
teamwork, and good working relationships. These team requirements are crucial when
managing a cross-trained workforce in a CMS. Poor working relationships among cell team
members can lead to extreme job dissatisfaction and an unpleasant working environment,
which deteriorate cell productivity and quality of work [1,6]. Manufacturing firms would
be unable to perceive the benefits of CMS if managers failed to form a cohesive cell team.

The dual resource-constrained manufacturing cell typically contains more tasks than
workers. Cell team members are generally responsible for a wide range of tasks. This cell
characteristic makes it essential to provide a proper assignment to workers. An assignment
that mismatches workers’ skills could decrease workers’ morale and limit their productivity.
Therefore, it is necessary to carefully select cell team members and assign workers to operate
tasks with the desired qualifications. This perspective motivated us to propose an effective
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method that helps managers to form a cohesive, efficient work team in a CMS. The proposed
method would benefit the workers and managers since both human and operation aspects
of a CMS were considered.

Many researchers have considered the interpersonal relationships of team members in
the team formation problem, mainly in the context of project management and concurrent
engineering [7–14]. The existing literature often overlooks the workers’ interpersonal
relationships when addressing the worker assignment problem in a CMS. Furthermore,
the impact of group cohesion on cell team formation remained unstudied. This study
attempts to fill the literature gap by addressing the research question as follows: How
does the group cohesion requirement affect the performance of cell team formation? To
address this research question, we conducted an extensive-computational experiment
based on a generated dataset to analyse the impact of group cohesion requirements on
the performance of cell team formation. The experiment implemented the proposed
mathematical programming model and solving approach for the team formation and
worker assignment problem (TFWAP).

The major contributions of this study are twofold: theoretical contribution and man-
agerial contribution. For theoretical contribution, we formulated a new mathematical
programming model to address the TFWAP in a CMS, considering the interpersonal re-
lationship of workers. We proposed a two-stage methodology as a solution approach
based on the ALNS method (two-stage ALNS). The primary goal of this methodology is to
generate feasible solutions within a reasonable computational time. The two-stage ALNS
method reduced the computational complexity of the TFWAP by decomposing the problem
into two dependent stages—that is, (1) team formation and (2) worker assignment. For
managerial contribution, we provided insights by revealing the impact of group cohesion
requirement on cell team formation through statistical analysis, with the results obtained
from the two-stage ALNS method.

The remainder of this paper is organised as follows. Section 2 presents several relevant
conclusions obtained from the study reported in this paper. Section 3 presents the problem
description and mathematical model formulation. In Section 4, the proposed solution
methodology is presented. Section 5 presents the numerical example. Section 6 presents
the computational experiments. Finally, Section 7 presents the conclusions and discussion
of future research direction.

2. Scientific Literature Review

In this section, we explore the existing literature related to the team-oriented workforce
planning process, specifically for team formation and worker assignment in the context
of CMS.

2.1. Team Formation

Several qualitative studies have identified a link between teamwork and interpersonal
relationships among team members. Stevens and Campion [15] developed the framework
of knowledge, skill, and ability (KSA) requirements for teamwork. Their framework re-
ported that healthy interpersonal relationships were present in an effective team. Salas
et al. [16] defined teamwork as a dynamic process encompassing team members’ thoughts,
feelings, and behaviours while interacting toward a common goal. Hoegl and Gemuen-
den [17] developed a comprehensive concept of the quality of interactions in a team—that
is, teamwork quality (TWQ). They argued that high TWQ could not be achieved without an
adequate level of group cohesion. Beal et al. [18] conducted a meta-analysis of the relation-
ship between cohesion and group performance. Their analysis implemented three cohesion
components, originally introduced by Mullen and Copper [19], namely, interpersonal at-
traction, task commitment, and group pride. They suggested that the method of sociometry
developed by Moreno [20] could be used to indicate the interpersonal attraction of a group.

Numerous studies have implemented sociometry in quantitative methods to represent
the interpersonal relationships of team members. Gutiérrez et al. [8] proposed a math-
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ematical model to maximise positive social relationships among workers in each team
project. Ballesteros-Pérez et al. [9] defined the degree of team cohesion to maximise pos-
itive group interactions and minimise negative group interactions. Chen [10] proposed
a mathematical model and solving approach based on sociometry. The author applied
the proposed method to optimise relationships of students based on three actual datasets.
Campêlo et al. [11] introduced the sociotechnical team formation problem by considering
team member skills and interpersonal relationships among team members. The existing
literature shows that other methods can also represent the interpersonal relationships of
team members. Zakarian and Kusiak [12] applied the analytical hierarchy process (AHP)
to prioritise team members based on customer requirements, engineering characteristics
of products, and team member preferences. Chen and Lin [7] assessed the working rela-
tionship of team members using the Myers–Briggs type indicator (MBTI) with AHP. Zhang
and Zhang [13] implemented MBTI to represent the interpersonal relationships of team
members in the context of project management. Fathian et al. [14] proposed a mathematical
model to maximise interpersonal relationships based on the relationship probability and
members’ reliability issues.

Rahmanniyay et al. [21] argued that the competency of workers is one of the most critical
factors in team formation problems. They proposed a multi-objective multi-stage stochastic
programming model to optimise the competencies of team members and staffing costs un-
der uncertainty. Zhang and Zhang [13] addressed the capabilities of team members using
implemented fuzzy AHP based on fuzzy linguistic preference relations. Feng et al. [22]
proposed criteria for member selection of the cross-functional team, including individual
performance and collaborative performance. Despite the effort by researchers to develop
the mathematical model for team formation problems, very few quantitative studies have
developed models considering both teamwork and worker competencies in a manufac-
turing system. A pioneering study by Askin and Huang [23] developed a model for the
team formation problem in a CMS, considering team synergy and worker job fitness. They
implemented the Kolbe conative index (KCI) to measure team synergy and suggested that
the KCI and MBTI were suitable for a quantitative model considering teamwork. Fitz-
patrick and Askin [24] proposed a heuristic method to solve the team formation problem
in a CMS based on the KCI and team skill requirements. Yilmaz et al. [25] implemented a
lean principle-based fuzzy methodology to emphasise the importance of cross-functional
worker teams by showing that a team-based approach could significantly reduce the lead
time and the operational costs in new product development projects.

2.2. Worker Assignment

Workers’ competency issues in worker assignment problems have also attracted
considerable attention from researchers. Norman et al. [26] investigated the impact
of worker and technical skills on the performance of worker assignments in a CMS.
Wirojanagud et al. [27] developed a model to determine the amount of hiring, firing, and
cross-training for workers at each general cognitive ability level. Süer and Tummaluri [28]
proposed a three-phase method to solve the multi-period worker assignment problem in a
CMS with worker skill-based operational time. McDonald et al. [29] developed a model for
worker assignment in a CMS regarding worker cross-training levels. Aryanezhad et al. [30]
developed a dynamic cell formation and worker assignment model that considered worker-
task skill requirements. Yilmaz et al. [31] presented an integer programming optimisation
model for the batch scheduling and worker assignment problems in a multi-hybrid CMS
considering the skilled workforce. The learning-forgetting effect and knowledge transfer of
workers have also been extensively studied by researchers [28,32–35].

A CMS typically includes two types of systems—that is, the conventional cellular
manufacturing (CCM) system and Japanese cellular manufacturing (JCM) system [5].
Many studies have proposed a solution approach for worker assignment problems in
CMS. Liu et al. [36] developed a three-stage heuristic to solve the task worker training
plan and the worker-cell assignment. Subsequently, Ying and Tsai [37] proposed a two-
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phase heuristic algorithm to solve the problems highlighted by Liu et al. [36], their heuristic
outperforming that of Liu et al. [36]. Yu et al. [38] and Lian et al. [39] presented a bi-objective
worker assignment model for intra- and inter-cell workload balance. Wu et al. [40] and
Chu et al. [34] developed a bi-objective worker assignment model to minimise the total
cost, including the cost incurred by workload imbalance. Niakan et al. [41] addressed
the bi-objective multiperiod cell formation and worker assignment problem considering
worker safety issues. Kuo and Liu [42] proposed a two-phase methodology for the worker
assignment problem, where worker transfer between cells was allowed. The results showed
that the cell-transfer policy could reduce the total number of workers. Feng et al. [43]
proposed a heuristic to solve cell formation and worker assignment problems. The author(s)
showed that over-assignment could reduce the number of workers hired and improve their
utilisation rates.

We summarised the studies considering workforce management related to team forma-
tion problems and worker assignment problems in Table 1. Our literature review identified
a research gap by showing that quantitative research on team formation and worker as-
signment problems in a CMS considering teamwork issues remained sparse. Addressing
the research gap and the research problem, the following sections present the problem and
model formulation, as well as the solving methodologies.

Table 1. Summary of previous studies.

