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Featured Application: Noise-induced large fluctuations and activation behaviors attract much at-
tention in diverse scientific contexts—for example, involving stochastic resonances and coherent
resonances, nucleation in electrochemical systems, passage of ions through open ionic channels
in biological membranes, etc. The concept of prehistory probability has been proposed in equi-
librium settings to show the focusing effect of the large fluctuational paths on a special one called
the optimal path, and recently has been successfully applied to analyze selective ionic conduc-
tion through an artificial nanopore in a single graphene sheet. This paper is devoted to showing
that such a focusing effect still holds in the stationary, nonstationary, and quasi-stationary set-
tings for both equilibrium and non-equilibrium Langevin systems. The results here shed new
light on the underlying mechanisms hidden in the noisy large fluctuation phenomena, and make
further studies of other complex stochastic models possible.

Abstract: The dynamics of a stochastic system that exhibits large fluctuations to a given state
are almost deterministic due to weak random perturbations. Such large fluctuations occur with
overwhelming probability in the vicinity of the so-called optimal path, which is a vital concept in
physics, chemistry, and biology, as it uncovers the way in which a physical process escapes from
the attractive domain of a metastable state and transitions between different metastable states. In
this paper, we examine the prehistorical description of the optimal fluctuation with the unifying
framework of Langevin dynamics by means of a quantity called prehistory probability density. We
show that the optimal fluctuation has a strong connection with the time reversal of the associated
diffusion process. Specifically, in the stationary or quasi-stationary cases, it is found that the prehistory
probability density actually acts as the transition probability density of the reversed process. As noise
intensity approaches zero, it focuses on the average dynamics of the reversed process due to the
law of large numbers, which is then shown to coincide with the time reversal of the optimal path.
The local dispersion of the prehistory probability density can thus be reformulated as a Gaussian
distribution corresponding to the linearized part of the reversed process. In addition, as an analogue
of the original definition in the stationary states, it is proven that the concept of prehistory probability
density can also be extended to nonstationary cases where similar properties are still valid. Based on
these theoretical results, an algorithm is designed and then successfully applied to a one-dimensional
example at the end, showing its accuracy for pinpointing the location of the optimal path and its
efficacy in cases where multiple optimal paths coexist.

Keywords: large fluctuation; optimal path; prehistory probability density; time reversal of diffusion
process

1. Introduction

Macroscopic variables characterizing the dynamics of a physical system typically
fluctuate continuously due to environmental noises, and such fluctuations tend to become
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more regular as the intensity of external random perturbations decreases. The minuteness
of the noise suggests that the evolution of a physical system is concentrated in its deter-
ministic average dynamics on a finite timescale. The local small-amplitude fluctuations
of the stochastic variables around a certain deterministic trajectory can be approximated
by a Gaussian distribution whose width is proportional to the strength of the noise. How-
ever, when long-term effects of the noise are taken into account, large excursions away
from the average dynamics will take place with a probability close to one. The large
fluctuations, although infrequent, are responsible for many physical processes, such as
chemical reactions [1], stochastic resonances and coherent resonances [2,3], unidirectional
motion and energy transduction of molecular motors (also known as Brownian ratchets) [4],
enzyme kinetics in living systems [5], etc.

The statistical description of significant fluctuations is a daunting problem. One
extensively used technique to describe them relies on the path integral method [6–8], which
is essentially a formal representation of the transition probability density in the form of
an integral of appropriate functional with respect to a translation-invariant measure in
the infinite-dimensional space of all possible stochastic trajectories [9]. An equivalent
but mathematically more rigorous formulation is the large deviation theory established
by Freidlin and Wentzell [10]. Both theories assert that the probability of an event or
the value of an expectation is exponentially dominated by the minimum of the so-called
action functional, and that the rare large fluctuations, when occurring, are more likely to
be close to the minimizer of the functional. Therefore, two crucial concepts—the optimal
paths (OPs) minimizing the functional and the minimum of the action—serve as the central
objects of these theories, which reveal the almost deterministic behaviors hidden in complex
stochastic systems.