Reference Problem Context Objective Human Issue Solution Method

Askin and Huang [23] TFWAP CCM TNC, WPT, and TS WPT GHBS
Norman et al. [26] WAP CCM TP WTHS MIP

Süer and Tummaluri [28] WAP CCM TNW LF and WC THPH
McDonald et al. [29] WAP CCM TC WCT BIP

Liu et al. [36] WAP JCM TC - THPH
Niakan et al. [41] WAP CCM TC and TPW WS Hybrid NSGA-II and MOSA
Ying and Tsai [37] WAP JCM TC - TWPH
Kuo and Liu [42] WAP CCM CT and TNW - TPIP
Feng et al. [43] WAP CCM TC - Hybrid CPSO and LP

Yilmaz et al. [31] WAP CCM ACT WC GA, SA, and ABC
Lian et al. [39] WAP JCM WB - NSGA-II
Yu et al. [38] WAP JCM WB - ECBEA
Wu et al. [40] WAP CCM TC - STABCA
Chu et al. [34] WAP CCM TC LF AMDSA

Zakarian and Kusiak [12] TFP CE PW IR AHP and QFD
Chen and Lin [7] TFP CE TWC and IR IR AHP

Zhang and Zhang [13] TFP PM PDTC and IR IR AHP and MOPSO
Fathian et al. [14] TFP PM IR IR GAMS

Rahmanniyay et al. [21] TFP PM SC and CS WC SCDA
Campêlo et al. [11] TFP PM IR IR SA
Gutiérrez et al. [8] TFP PM PE IR CP, LS, and VNS

Ballesteros-Pérez et al. [9] TFP PM IR IR CA
Chen [10] TFP SG IR IR GA

Feng et al. [22] TFP PM IP and OCP WC NSGA-II
This study TFWAP CCM CS, TIV, and WITV IR, WCT, FI, and WC Two-stage ALNS

Note: TFWAP: team formation and worker assignment problem; WAP: worker assignment problem; TFP: team
formation problem; CE: concurrent engineering; CCM: conventional cellular manufacturing; JCM: Japanese
cellular manufacturing; TNC: training cost; WPT: worker personality traits; TS: team synergy; GHBS: greedy
heuristic-based beam search; TP: total profitability; WTHS: worker technical and human skills; MIP: mixed integer
programming; TNW: total number of workers; LF: learning–forgetting effect; THPH: three-phase heuristic;
TC: total cost; BIP: binary integer programming; NSGA-II: non-dominated sorting genetic algorithm;
TPW: total production waste; WS: worker safety; MOSA: multi-objective simulated annealing; TWPH: two-phase
heuristic; CT: cycle time; TPIP: two-phase integer programming; CPSO: combinatorial particle swarm optimisation;
LP: linear programming; WB: workload balance; ECBEA: epsilon constraint-based exact algorithm;
STABCA: superior tracking artificial bee colony algorithm; AMDSA: adaptive memetic differential search algo-
rithm; TIV: total inventory level; WITV: workers idle time variation; IR: interpersonal relationship; FI: fairness
issue; WCT: worker cross-training level; WC: worker competency; GA: genetic algorithm; SA: simulated annealing;
ABC: artificial bee colony; PW: priority weight; PM: project management; SG: student grouping; PTDC: product
development task capabilities; TWC: teamwork capability; SC: staffing cost; CS: competency score; PE: project
efficiency; AHP: analytical hierarchy process; QFD: quality function development; MOPSO: multi-objective
particle swamp optimization; GAMS: general algebraic modelling system; SCDA: scenario cluster decomposition
algorithm; CP: constraint programming; LS: local search; VNS: variable neighbourhood search; CA: computer
application; IP: individual performance; OCP: organisational collaborative performance.
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3. Theory: Problem Statement and Mathematical Formulation

In the considered problem, we concentrated on grouping cross-trained workers and
assigning parts to workers in each manufacturing cell simultaneously. Figure 1 illustrates
the overview of the problem. We considered the TFWAP under the CCM system in a single-
period operation. Our main focuses are: (1) to form a high TWQ team of skilled workers
in each cell to satisfy the part production demands and (2) to assign parts to workers
considering minimisation of inventory level and variation of workers’ idle time in each cell.
We represented the fairness issue by the minimisation of workers’ idle time variation. The
manufacturing cell consists of part families determined by the predefined cell formation,
that is, types of tasks and parts are fixed in each cell. Workers are heterogeneous in terms
of skill level and sociometric value. Operations in the cell are manual operations requiring
workers’ skills to perform the task. Some workers may be skilled in performing different
tasks. A skilled worker with task skill coefficient “1” can execute the part at the standard
part processing time, whereas an unskilled worker with task skill coefficient less than “1”
requires more time than the standard part processing time. Thus, the part processing times
of each worker differ depending on their task proficiency. The sociometric values indicate
the workers’ interpersonal relationships, rated from “1” to “5” as very bad, bad, neutral,
good, and very good, respectively. The assumptions of the model were as follows:

1. The part production demand is known and deterministic.
2. The available working time of all workers is equal and deterministic.
3. The amount of time that each assigned worker spends on each part is equal to

one hour.
4. Worker walking time between different workstations is neglected due to a compact

cell layout.
5. The setup time when workers change task is neglected.
6. The standard part processing time for all parts is known and deterministic.
7. Sociometric matrices of workers are assumed to be known in advance.
8. The skill levels of workers are static, with learning and forgetting effects being neglected.
9. Workers’ processing time for each cycle is static, with fatigue effects being neglected.
10. The tools and equipment for all tasks are duplicated; thus, workers can operate parts

together in the same task.
11. The number of workers in a cell is less than or equal to the number of tasks in the cell.
12. Working overtime and cell transfer are prohibited.
13. Minimum cell-cohesion levels are required in each cell.
14. All part production demands have to be satisfied.

This paper presents two mathematical models—namely, Model A and Model B. Model
A is a single-stage model that considers only the worker-part assignment problem. Model
B is a two-stage model consisting of the two models B1 and B2. Model B1 is the team
formation problem that intends to form a skilled workforce with a good relationship among
team members in each cell. Model B2 is the worker assignment problem of each cell.
The idea behind Model B1 is to assure Model B2 with skilled workers in satisfying part
production demands. We developed Model B with the intention to clarify that the TFWAP
is more suitable for the two-stage model. Owing to the model assumptions, both models
are nonlinear using penalty functions.
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3.1. Notations for Model A and Model B

The notations for the addressed TFWAP are presented as follows:
Indices
c Index of cells (c = 1, 2, . . . , C )
w Index of workers (w = 1, 2, . . . , W )
p Index of parts (p = 1, 2, . . . , P )
t Index of tasks (t = 1, 2, . . . , T )
k Index of penalty functions (k = 1, 2, . . . , K )
Input parameters
STp Standard processing time of part p (seconds)
Dp Demand of part p
A Worker available working hours
αwt Skill coefficient of worker w at task t

ruv
The sociometric value of worker u and worker v;
u, v ∈W; u 6= v

L Cell-cohesion requirement
n Minimum sociometric score
o Maximum sociometric score
j Penalty coefficient
qpt If part p belongs to task t, 1; otherwise, 0
hpc If part p belongs to cell c, 1; otherwise, 0
gtc If task t belongs to cell c, 1; otherwise, 0
swt If worker w is competent at task t, 1; otherwise, 0
Variables
Iwc Idle time of worker w in cell c
COHc Total cohesion of cell c

3.2. Model A Formulation

In addition to the notation summarised in Section 3.1, Model A can be formulated
using two additional variables, as follows:

Variable
ywc If worker w works in cell c, 1; otherwise, 0
Decision variable
xwp If worker w operates part p for one hour, 1; otherwise, 0
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The objective functions and penalty functions of Model A can be expressed as follows:

min Z1 =
p

∑
p=1

(
W

∑
w=1

3600·qpt·xwp·αwt

STp
− Dp

)
+

5

∑
k=1

penk (1)

min Z2 =
1
C

C

∑
c=1

IVRc +
5

∑
k=1

penk (2)

pen1 =
P

∑
p=1

max

(
j·
(

Dp −
W

∑
w=1

3600·qpt·xwp·αwt

STp

)
, 0

)
(3)

pen2 = max

(
W

∑
w=1

(
j·
(

P

∑
p=1

xwp − A

))
, 0

)
(4)

pen3 = j·
W

∑
w=1

(
C

∑
c=1

ywc − 1

)
(5)

pen4 = j·
C

∑
c=1

max(L− normCOHc, 0) (6)

pen5 = j·
C

∑
c=1

max

((
W

∑
w=1

ywc −
T

∑
t=1

gtc

)
, 0

)
(7)

subject to,

IVRc =
1
Ic

√√√√∑W
w=1

(
Iwc − Ic

)2

∑W
w=1 ywc

∀c (8)

Ic =
1

∑W
w=1 ywc

W

∑
w=1

Iwc ∀c (9)

Iwc = A−
P

∑
P=1

xwp·hpc·swt·qpt ∀c, t, w (10)

ywc = xwp·hpc ∀w, c, p (11)

COHc = ∑
u,vεW

(ruv·yuc·yvc) ∀c, p (12)

maxCOHc = o· ∑
u,vεW

(yuc·yvc) ∀c, p (13)

minCOHc = n· ∑
u,vεW

(yuc·yvc) ∀c, p (14)

normCOHc =
COHc −minCOHc

maxCOHc −minCOHc
∀c, p (15)

xwp, ywc ∈ 0, 1 (16)

Iwc, COHc, maxCOHc, minCOHc ∈ INT+ (17)

IVRc, Ic, normCOHc ∈ R+ (18)

Equations (1) and (2) represent the two objective functions: the total inventory level
and the average cell worker’s idle time variation of all cells. Equations (1) and (2) can
be calculated by considering the summation of the penalty functions of Equations (3)–(7).
Equation (1) can be calculated using the sum of the parts produced by all workers for
each part and its demand. Equation (2) can be calculated using the cell worker’s idle time
variation of cell c from Equation (8). Equation (9) shows the average worker idle time in



Appl. Sci. 2022, 12, 8323 8 of 27

cell c. Equation (10) calculates the idle time of worker w in cell c. Equation (3) represents the
unsatisfied part of the demand penalty function. If the solution cannot satisfy the demand
at part p, then the penalty value of part p becomes positive. Otherwise, the penalty value
for part p is zero. Equation (4) represents the working overtime penalty. The summation
of the worker’s working hours must not exceed the available working hours, A. If the
working hours of worker w exceeds A, the penalty value of worker w can be calculated.
Equation (5) addresses the cell-transfer penalty by considering Equation (11), which ensures
that worker w works in cell c if worker w operates part p which belongs to cell c. Equation (6)
represents the summation of the cohesion penalties using Equations (12)–(15). Equation (12)
represents the total cohesion value of cell c and calculates the possible maximum total
cohesion score of cell c. Equation (13) calculates the possible minimum cohesion score
of cell c. Equation (15) calculates the normalised cohesion score of cell c. Equation (7)
penalises the solution when the total number of workers in cell c exceeds the number of
total tasks in cell c. Equation (16) defines the binary variables. Equation (17) defines the
positive integer variables. Finally, Equation (18) defines the positive real-number variables.

3.3. Model B1 Formulation: Team Formation

Model B1 aims to form a team of workers in each cell to ensure that part production
demands can be satisfied in the worker assignment stage. Based on this idea, we proposed
a new objective function for part-skill scores. The part-skill score objective consists of the
summation of the total worker capabilities and the weight of each part production demands
in each cell. Campbell [44] motivated us to consider team capabilities to ensure that there
are enough skilled workers in the cell. As forming an effective team in the cell is the main
concern, two additional constraints are introduced in this model. With two additional
notations to those summarised in Section 3.1, we can formulate Model B1 as follows:

Input Parameter
demp If demand of part p is a positive integer, 1; otherwise, 0
Decision variable
zwc If worker w is assigned to cell c, 1; otherwise, 0

The objective functions and penalty functions of Model B1 can be expressed as follows:

max Z1 =
C

∑
c=1

(
P

∑
p=1

(
hpc·Dp

∑P
p=1
(
hpc·Dp

) · W

∑
w=1

(
zwc·swt·qpt·gtc

)))
−

5

∑
k=1

penk (19)

pen1 = max

(
P

∑
p=1

(
j·
(

1−
W

∑
w=1

(
zwc·swt·qpt·gtc·demp

)))
, 0

)
(20)

pen2 = j·
C

∑
c=1

max(L− normCOHc, 0) (21)

pen3 = j·max

(
C

∑
c=1

(
W

∑
w=1

zwc −
T

∑
t=1

gtc

)
, 0

)
(22)

pen4 = j·
W

∑
w=1

(
C

∑
c=1

zwc − 1

)
(23)

pen5 = j·max

(
W

∑
w=1

(
1−

C

∑
c=1

zwc

)
, 0

)
(24)

subject to,

COHc = ∑
u,vεW

(ruv·zuc·zvc) ∀c (25)

maxCOHc = o· ∑
u,vεW

(zuc·zvc) ∀c (26)
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minCOHc = n· ∑
u,vεW

(zuc·zvc) ∀c (27)

normCOHc =
COHc −minCOHc

maxCOHc −minCOHc
∀c (28)

zwc ∈ 0, 1 (29)

maxCOHc, minCOHc, COHc ∈ INT+ (30)

normCOHc ∈ R+ (31)

Equation (19) shows the part-skill score objective function calculated using the sum-
mation of the product of part p demand weight and the total number of worker skills at
part p of each cell. Equations (20)–(24) are the penalty functions of Model B1, which are
considered in Equation (19). Equation (20) calculates the additional penalty when there
is no skilled worker in cell c to operate the task of the demanded part p. Equation (21)
represents the penalty of cell c cohesion by taking Equations (25)–(28) into account, sim-
ilar to Equation (6) of Model A. Equation (22) penalises the solution when the number
of workers in cell c exceeds the number of total tasks in cell c. Equation (23) represents
the cell-transfer penalty. Equation (24) represents the additional penalty for unassigned
workers. Equation (29) represents the binary decision variable in Model B1. Equation (30)
represents the positive integer variable in Model B1. Finally, Equation (31) represents the
positive real-number variable in Model B1.

3.4. Model B2 Formulation: Worker Assignment

Model B2 has two objectives—that is, minimising the total inventory level and min-
imising the cell workers’ idle time variation in each cell. In addition to the notations
summarised in Section 3.1, two additional notations are introduced in model B2. The
formulation of Model B2 can be expressed as follows:

Input Parameter
awc If worker w belongs to cell c, 1; otherwise, 0
Decision variable
xwp If worker w is assigned to part p, 1; otherwise, 0

The objective functions and penalty functions of Model B2 can be expressed as follows:

min Z2 =
P

∑
p=1

(
W

∑
w=1

3600·qpt·xwp·αwt

STp
− Dp

)
+

3

∑
k=1

penk (32)

pen1 =
P

∑
p=1

max

(
j·
(

Dp −
W

∑
w=1

3600·qpt·xwp·αwt

STp

)
, 0

)
(33)

pen2 = max(j·(IVRc − ε), 0) (34)

pen3 = max

(
W

∑
w=1

(
j·
(

P

∑
p=1

xwp − A

))
, 0

)
(35)

subject to,

IVRc =
1
Ic

√√√√∑W
w=1

(
Iwc − Ic

)2

∑W
w=1 awc

∀c (36)

Ic =
1

∑W
w=1 awc

W

∑
w=1

Iwc ∀c (37)

Iwc = A−
P

∑
P=1

xwp·hpc·swt·qpt ∀c, t, w (38)

xwp ∈ 0, 1 (39)
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Iwc ∈ INT+ (40)

IVRc, Ic ∈ R+ (41)

Equation (32) represents the objective function of Model B2, which is the total inventory
level. Equation (33) represents the unsatisfactory demand penalty function. Equation (34)
represents the epsilon constraint to minimise the cell workers’ idle time variation of cell c.
Equation (35) represents the overtime working penalty of worker w. Equations (36)–(38)
can be used to calculate Equation (34). Equation (39) represents the binary decision variable.
Equation (40) represents the positive integer variable. Finally, Equation (41) represents the
positive real-number variables.

4. Methodology: Problem-Solving Methodology

The worker assignment and team formation problems are combinatorial problems that
generally cannot be solved in polynomial time [8,39]. Pisinger and Ropke [45] suggested
that ALNS methods should be implemented as a standard framework for solving large-
sized optimisation problems. ALNS has been successfully implemented with the vehicle
routing problem (VRP) [46–50]. Several researchers have developed ALNS algorithms to
solve other problems [51–56]. However, an ALNS-based solution has not yet been proposed
for the workforce planning problem. Solving TFWAP presents a difficulty in handling
both team formation and worker assignment decisions simultaneously, even for small-
sized problem instances. Therefore, we proposed a two-stage ALNS framework based
on a two-stage decision methodology. The other two solution approaches—namely, the
heuristic-based brute force search (HBBFS) and non-dominated sorting genetic algorithm-II
(NSGA-II) methods—were developed as comparison benchmarks to verify the effectiveness
of the two-stage ALNS method. Details of the HBBFS and NSGA-II methods are provided
in the Supplementary Materials.

4.1. Two-Stage Adaptive Large Neighbourhood Search (Two-Stage ALNS)

The two-stage ALNS method applies modified ALNS techniques in each stage, the
solution for Stage1 being the input to Stage2. In Stage2, the search starts from the first cell
to the last cell. Finally, the heuristic calculates the total inventory level and average value
of the cell worker’s idle time variation. The overall mechanism of the two-stage ALNS
method is shown in Figure 2.

We made two modifications to the ALNS method. First, problem-specific operators
were used. We modified the destroy and repair operators for both stages. Second, we
proposed a new adaptive mechanism to tune the degree of destruction when the solution
showed no improvement for a predetermined number of iterations. Based on Algorithm
1, the modified ALNS method can be described as follows: The initial solution (sinitial)
can be obtained from the initial heuristic. To begin with, all the operator scores are set as
the initial score (ω0). The roulette-wheel procedure chooses one destroy operator and one
repair operator based on its past performance. Operators are awarded scores depending on
their current performance. Once operators are selected, they are successively applied in the
current iteration to generate a new solution known as the repaired solution (srepaired). The
global solution (sbest) can only be updated if the heuristic obtains a better solution. With
the mechanism of embedded simulated annealing, srepaired without improvement may be
accepted as a new current solution (scurrent) to escape the local optima.
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Algorithm 1 The modified ALNS

Input: Problem instances, the modified ALNS parameters, and initial solution (sinitial )
Set scurrent ← sinitial , sbest ← sinitial , ω ← ω0, temp← temp0, and i← 0
while (i < Imax) do
Select destroy operator and repair operator
Remove the partial solution from scurrent
Reinsert the partial solution to scurrent

if (scurrent < srepaired) then
Set sbest ← srepaired and scurrent ← srepaired

else
if (scurrent < srepaired) then

Set scurrent ← srepaired
else

if srepaired is accepted by SA then
Set scurrent ← srepaired

end if
end if

end if
Update ω of all operators and temp
if (i < icheckimp) then

if (sbest of i < sbest of icheckimp) then
Randomly choose des

end if
end if
Set i← i + 1

end while
return sbest
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4.1.1. Initial Heuristic of the Proposed Two-Stage ALNS

The initial heuristic of Stage1 and Stage2 search for the solution one cell at a time. The
Stage1 initial heuristic works as follows: To begin with, the heuristic creates two empty
worker lists for unassigned workers (UW) and total assigned workers (AW). In each cell,
the heuristic generates the list (SKILLc) representing the total part-skill of each available
worker. Next, the heuristic chooses the first worker of cell c by selecting the one who
possesses the maximum number of skills in cell c from SKILLc. Consequently, the next
worker is chosen based on their interpersonal relationship with the previously selected
worker. The heuristic assigns workers to a cell until the total number of workers reaches
the total number of tasks in the cell. The overall framework of the Stage1 initial heuristic is
presented in Algorithm 2.