Based on these theories, a great deal of effort has been devoted to the investigation
of large fluctuations—especially in non-equilibrium systems. Compared with systems in
thermal equilibrium, even a simple non-equilibrium system can exhibit quite different
behaviors due to the lack of detailed balance. For example, singularities such as caustics and
cusps may arise in the patterns of the extreme paths due to folding structures of the unstable
Lagrangian manifold, implying non-differentiability of quasi-potential in some regions,
called a switching set [11–13]. A symmetry-breaking bifurcation of the optimal escape path
in a double-well system was presented in [14], showing the coexistence of multiple most-
probable escape paths in the cases far away from equilibrium. A phenomenon of cycling of
exit from a planar unstable limit cycle was observed in [15], revealing that the distributions
of the first escape time and the first escape location both rotate around the unstable orbit
periodically with respect to the logarithm of the noise intensity. Moreover, the asymptotic
behavior of the exit location’s distribution in a general two-dimensional dynamical system
has been studied analytically in [16,17]. It was found that the distribution is non-Gaussian
and skewed on one side of the saddle, which is a generic feature in non-equilibrium
systems. Moreover, the phenomenon of transition between complex invariant sets in two-
dimensional discrete mapping systems has been explored by many researchers over the last
few decades. Graham et al. [18] discussed the multifractal features of the quasi-potential
for systems with hyperbolic fractal attractors or repellers. Kraut and Feudel [19,20] noticed
the reduction in the activation energy effect due to the existence of a chaotic invariant set of
saddle types. Luchinsky et al. [21–23] numerically investigated the transition from a strange
attractor to a stable limit cycle and the transition between coexisting chaotic attractors with
a fractal boundary. Both results revealed that the most probable escape always occurs by
passing through a series of saddle-type invariant sets, such as saddle points and saddle
cycles with various periods.

Another new quantitative approach for the investigation of large fluctuations away from a
stable fixed point—prehistory probability density (PPD)—was proposed by Dykman et al. [24].
This approach asserts that the OP xop(t), reaching a prescribed state x f at the moment t f ,
is located at the prehistorical peaks of probability density ph(x, t|x f , t f ) for t < t f , and
the occurrence of large fluctuations in the given state focuses on a tube of trajectories
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around the optimal one, with its width corresponding to the dispersion of the PPD. Thus,
the PPD provides information about the OP and the probability that it can be followed,
making it especially suitable for experimental or numerical statistics to calculate the optimal
fluctuation, as described in [25–30]. The advantages have been demonstrated numerically
in the investigation of the multiple peak features of the distribution [12] and the escape
from chaotic attractors [31].

However, the theoretical derivation of the PPD is only displayed in the equilibrium
systems. Although numerous experimental and numerical examples also confirm the
validity of the PPD in the non-equilibrium cases, its physical meaning is still puzzling. We
should note that the PPD can actually be obtained by calculating the laws of the prehistory
positions for all possible large fluctuations reaching a given state. This time-reversed
statistical approach reminds us of the concept of time reversibility, which plays a crucial
role in statistical physics, since whether or not the time-reversed process coincides with the
original one determines whether the system is in equilibrium or non-equilibrium. Therefore,
it seems quite natural to ask whether there is any connection between the PPD and the time
reversal of the original diffusion process, and if so, what the OP and the local Gaussian
dispersion represent. Can the results in the stationary cases be extended to nonstationary
cases? The answers to these questions form the bulk of this paper.

The remainder of this paper is organized as follows: A brief review of the optimal
fluctuations within the framework of general Langevin processes is presented in Section 2.
The prehistorical description of the optimal fluctuations in both the stationary and quasi-
stationary cases, and its extension to the nonstationary cases, are formulated in Section 3.
A numerical algorithm and its application to a one-dimensional example are exhibited in
Section 4. Finally, conclusions are drawn in Section 5.

2. Optimal Fluctuations of General Langevin Dynamics

Consider a classical dynamical system subjected to a small multiplicative Gaussian
white noise described by Itô’s stochastic differential equation:

dxε
t = b(xε

t)dt +
√

εσ(xε
t)dw(t), xε

0 = x0, t ≥ 0 (1)

where b(x) is an n-dimensional drift field, w(t) is a standard Rn-valued Wiener pro-
cess, ε > 0 measures the noise intensity, σ(x) is a smooth matrix-valued function, and
A(x) = σ(x)σ(x)T is the diffusion coefficient. Here, the non-homogeneity of the diffusion
coefficient is assumed. It is a common model in disciplines such as physics, chemistry, and
biology to simulate molecular dynamics for molecular systems or materials. In physical
systems, as the noise is caused by the thermal motion of molecules, the noise intensity
ε ∝ kBT and, thus, is often small.

In the weak noise limit, solutions to Equation (1) approach its deterministic average
(in the absence of noise) in probability on a finite timescale. Occasional large fluctuations
take place with small probability, as is rigorously shown by the large deviation theory.
According to this theory [10], the probability of observing sample paths close to a given
one ϕ(s) can be estimated as follows:

Px0{ sup
0≤s≤t

|xε
s −ϕ(s)| < δ} ∼ exp

(
−ε−1St[ϕ]

)
(2)

The action functional S and the Lagrangian L are given as follows:

St[ϕ] =
1
2

∫ t

0
L(ϕ,

.
ϕ)ds (3)

L(ϕ,
.
ϕ) = (

.
ϕ−ϕ(ϕ))TA(ϕ)−1(

.
ϕ− b(ϕ)) (4)