The input of the Stage2 initial heuristic is the team formation solution of Stage1. The
Stage2 initial heuristic works as follows: Workers are sorted by the total part skills of
cell c in ascending order, denoted as wkrc. At the same time, parts of cell c are sorted
by their demand in descending order, denoted as Pdemc. Workers in wkrc are assigned
to parts in Pdemc. If worker w does not possess the skill of part p, then the heuristic
moves to the next part. If the remaining working time of worker (wrktw) is zero, the
heuristic will skip worker w. After assigning worker w to part p, the heuristic updates the
cumulative production of part

(
prodp

)
and wrktw. The heuristic also updates the number

of total demand-satisfied parts (Psatc) when prodp exceeds or equalises the part production
demand (demp). The heuristic prioritises the least skilled worker for the following reasons:
prioritising the assignment of workers by the number of worker-part skills in descending
order cannot satisfy the part production demands as the heuristic intends to satisfy all the
part production demands of the current cell before moving to the next cell. The mechanism
of the Stage2 initial heuristic is presented in Algorithm 3.

Algorithm 2 Stage1 initial heuristic

Input : Problem instances, the modified ALNS parameters, and initial solution sinitial
Initialise UW and AW
Set number of workers in the cell Nc ← 0 , UW ← 0, and AW ← 0
for each c ∈ C of sinitial1 do

generate SKILLc
while (i < Imax) do

if (Nc = 0 and UW 6= 1) then
Select w ∈ UW with respect to max(SKILLc)

else
if (Nc ≥ 1 and UW 6= 1) then

Select w ∈ UW with respect to max(rw,w−1)
else

if (UW = 1) then
Select w ∈ UW

end if
end if

end if
Set Nc ← Nc + 1
Append w to AW
Remove w from UW

end while
end for
return sinitial1
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Algorithm 3 Stage2 initial heuristic

Input : Problem instances and solution of worker formation in each cell S1
Initialise Pdemc , wkrc , and Pdpc of sinitial2
Set Psatc ← 0
for each c ∈ C of sinitial2 do

while (Psatc < Pdpc) do
for each w ∈ wkrc do

for each p ∈ Pdemc do
if (skillwp = 0) then

continue
else

if (demp > prodp and wkrtw > 0) then
Assign worker w to part p
Update demp , prodp and wkrtw

else
if
(
demp ≤ prodp

)
then

Set Psatc ← Psatc + 1
continue

else
if (wrktw = 0) then

break
end if

end if
end if

end if
end for

end for
end while

end for
return sinitial2

4.1.2. Adaptive Search Engine

The adaptive mechanism is the main characteristic of the modified ALNS method—that
is, the modified ALNS method can explore and exploit a new search space for a new
solution owing to its adaptive ability. Here, we present two adaptive search engines
as follows:

1. Score operator: The score operator selects the destroy and repair operators using a
roulette wheel based on their past performance, which can be expressed as follows:

ωj

∑k
i=1 ωi

(42)

where

ωj = Score of the selected operator.

∑k
i=1 ωi = Score of all operators.

2. Degree of the destruction operator: The operator intensifies the search for a new space.
Based on Algorithm 1, the modified ALNS method checks the solution improvement
at every predetermined, fixed number of iterations.

4.1.3. Destroy Operator

Six destroy operators were customised in the proposed two-stage ALNS method. The
destroy operator removes cells/parts from the current solution until a predefined number
of removed cells/parts is achieved. The number of removed cells per part can be expressed
as follows:

ρ = des·R (43)

where

ρ = Number of removed cells/parts.
des = Degree of destruction.
R = Number of total cells/parts.

At every predetermined iteration icheckimp, des is tuned when the current solution
shows no improvement. The destroy operators of Stage1 and Stage2 are as follows:
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1. Random cell removal D1−1: The operator randomly removes the cell until the prede-
fined number of removed cells is reached.

2. Worst cell removal D1−2: The operator removes the cell that contributes the least to
the Model B1 objective value one at a time until the predefined number of removed
cells is reached.

3. Shaw cell removal D1−3: This removal operation was originally proposed by Shaw [57].
The operator randomly selects the cell and calculates its relatedness Φij with the other
cells. Next, the operator randomly removes one cell from the pair with the highest
relatedness score. The cell relatedness can be determined using Equation (44). If there
is no relatedness between all pairs, the operator randomly removes the cell from the
current solution.

Φij = AT
i ·Aj (44)

where

Φij = Relatedness value of cell/part i and cell/part j.
AT

i = Transposed array of the first selected cell/part i.
Aj = Cell/part array j.

4. Random part removal D2−1: The operator randomly removes parts until the prede-
fined number of removed parts is met.

5. Worst-part removal D2−2: The operator removes the parts that contribute the least to
the Model B2 objective value one at a time until the predefined number of removed
parts is met.

6. Shaw part removal D2−3: This operator works similar to D1−3 operator.

4.1.4. Repair Operator

Seven repair operators were customised for the proposed two-stage ALNS method.
The main characteristic of the repair operator is cell-transfer prevention. Before removing
each cell from the current solution, the repair operator prevents cell-transfer situations by
omitting the already assigned workers in each removed cell.

1. Random cell insertion R1−1: The operator randomly selects the removed cells one
at a time. After selecting the cell, it randomly selects the available workers for the
removed cell until the number of workers in the cell reaches the total number of
tasks. The procedure is repeated until all removed cells are reinserted into the current
solution.

2. Greedy-B cell insertion R1−2: The operator sequentially selects the removed cell to
repair and reinsert into the current solution, one at a time, based on the ascending
order of the number of total tasks. In each removed cell, the operator selects the
available workers as follows: The operator generates B worker combinations, where
the total number of workers in each combination is equal to Tc. The operator chooses
the combination of workers that contributes most to the Model B1 objective value.

3. Regret-B cell insertion R1−3: The operator works similarly to repair operator R1−2
by generating B combinations of workers in each removed cell. In addition to the
mechanism of R1−2, the operator applies look-ahead information by calculating the
regret value regc of all B worker combinations as follows:

regc =
B

∑
combi=1

(
f1−combi − f ∗1−combi

)
(45)

where

f ∗1−combi = Model B1 objective value when placing the removed cell back to the current
solution with the best worker combination.
f1−combi = Model B1 objective value when placing the removed cell back to the current
solution with the worker combination, starting from the second-best combination to
the last combination.
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4. Workers idle time variation based on part insertion R2−1: The operator aims to
minimise the cell workers’ idle time variation in each cell by assigning workers to
parts in a distributional manner. Initially, the heuristic generates a list of sorted
removed parts with respect to their demands, in descending order. For each removed
part, the skilled worker with the highest remaining working time is prioritised for
the assignment. The heuristic stops assigning workers to the removed part after the
demand is satisfied. The overall framework of R2−1 heuristic can be found in the
Supplementary Materials.

5. Pseudorandom part insertion R2−2: At the beginning of the repair operation, the
operator creates a list of skilled workers, whose remaining working time is still
available for part assignment, denoted as Wlist. The operator randomly assigns
workers from the Wlist to the part until part production demand is satisfied.

6. Pseudorandom greedy-B part insertion R2−3: The operator reinserts the removed part
into the current solution one at a time. In each repair procedure, the operator creates
the list Wlist for worker assignments for each part. The operator then generates B
worker assignment combinations for each removed part. Workers in each combination
are chosen from Wlist. Finally, the operator chooses the combination of workers that
contributes most to the Model B2 objective value.

7. Pseudorandom regret-B part insertion R2−4: This operator works similarly to operator
R2−3. In addition to the procedure of R2−3, the operator selects the worker assignment
combination based on regret value (regp), which is calculated as follows:

regp =
B

∑
combi=1

(
f2−combi − f ∗2−combi

)
(46)

where

f ∗2−combi = Model B2 objective value when placing the removed part back to the current
solution with the best worker assignment combination.
f2−combi = Model B2 objective value when placing the removed part back to the current
solution with the worker assignment combination, starting from the second-best
combination to the last combination.

4.1.5. Simulated Annealing (SA)

We embedded the simulated annealing (SA) algorithm at the top level of the modified
ALNS algorithm to avoid the solution being trapped at a local optima. SA accepts an
srepaired value that is worse than scurrent with the acceptance probability defined by Equation
(47) for Stage1 and Equation (48) for Stage2. The calculation of annealing temperature
(temp) can be expressed as shown in Equation (49):

temp = temp0·γ (47)

prob1 = e
Frepaired−Fcurrent

temp (48)

prob2 = e
Fcurrent−Frepaired

temp (49)

where

temp = Annealing temperature; temp > 0.
temp0 = Initial annealing temperature.
γ = Cooling rate; 0 < γ < 1.
prob1 = Probability acceptance of Stage1.
prob2 = Probability acceptance of Stage2.
Fcurrent = Objective value of the current solution.
Frepaired = Objective value of the repaired solution.
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5. Numerical Example

We provided a numerical example to further illustrate the application of the proposed
formulations in Section 3 and verify our proposed method. The example is based on a CCM
system consisting of two manufacturing cells, four tasks, and four partial cross-trained
workers. Each cell is dedicated to a family of parts. The input data were categorised into
two categories: (1) part production data and (2) workforce data. The part production data
include the details of cell formation, standard part processing time, and part production
demand as shown in Table 2. Workforce data are the information of workers, including
task proficiency and sociometric value, as displayed in Tables 3 and 4.

Table 2. Part information represented in the cell formation structure for the example problem.

Part Information (Dp, STp)

Tasks Part A Part B Part C Part D Part E

1 (40,50) (20,50) - - -
2 (0,50) (30,40) - - -
3 - - (40,40) (0,40) (20,50)
4 - - (0,40) (40,40) -

Table 3. Workforce skill coefficient for the example problem.

Worker Skill Coefficient (αwt)

Tasks

Worker w 1 2 3 4

1 0.77 1.25 0.77 -
2 1.00 - 1.00 1.00
3 1.11 - 1.43 0.91
4 1.11 1.43 1.25 -

Table 4. Workforce sociometric value for the example problem.

Sociometric Value (ruv)

Worker v

Worker u 1 2 3 4

1 - 5 1 5
2 - - 2 1
3 - - - 5
4 - - - -

Initially, we pre-processed the part production data from the given cell formation to
each part indices. Task 1 contained parts {1,2}, task 2 contained parts {3,4}, task 3 contained
parts {5,6,7}, and task 4 contained parts {8,9}. Cell 1 contained parts {1,2,3,4} and cell 2
contained parts {5,6,7,8,9}. Once the part information of the proposed Model A and Model
B are pre-processed, the single-stage NSGA-II and two-stage ALNS are implemented to
solve each model. First, we defined the solution representation in each algorithm. We
implemented the binary value 1 or 0 to denote two decisions: (1) whether a worker is
chosen for the team in the cell and (2) whether a worker is chosen to execute the part.

Due to the hard constraints presented in TFWAP, the final solution obtained from
the single-stage methodology will likely deliver an infeasible solution. As shown in
Tables 5–7, it is evident that the single-stage methodology is not well-suited for handling the
constraints of the TFWAP. The solution is infeasible and penalised by two static penalties of
Equations (5) and (7), including the cell transfer of worker 1 and worker 4 and the number
of total workers in cell 2 exceeding the total number of tasks. These two penalties belong to
the constraints of the team formation problem, as shown in Model B1 formulation. Unlike
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the two-stage ALNS, the single stage NSGA-II did not implement the decomposition
strategy that reduces the search space of the TFWAP by treating the team formation as a
subproblem. Without the decomposition strategy, the algorithm will explore a larger search
space and hardly obtain a feasible solution. Therefore, there is a high possibility that a set
of team formation constraints cannot be satisfied in the final solution. Table 7 displays a
solution obtained from the single-stage NSGA-II as a two-dimensional chromosome of
the numerical example. The calculation of the solution in Table 7 can be found in the
Supplementary Materials.

Table 5. Solution of worker-part assignment obtained by NSGA-II for the illustrative example.

Cell 1 Cell 2

Worker w Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9

1 0 1 0 1 1 0 0 0 0
2 0 0 0 0 1 0 1 0 1
3 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1 0 0

Table 6. Penalty values obtained by using NSGA-II for the illustrative example.

Penalty Penalty Value

1. Demand unfulfillment 0

2. Working overtime 0

3. Worker cell transfer 2·1, 000, 000

4. Cell-cohesion requirement 0

5. Workers > Tasks in cell 1·1, 000, 000

Total penalty value 3,000,000

Table 7. Solution obtained by using NSGA-II for the illustrative example.

Parameter Description Value

Z1 The total inventory level 3,000,467
Z2 The average cell worker’s idle time variation of all cells 3,000,000.134

normCOHavg The normalised average cohesion of all cells 0.833

To handle the constraints of the TFWAP, we proposed the two-stage ALNS that
decomposed the TFWAP into two subproblems and embedded the problem-oriented
constraint handling heuristics. Tables 8–12 display the obtained feasible solution using the
two-stage ALNS. At the team formation stage, each cell contained a highly cohesive work
team where cell 1 contained workers {1,2} and cell 2 contained workers {3,4}. The two-stage
ALNS guaranteed that each cell contains workers with the skills to execute parts. At the
worker-part assignment stage, only worker 1 was assigned to operate parts {1,2,4} in cell 1.
Worker 3 was assigned to operate part {3} and worker 4 was assigned to operate parts {5,7}.
Table 12 shows the solution of the example obtained by the two-stage ALNS method. The
calculation of the solution in Table 12 is shown in the online Supplementary Materials.
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Table 8. Solution of team formation stage obtained by using two-stage ALNS for the illustrative example.

Cells

Worker w Cell 1 Cell 2

1 1 0
2 1 0
3 0 1
4 0 1

Table 9. Solution of worker-part assignment in Cell 1 obtained by using two-stage ALNS for the
illustrative example.

Worker w Part 1 Part 2 Part 3 Part 4

1 0 0 0 0
2 1 1 0 1

Table 10. Solution of worker-part assignment in Cell 2 obtained by using two-stage ALNS for the
illustrative example.

Worker w Part 5 Part 6 Part 7 Part 8 Part 9

3 0 0 0 0 1
4 1 1 0 1 0

Table 11. Penalty values obtained by using two-stage ALNS for the illustrative example.

Penalty Penalty Value

1. No skilled worker in the cell 0

2. Cell-cohesion requirement 0

3. Workers > Tasks in cell 0

4. Worker cell transfer 0

5. No skilled workers in the cell 0

6. Demand unfulfillment 0

7. Epsilon constraint 0

8. Working overtime 0

Total penalty value 0

Table 12. Solution obtained by using two-stage ALNS for the illustrative example.

Parameter Description Value

Z1 The total part-skill score 3.265
Z2 The total inventory level 315

IVRavg
The average cell worker’s idle

time variation of all cells 0.182

normCOHavg
The normalised average

cohesion of all cells 1.000
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6. Results: Computational Experiment

We assessed the quality of the solution and validated the effectiveness of the proposed
two-stage ALNS method via a series of experiments. We first conducted two performance
comparison experiments by comparing the solution of the two-stage ALNS with the HBBFS
and the NSGA-II methods on the same input dataset. Finally, we applied the two-stage
ALNS method to study the impact of cell-cohesion requirements on the ability to form a
team of high skilled, cross-trained workers. All algorithms were coded using the Python
programming language version 3.7.12 (Guido van Rossum: Amsterdam, Netherlands) and
run on a PC with an Intel Xeon CPU (2.20 GHz) with 13 GB of RAM.

6.1. Problem Instance and Parameter Settings

We generated the input dataset for the TFWAP using ten cell formation settings
selected as problem benchmarks from the literature, as shown in Table 13. The problem size
varies based on the total number of parts, tasks, cells, and workers. The part production
and cross-trained workforce data in each problem benchmark were heterogeneous and
randomly generated based on the pattern in Table 14. We created four conditions of cell
operational requirements for the performance comparison experiment. Each condition
included the combination of cross-training level and cell-cohesion score requirements. The
cross-training level represents the percentage of total tasks that each worker in a team
can execute, which are 60% and 80%. The cell-cohesion score requirement required a
team to have at least 0.3 and 0.6 of the normalised cell-cohesion score. To deliver insights
regarding team formation, we constructed the three-level factorial design, which had two
factors—the cross-training level and the cell-cohesion score requirement, each at three levels,
as shown in Table 14. The algorithm-related input parameters can be found in Table 15.
More details about the problem benchmarks and the input dataset can be found in a public
GitHub repository.

Table 13. Problem benchmarks.

Number of

Problem ID Author Parts Tasks Cells Workers

P1 Won and Kim [58] 9 4 2 4
P2 Won and Kim [58] 15 6 2 6
P3 Zolfaghari and Liang [59] 21 7 3 7
P4 Islam and Saker [60] 29 8 3 8
P5 Yang and Yang [61] 41 10 3 10
P6 Won and Kim [58] 28 11 4 11
P7 Moon and Chi [62] 53 12 4 12
P8 Seifoddini and Djassemi [63] 86 35 5 35
P9 Won and Kim [58] 124 26 6 26
P10 Seifoddini and Djassemi [63] 153 41 5 41

Table 14. Summary of the model input dataset.

Parameters Description Values

αwt Task skill coefficient [0.00, 0.77,0.83,0.91,1.00,1.11,1.25,1.43]
ruv Sociometric value of a worker pair Discrete Uniform [1,5]
STp Standard part processing time Discrete Uniform [3,5]· 10
Dp Part production demand in batch unit Discrete Uniform [0,5]

Batch size of part production demand 10
A Worker available working hours 7
ε The epsilon value 0.50
j The penalty coefficient value 1,000,000
o Maximum sociometric score 5.00
n Minimum sociometric score 1.00

CTL Cross-training level [0.60, 0.80,1.00]
L Requirement of cell-cohesion score [0.00, 0.30, 0.60]
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Table 15. Parameter settings for the proposed solution methodologies.

Methodologies Parameters Description
Values

Stage1 Stage2

NSGA-II POP Number of populations 100 -
maxGen Number of generations 1000 -

kpx k point crossover 0.25 ·P -
mut Mutation rate 0.05 ·W·P -

Two-stage des Degree of destruction [0.30,0.50,0.60] [0.30,0.50,0.60]
ALNS icheckimp Number of iterations 1000 10

without improvement
ω0 Initial score 10 10
ω1 New global solution score 10 10
ω2 Improved solution score 5 5
ω3 New solution score 1 1

temp0 Initial annealing temperature 10,000 100
γ Cooling rate 0.99 0.99

imax ALNS max iterations 10,000 100
B Number of total combinations 10 10

6.2. Computational Results
6.2.1. Solution Quality of the Proposed Method

A detailed comparison of the results from the two-stage ALNS and HBBFS methods is
shown in Table 16. All the instances can be regarded as small instances with a maximum
of seven workers in the team formation stage. We generated five replications of each cell
condition concerning the random sociometric data, resulting in 140 test instances. The
solution obtained using the two-stage ALNS method is equivalent to the exact solution
obtained using the HBBFS method for all 140 test instances. Based on Figure 3, the two-
stage ALNS method requires more CPU time than the HBBFS method for problems P1–P5.
However, the two-stage ALNS method tends to be very effective on problems P6 and P7,
providing the same results as the HBBFS method, with less computational effort.

6.2.2. Effectiveness of the Two-Stage Decision Methodology

We further validated the effectiveness of the two-stage ALNS method using the NSGA-
II-based single-stage methodology. We examined the total inventory level and average
cell worker’s idle time variation of the two methods. Table 17 shows the results of the
40 test instances of all problem benchmarks. The results confirm the two-stage decision
methodology to be more effective than the single-stage methodology, with the two-stage
ALNS providing a feasible solution for all 40 test instances. However, a feasible solution
could not be found using the NSGA-II method. All solutions obtained using the NSGA-II
method were penalised by penalty functions. Another significant result from Figure 4
shows that the NSGA-II method consumed more CPU time than the two-stage ALNS
method in all problem benchmarks—the two-stage ALNS found a feasible solution within
20 min for even the largest problem.

6.2.3. Managerial Insight Regarding Team Formation

We investigated the impact of the cell operational requirements on part-skill scores,
with results being obtained from the two-stage ALNS method for solving problems P8–P10.
Each problem benchmark included the three-level factorial design. Each problem bench-
mark included the three-level factorial design. We performed five replications for each cell
condition concerning the random sociometric matrix input, yielding 135 instances. On the
obtained results, we conducted a two-way analysis of variance (ANOVA) [64] to test for
the interaction effects of the cross-training level and the level of cell-cohesion requirement.
Table 18 shows the ANOVA results for investigating part-skill scores during team formation.
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Finally, Table 19 summarises multiple comparisons of the part-skill score for each level of
the cell-cohesion requirement.

Table 16. Comparison of two-stage ALNS and HBBFS methods on 140 small-sized instances.

Number of Solutions

Part-Skill Score When Compared to HBBFS

Instance Problem ID CTL L HBBFS Two-Stage ALNS Better Worse Equal

1–5 P1 0.80 0.60 3.27 3.27 0 0 5
6–10 0.60 0.60 2.55 2.55 0 0 5

11–15 0.80 0.30 3.23 3.23 0 0 5
16–20 0.60 0.30 2.91 2.91 0 0 5
21–25 P2 0.80 0.60 4.68 4.68 0 0 5
26–30 0.60 0.60 3.30 3.30 0 0 5
31–35 0.80 0.30 5.21 5.21 0 0 5
36–40 0.60 0.30 4.26 4.26 0 0 5
41–45 P3 0.80 0.60 6.46 6.46 0 0 5
46–50 0.60 0.60 5.27 5.27 0 0 5
51–55 0.80 0.30 6.76 6.76 0 0 5
56–60 0.60 0.30 6.29 6.29 0 0 5
61–65 P4 0.80 0.60 7.15 7.15 0 0 5
66–70 0.60 0.60 4.86 4.86 0 0 5
71–75 0.80 0.30 7.81 7.81 0 0 5
76–80 0.60 0.30 5.84 5.84 0 0 5
81–85 P5 0.80 0.60 9.16 9.16 0 0 5
86–90 0.60 0.60 7.18 7.18 0 0 5
91–95 0.80 0.30 9.42 9.42 0 0 5
96–100 0.60 0.30 8.22 8.22 0 0 5

101–105 P6 0.80 0.60 9.83 9.83 0 0 5
106–110 0.60 0.60 8.41 8.41 0 0 5
111–115 0.80 0.30 9.88 9.88 0 0 5
116–120 0.60 0.30 9.22 9.22 0 0 5
121–125 P7 0.80 0.60 11.15 11.15 0 0 5
126–130 0.60 0.60 10.01 10.01 0 0 5
131–135 0.80 0.30 11.44 11.44 0 0 5
136–140 0.60 0.30 11.11 11.11 0 0 5
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Table 17. Results of instances obtained using the NSGA-II and two-stage ALNS methods.

Total Inventory Level Average Workers
Idle Time Variation

Instance Problem ID CTL L NSGA-II Two-Stage ALNS NSGA-II Two-Stage ALNS

141 P1 0.80 0.60 * 315.00 * 0.18
142 0.60 0.60 * 263.00 * 0.18
143 0.80 0.30 * 291.00 * 0.09
144 0.60 0.30 * 325.00 * 0.09
145 P2 0.80 0.60 * 757.00 * 0.24
146 0.60 0.60 * 623.00 * 0.30
147 0.80 0.30 * 686.00 * 0.32
148 0.60 0.30 * 588.00 * 0.32
149 P3 0.80 0.60 * 774.00 * 0.13
150 0.60 0.60 * 801.00 * 0.18
151 0.80 0.30 * 717.00 * 0.18
152 0.60 0.30 * 760.00 * 0.25
153 P4 0.80 0.60 * 1463.00 * 0.28
154 0.60 0.60 * 1697.00 * 0.31
155 0.80 0.30 * 1402.00 * 0.24
156 0.60 0.30 * 1550.00 * 0.19
157 P5 0.80 0.60 * 2107.00 * 0.16
158 0.60 0.60 * 2390.00 * 0.30
159 0.80 0.30 * 2165.00 * 0.30
160 0.60 0.30 * 2279.00 * 0.23
161 P6 0.80 0.60 * 1315.00 * 0.30
162 0.60 0.60 * 1360.00 * 0.31
163 0.80 0.30 * 1369.00 * 0.27
164 0.60 0.30 * 1253.00 * 0.31
165 P7 0.80 0.60 * 3237.00 * 0.29
166 0.60 0.60 * 2545.00 * 0.34
167 0.80 0.30 * 2835.00 * 0.37
168 0.60 0.30 * 3021.00 * 0.34
169 P8 0.80 0.60 * 3448.00 * 0.29
170 0.60 0.60 * 3680.00 * 0.32
171 0.80 0.30 * 3533.00 * 0.32
172 0.60 0.30 * 3749.00 * 0.35
173 P9 0.80 0.60 * 5380.00 * 0.40
174 0.60 0.60 * 5958.00 * 0.31
175 0.80 0.30 * 5573.00 * 0.42
176 0.60 0.30 * 6004.00 * 0.34
177 P10 0.80 0.60 * 6319.00 * 0.40
178 0.60 0.60 * 6584.00 * 0.37
179 0.80 0.30 * 6478.00 * 0.34
180 0.60 0.30 * 6643.00 * 0.46

* Infeasible solution.

To visualise the impact of cell-cohesion requirement when forming a team of cross-
trained workers in a cell, Figure 5 shows the interaction effects between the level of cross-
training and cell-cohesion requirement on the part-skill score. The interaction effects are
significant in all three problem benchmarks. However, the multiple comparison results in
Table 19 show that the difference in part-skill scores between no cell-cohesion requirement
and low cell-cohesion requirement is not statistically significant. The results suggest that
there is no impact of low cell-cohesion requirement on the decision of team formation in
terms of workers’ capabilities. In contrast, the decision of team formation becomes more
critical when requiring 0.6 of the normalised cell-cohesion score, which could diminish the
total part-skill score of partially cross-trained workers in the cell. This is intuitive since
the team member selection is quite limited in the condition when a high cell-cohesion
is required. As a result, there is a high possibility that workers in the high cohesion cell
might not be able to satisfy part production demands. Thus, the decision maker should be
aware of the high cell-cohesion requirement when forming a partially cross-trained team in
the cell.
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Table 18. Two-way ANOVA results on part-skill score.

Problem ID: P8 Problem ID: P9 Problem ID: P10

Part-Skill Score Part-Skill Score Part-Skill Score

Source F-Value p-Value F-Value p-Value F-Value p-Value

CTL 631.30 0.00 * 1588.19 0.00 * 4190.05 0.00 *
L 43.73 0.00 * 143.14 0.00 * 206.46 0.00 *

CTL× L 12.14 0.00 * 59.51 0.00 * 54.59 0.00 *
* Significant at the 5% level.
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Table 19. Multiple comparison of part-skill score in each cell-cohesion requirement level.

Problem ID: P8 Problem ID: P9 Problem ID: P10

Part-Skill Score Part-Skill Score Part-Skill Score

Cell-Cohesion Requirement (L) Mean Difference p-Value Mean Difference p-Value Mean Difference p-Value

0.00 0.30 −0.30 0.99 0.75 0.71 −0.12 0.62
0.60 2.08 0.00 * 1.43 0.00 * 2.26 0.00 *

0.30 0.00 0.30 0.99 −0.75 0.71 0.12 0.62
0.60 2.11 0.00 * −1.35 0.00 * 2.39 0.00 *

0.60 0.00 −2.08 0.00 * −1.43 0.00 * −2.26 0.00 *
0.30 −2.11 0.00 * −1.35 0.00 * −2.39 0.00 *

* Significant at the 5% level.
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7. Concluding Remarks

This study addressed the team formation and worker assignment problem through
a mathematical programming model that considered interpersonal relationships among
cross-trained workers in a CMS. A two-stage decision-based methodology was developed
based on the ALNS framework—namely, two-stage ALNS. The solution quality of the
two-stage ALNS method was tested on 140 single-stage small-sized test instances using
the developed HBBFS algorithm. Of the 140 small-sized test instances, the solutions using
the proposed method were equivalent to the exact solution at the team formation stage.
Furthermore, the two-stage ALNS method was compared to the NSGA-II-based single-
stage decision methodology with 40 test instances for all problem benchmarks. The results
revealed that two-stage ALNS method outperformed the NSGA-II method, providing
feasible solutions with less computational effort for all test instances. Finally, based on the
results of the two-stage ALNS method, we investigated how the cross-training level and
cell-cohesion requirement affected the decision when forming a team of workers in the cell.
The results suggest that a higher level of cell-cohesion requirement could reduce the total
number of workers’ skills for partially cross-trained workers.

The scope of this study can be split into three possible directions. First, the problem
can be extended to a multiperiod problem. For instance, future work could introduce
the dynamism of the relationships among workers, which could change over time. Other
metaheuristic-based solving methods could be developed to improve the solution quality
and reduce the computational time of the multiperiod problem. Second, it is worthwhile
to investigate the impact of team-based requirements on the performance of cell team
formation using the KCI and MBTI. Third, the problem dimension of the TFWAP can be
extended in several ways. In reality, workers would prefer to operate their familiar tasks.
Managers could prioritise each part’s production differently according to the customer’s
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demands. These issues are essential for a practical TFWAP. We expect that the developed
model could be adapted and applied in the context of team project management—as it
shares some common characteristics with the TFWAP in a CMS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12168323/s1, Online supplemental appendix.

Author Contributions: Conceptualization, T.P. and S.S.; methodology, T.P. and S.S.; software, T.P.; val-
idation, T.P.; writing—original draft preparation, T.P.; writing—review and editing, T.P.; supervision,
S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The following data can be downloaded at: https://github.com/
Carlzeriss/TFWAP (accessed on 8 Febuary 2022).

Acknowledgments: The authors would like to thank Paniti Achararit and Pavinee Rerkjirattikal for
their insightful suggestions and comments on improving this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bidanda, B.; Ariyawongrat, P.; Needy, K.L.; Norman, B.A.; Tharmmaphornphilas, W. Human related issues in manufacturing cell

design, implementation, and operation: A review and survey. Comput. Ind. Eng. 2005, 48, 507–523. [CrossRef]
2. Cesaní, V.I.; Steudel, H.J. A study of labor assignment flexibility in cellular manufacturing systems. Comput. Ind. Eng. 2005, 48,

571–591. [CrossRef]
3. Slomp, J.; Molleman, E. Cross-training policies and team performance. Int. J. Prod. Res. 2005, 40, 1193–1219. [CrossRef]
4. Sengupta, K.; Jacobs, F.R. Impact of work teams: A comparison study of assembly cells and assembly line for a variety of

operating environments. Int. J. Prod. Res. 2004, 42, 4173–4193. [CrossRef]
5. Sakazume, Y. Is japanese cell manufacturing a new system?: A comparative study between japanese cell manufacturing and

cellular manufacturing. J. Jpn. Ind. Manag. Assoc. 2005, 55, 341–349.
6. Min, H.; Shin, D. Simultaneous formation of machine and human cells in group technology: A multiple objective approach. Int. J.

Prod. Res. 1993, 31, 2307–2318. [CrossRef]
7. Chen, S.; Lin, L. Modeling team member characteristics for the formation of a multifunctional team in concurrent engineering.

IEEE Trans. Eng. Manag. 2004, 51, 111–124. [CrossRef]
8. Gutiérrez, J.H.; Astudillo, C.A.; Ballesteros-Pérez, P.; Mora-Melià, D.; Candia-Véjar, A. The multiple team formation problem

using sociometry. Comput. Oper. Res. 2016, 75, 150–162. [CrossRef]
9. Ballesteros-Pérez, P.; González-Cruz, M.C.; Fernández-Diego, M. Human resource allocation management in multiple projects

using sociometric techniques. Int. J. Proj. Manag. 2012, 30, 901–913. [CrossRef]
10. Chen, R. Grouping optimization based on social relationships. Math. Prob. Eng. 2012, 2012, 170563. [CrossRef]
11. Campêlo, M.; Figueiredo, T.; Silva, A. The sociotechnical teams formation problem: A mathematical optimization approach. Ann.

Oper. Res. 2020, 286, 201–216. [CrossRef]
12. Zakarian, A.; Kusiak, A. Forming teams: An analytical approach. IIE Trans. 1999, 31, 85–97. [CrossRef]
13. Zhang, L.; Zhang, X. Multi-objective team formation optimization for new product development. Comput. Ind. Eng. 2013, 64,

804–811. [CrossRef]
14. Fathian, M.; Saei-Shahi, M.; Makui, A. A new optimization model for reliable team formation problem considering experts’

collaboration network. IIE Trans. Eng. Manag. 2017, 64, 586–593. [CrossRef]
15. Stevens, M.J.; Campion, M.A. The knowledge, skill, and ability requirements for teamwork: Implications for human resource

management. J. Manag. 1994, 20, 503–530. [CrossRef]
16. Salas, E.; Shuffler, M.L.; Thayer, L.A.; Wendy, B.L.; Elizabeth, L.H. Understanding and improving teamwork in organizations: A

scientific based practical guide. Hum. Res. Manag. 2014, 54, 599–622. [CrossRef]
17. Hoegl, M.; Gemuenden, H.G. Teamwork quality and the success of innovative projects: A theoretical concept and empirical

evidence. Org. Sci. 2001, 12, 435–449. [CrossRef]
18. Beal, D.J.; Cohen, R.R.; Burke, M.J.; McLendon, C.L. Cohesion and performance in groups: A meta-analytic clarification of

construct relations. J. Appl. Psychol. 2003, 88, 989–1004. [CrossRef]
19. Mullen, B.; Copper, C. The relation between group cohesiveness and performance: An integration. Psychol. Bull. 1994, 115,

210–227. [CrossRef]
20. Moreno, J.L. Foundations of sociometry, an introduction. Sociometry 1941, 4, 15–35. [CrossRef]

https://www.mdpi.com/article/10.3390/app12168323/s1
https://www.mdpi.com/article/10.3390/app12168323/s1
https://github.com/Carlzeriss/TFWAP
https://github.com/Carlzeriss/TFWAP
http://doi.org/10.1016/j.cie.2003.03.002
http://doi.org/10.1016/j.cie.2003.04.001
http://doi.org/10.1080/00207540110098823
http://doi.org/10.1080/00207540410001720421
http://doi.org/10.1080/00207549308956859
http://doi.org/10.1109/TEM.2004.826011
http://doi.org/10.1016/j.cor.2016.05.012
http://doi.org/10.1016/j.ijproman.2012.02.005
http://doi.org/10.1155/2012/170563
http://doi.org/10.1007/s10479-018-2759-5
http://doi.org/10.1080/07408179908969808
http://doi.org/10.1016/j.cie.2012.12.015
http://doi.org/10.1109/TEM.2017.2715825
http://doi.org/10.1177/014920639402000210
http://doi.org/10.1002/hrm.21628
http://doi.org/10.1287/orsc.12.4.435.10635
http://doi.org/10.1037/0021-9010.88.6.989
http://doi.org/10.1037/0033-2909.115.2.210
http://doi.org/10.2307/2785363


Appl. Sci. 2022, 12, 8323 26 of 27

21. Rahmanniyay, F.; Yu, A.J.; Seif, J. A multi-objective multi-stage stochastic model for project team formation under uncertainty in
time requirements. Comput. Ind. Eng. 2019, 132, 153–165. [CrossRef]

22. Feng, B.; Jiang, Z.; Fan, Z.; Fu, N. A method for member selection of cross-functional teams using the individual and collaborative
performances. Eur. J. Oper. Res. 2010, 203, 652–661. [CrossRef]

23. Askin, R.G.; Huang, Y. Forming effective worker teams for cellular manufacturing. Int. J. Prod. Res. 2001, 39, 2431–2451. [CrossRef]
24. Fitzpatrick, E.L.; Askin, R.G. Forming effective worker teams with multi-functional skill requirements. Comput. Ind. Eng. 2005, 48,

593–608. [CrossRef]
25. Yilmaz, O.F.; Ozcelik, G.; Yeni, F.B. Lean holistic fuzzy methodology employing cross-functional worker teams for new product

development projects: A real case study from high-tech industry. Eur. J. Oper. Res. 2020, 282, 989–1010. [CrossRef]
26. Norman, B.A.; Tharmmaphornphilas, W.; Needy, K.L.; Bidanda, B.; Warner, R.C. Worker assignment in cellular manufacturing

considering technical and human skills. Int. J. Prod. Res. 2002, 40, 1479–1492. [CrossRef]
27. Wirojanagud, P.; Gel, E.S.; Fowler, J.W.; Cardy, R. Modelling inherent worker differences for workforce planning. Int. J. Prod. Res.

2007, 45, 525–553. [CrossRef]
28. Süer, G.A.; Tummaluri, R.R. Multi-period operator assignment considering skills, learning and forgetting in labour-intensive cells.

Int. J. Prod. Res. 2008, 46, 469–493. [CrossRef]
29. McDonald, T.; Ellis, K.P.; Van Aken, E.M.; Patrick, K.C. Development and application of a worker assignment model to evaluate a

lean manufacturing cell. Int. J. Prod. Res. 2009, 47, 2427–2447. [CrossRef]
30. Aryanezhad, M.B.; Deljoo, V.; Mirzapour Al-e-hashem, S.M.J. Dynamic cell formation and the worker assignment problem: A

new model. Int. J. Adv. Manuf. Technol. 2009, 41, 329–342. [CrossRef]
31. Yilmaz, O.F.; Durmusoglu, M.B. A performance comparison and evaluation of metaheuristics for a batch scheduling problem in a

multi-hybrid cell manufacturing system with skilled workforce assignment. J. Ind. Manag. Opt. 2018, 14, 1219–1249. [CrossRef]
32. Liu, C.; Wang, J.; Leung, J.Y.T. Worker assignment and production planning with learning and Forgetting in Manufacturing Cells

by Hybrid Bacteria Foraging Algorithm. Comput. Ind. Eng. 2016, 96, 162–179. [CrossRef]
33. Jin, H.; Hewitt, M.; Thomas, B.W. Workforce grouping and assignment with learning-by-doing and knowledge transfers. Int. J.

Prod. Res. 2018, 5, 4968–4982. [CrossRef]
34. Chu, X.; Gao, D.; Cheng, S.; Wu, L.; Chen, J.; Shi, Y.; Qin, Q. Worker assignment with learning-forgetting effect in cellular

manufacturing system using adaptive memetic differential search algorithm. Comput. Ind. Eng. 2019, 136, 381–396. [CrossRef]
35. Méndez-Vázquez, Y.M.; Nembhard, D.A. Worker-cell assignment: The impact of organizational factors on performance in cellular

manufacturing systems. Comput. Ind. Eng. 2019, 127, 1101–1111. [CrossRef]
36. Liu, C.; Yang, N.; Li, W.; Lian, J.; Evans, S.; Yin, Y. Training and assignment of multi-skilled workers for implementing seru

production systems. Int. J. Adv. Manuf. Technol. 2013, 69, 937–959. [CrossRef]
37. Ying, K.; Tsai, Y. Minimising total cost for training and assigning multiskilled workers in seru production systems. Int. J. Prod.

Res. 2017, 55, 2978–2989. [CrossRef]
38. Yu, Y.; Wang, J.; Ma, K.; Sun, W. Seru system balancing: Definition, formulation, and exact solution. Comput. Ind. Eng. 2018, 122,

318–325. [CrossRef]
39. Lian, J.; Liu, C.; Li, W.J.; Yin, Y. A multi-skilled worker assignment problem in seru production systems considering the worker

heterogeneity. Comput. Ind. Eng. 2018, 118, 366–382. [CrossRef]
40. Wu, L.; Cai, F.; Li, L.; Chu, X. Cross-trained worker assignment problem in cellular manufacturing system using swarm intelligence

metaheuristics. Math. Prob. Eng. 2018, 2018, 4302062. [CrossRef]
41. Niakan, F.; Baboli, A.; Moyaux, T.; Botta-Genoulaz, V. A bi-objective model in sustainable dynamic cell formation problem with

skill-based worker assignment. Comput. Ind. Eng. 2016, 38, 46–62. [CrossRef]
42. Kuo, Y.; Liu, C. Operator assignment in a labor-intensive manufacturing cell considering inter-cell manpower transfer. Comput.

Ind. Eng. 2017, 110, 83–91. [CrossRef]
43. Feng, H.; Da, W.; Xi, L.; Pan, E.; Xia, T. Solving the integrated cell formation and worker assignment problem using particle

swarm optimization and linear programming. Comput. Ind. Eng. 2017, 110, 126–137. [CrossRef]
44. Campbell, G.M. Cross-utilization of workers whose capabilities differ. Manag. Sci. 1999, 45, 722–7323. [CrossRef]
45. Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]
46. Ropke, S.; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows.

Transp. Sci. 2006, 40, 455–472. [CrossRef]
47. Lahyani, R.; Gouguenheim, A.L.; Coelho, L.C. A hybrid adaptive large neighbourhood search for multi-depot open vehicle

routing problems. Int. J. Prod. Res. 2019, 57, 6963–6976. [CrossRef]
48. Hellsten, E.O.; Sacramento, D.; Pisinger, D. An adaptive large neighbourhood search heuristic for routing and scheduling feeder

vessels in multi-terminal ports. Eur. J. Oper. Res. 2020, 287, 682–698. [CrossRef]
49. Chen, C.; Demir, E.; Huang, Y. An adaptive large neighborhood search heuristic for the vehicle routing problem with time

windows and delivery robots. Eur. J. Oper. Res. 2021, 294, 1164–1180. [CrossRef]
50. Friedrich, C.; Elbert, R. Adaptive large neighborhood search for vehicle routing problems with transshipment facilities arising in

city logistics. Comput. Oper. Res. 2022, 137, 105491. [CrossRef]
51. Belo-Filho, M.A.F.; Amorim, P.; Almada-Lobo, B. An adaptive large neighbourhood search for the operational integrated

production and distribution problem of perishable products. Int. J. Prod. Res. 2015, 53, 6040–6058. [CrossRef]

http://doi.org/10.1016/j.cie.2019.04.015
http://doi.org/10.1016/j.ejor.2009.08.017
http://doi.org/10.1080/00207540110040466
http://doi.org/10.1016/j.cie.2004.12.014
http://doi.org/10.1016/j.ejor.2019.09.048
http://doi.org/10.1080/00207540110118082
http://doi.org/10.1080/00207540600792242
http://doi.org/10.1080/00207540601138551
http://doi.org/10.1080/00207540701570174
http://doi.org/10.1007/s00170-008-1479-4
http://doi.org/10.3934/jimo.2018007
http://doi.org/10.1016/j.cie.2016.03.020
http://doi.org/10.1080/00207543.2018.1424366
http://doi.org/10.1016/j.cie.2019.07.028
http://doi.org/10.1016/j.cie.2018.11.050
http://doi.org/10.1007/s00170-013-5027-5
http://doi.org/10.1080/00207543.2016.1277594
http://doi.org/10.1016/j.cie.2018.05.048
http://doi.org/10.1016/j.cie.2018.02.035
http://doi.org/10.1155/2018/4302062
http://doi.org/10.1016/j.jmsy.2015.11.001
http://doi.org/10.1016/j.cie.2017.05.036
http://doi.org/10.1016/j.cie.2017.05.038
http://doi.org/10.1287/mnsc.45.5.722
http://doi.org/10.1016/j.cor.2005.09.012
http://doi.org/10.1287/trsc.1050.0135
http://doi.org/10.1080/00207543.2019.1572929
http://doi.org/10.1016/j.ejor.2020.04.050
http://doi.org/10.1016/j.ejor.2021.02.027
http://doi.org/10.1016/j.cor.2021.105491
http://doi.org/10.1080/00207543.2015.1010744


Appl. Sci. 2022, 12, 8323 27 of 27

52. He, K.; Tole, K.; Ni, F.; Yuan, Y.; Liao, L. Adaptive large neighborhood search for solving the circle bin packing problem. Comput.
Oper. Res. 2021, 127, 105140. [CrossRef]

53. Avci, M.G.; Avci, M. An adaptive large neighborhood search approach for multiple traveling repairman problem with profits.
Comput. Oper. Res. 2019, 111, 367–385. [CrossRef]

54. Jiang, D.; Li, X. Order fulfilment problem with time windows and synchronisation arising in the online retailing. Int. J. Prod. Res.
2021, 59, 1187–1215. [CrossRef]

55. Jarumaneeroj, P.; Sakulsom, N. An adaptive large neighborhood search for the multiple-day music rehearsal problems. Comput.
Ind. Eng. 2021, 157, 107279. [CrossRef]

56. He, L.; Liu, X.; Laporte, G.; Chen, Y.; Chen, Y. An improved adaptive large neighborhood search algorithm for multiple agile
satellites scheduling. Comput. Oper. Res. 2018, 100, 12–25. [CrossRef]

57. Shaw, P. Using constraint programming and local search methods to solve vehicle routing problems. In Principles and Practice
of Constraint Programming—CP98; Maher, M., Puget, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1520, pp.
417–431.

58. Won, Y.; Kim, S. Multiple criteria clustering algorithm for solving the group technology problem with multiple process routings.
Comput. Ind. Eng. 1997, 32, 207–220. [CrossRef]

59. Zolfaghari, S.; Liang, M. Comparative study of simulated annealing, genetic algorithms and tabu search for solving binary and
comprehensive machine-grouping Problems. Int. J. Prod. Res. 2002, 40, 2141–2158. [CrossRef]

60. Islam, K.M.S.; Sarker, B.R. A similarity coefficient measure and machine-parts grouping in cellular manufacturing systems. Int. J.
Prod. Res. 2000, 38, 699–720. [CrossRef]

61. Yang, M.; Yang, J. Machine-part cell formation in group technology using a modified ART1 method. Eur. J. Oper. Res. 2008, 188,
140–152. [CrossRef]

62. Moon, Y.B.; Chi, S.C. Generalized part family formation using neural network techniques. J. Manuf. Syst. 1992, 11, 149–159.
[CrossRef]

63. Seifoddini, H.; Djassemi, M. The threshold value of a quality index for formation of cellular manufacturing systems. Int. J. Prod.
Res. 1996, 34, 3401–3416. [CrossRef]

64. Montgomery, D.C. Design and Analysis of Experiments, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN
9781118146927.

http://doi.org/10.1016/j.cor.2020.105140
http://doi.org/10.1016/j.cor.2019.07.012
http://doi.org/10.1080/00207543.2020.1721589
http://doi.org/10.1016/j.cie.2021.107279
http://doi.org/10.1016/j.cor.2018.06.020
http://doi.org/10.1016/S0360-8352(96)00209-4
http://doi.org/10.1080/00207540210131851
http://doi.org/10.1080/002075400189374
http://doi.org/10.1016/j.ejor.2007.03.047
http://doi.org/10.1016/0278-6125(92)90001-V
http://doi.org/10.1080/00207549608905097

	Introduction 
	Scientific Literature Review 
	Team Formation 
	Worker Assignment 

	Theory: Problem Statement and Mathematical Formulation 
	Notations for Model A and Model B 
	Model A Formulation 
	Model B1 Formulation: Team Formation 
	Model B2 Formulation: Worker Assignment 

	Methodology: Problem-Solving Methodology 
	Two-Stage Adaptive Large Neighbourhood Search (Two-Stage ALNS) 
	Initial Heuristic of the Proposed Two-Stage ALNS 
	Adaptive Search Engine 
	Destroy Operator 
	Repair Operator 
	Simulated Annealing (SA) 


	Numerical Example 
	Results: Computational Experiment 
	Problem Instance and Parameter Settings 
	Computational Results 
	Solution Quality of the Proposed Method 
	Effectiveness of the Two-Stage Decision Methodology 
	Managerial Insight Regarding Team Formation 


	Concluding Remarks 
	References