Note that the action is nonzero unlessϕ(t) is a trajectory of the average system; that is,
large fluctuations take place with an exponentially small probability. As the noise intensity
approaches zero, it is this exponential convergence rate that highlights such a path with
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a smaller value of the action, and tells us which almost unlikely event is more likely to
take place and which is more unlikely. As a result, the minimum of the action functional
dominates the possibility that a rare event occurs, and the path where the minimum is
obtained is the most likely one in this rare event. Thus, the principle of variation could be
used to provide the optimal fluctuation as a solution to the Euler–Lagrange equation:

d
dt

(
∂L
∂

.
ϕ

)
=

∂L
∂ϕ

(5)

with some constraints satisfied. Similarly inspired by classical mechanics, we define a
Hamiltonian as the Fenchel–Legendre transform of the Lagrangian, i.e.,

H(x, p) = b(x)Tp +
1
2

pTA(x)p (6)

The minimization of Equation (3) is then equivalent to solving a constrained Hamilto-
nian problem with its governing equation given as follows:

.
x = ∂H

∂p = b(x) + A(x)p
.
p = − ∂H

∂x = −(∇b(x))Tp− 1
2∇(pTA(x)p)

(7)

A direct result of the large deviation theory is that the transition probability density, if
it exits, can be expressed in the following exponential form:

p(x, t|x0) ∼ exp
(
−V(x0; t, x)

ε

)
(8)

which is the same as the formal path integral formulation in the classical work of Onsager
and Machlup [32,33]. Here, the rate function V(x0; t, x) is defined as follows:

V(x0; t, x) = min
x(0)=x0,x(t)=x

S[x(s)] (9)

This indicates that the probability of finding stochastic trajectories stemming from
x0 and arriving at x after time span t can be exponentially estimated by the function
V(x0; t, x). Therefore, the minimizer xnop(·) = argminx(0)=x0,x(t)=xS[x(·)], representing the
most probable path in this rare event, is defined as the nonstationary optimal path (NOP).
By using the principle of variation, the minimization shown in Equation (9) can then be
reduced to the following constrained Hamiltonian problem:

.
x = ∂H

∂p ,
.
p = − ∂H

∂x
x(0) = x0, x(t) = x

(10)

and the value of the action satisfies the Hamilton–Jacobi equation:

∂V(x0; t, x)
∂t

+ H(x,∇xV(x0; t, x)) = 0 (11)

If it can be solved beforehand, the NOP can be gained by integrating along the
nonstationary optimal fluctuation field, as follows:

.
x = b(x) + A(x)∇xV(x0; t, x) (12)

Moreover, the large deviation theory also permits us to analyze the effect of the random
perturbation on infinite timescales, in which the central concept in the large deviation theory
is the quasi-potential, defined as follows:

V(x0; x) = inf
t>0

min
x(0)=x0,x(t)=x

S[x(·)] (13)

This provides the principal terms of asymptotic expressions about the long-term behaviors
of a stochastic system. For example, consider a bounded domain D with a smooth non-
characteristic boundary ∂D such that its closure D ∪ ∂D is totally contained in the attractive
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domain of a stable fixed point xeq. For small ε, the stochastic trajectories typically fluctuate
around the fixed point, and occasionally hit ∂D, which is a rare event, as our observation is
always performed within a finite timescale. The first exit time τε

∂D = inf{t > 0, xε
t ∈ ∂D},

introduced to quantify the timescale of such a rare event, can be estimated as follows:

Ex0 τε
∂D ∼ exp

(
ε−1V(xeq; ∂D)

)
, x0 ∈ D (14)

∀η > 0, lim
ε→0

Px0

{
eε−1(V(xeq ;∂D)−η) < τε

∂D < eε−1(V(xeq ;∂D)+η)
}
→ 1 (15)

where V(xeq; ∂D) = miny∈∂DV(xeq; y). It can be seen that the occurrence of escaping from
the domain D is concentrated on the timescale of exponential order exp(V(xeq; ∂D)/ε).
Within this timescale, almost all stochastic trajectories remain in the domain D. The system
acquires its quasi-stationary state when the time span is close to this timescale. As time
goes by further, typical events such as escapes and transitions occur and, thus, stochastic
trajectories fluctuate in a much larger region. When the time span reaches infinity, the
balance of probabilistic outflows and inflows in any local area is achieved. The system
is then in its stationary state if it exists, with its stationary density having the Wentzel–
Kramers–Brillouin (WKB)-type approximation

ρs(x) ∼ exp
(
−ε−1V(xeq; x)

)
, x ∈ D (16)

Thus, the core for estimating the probability of a certain rare event or an expectation
about the long-term behavior of the system is to solve the constrained optimization problem
shown in Equation (13), where x0 is usually a fixed point xeq, and x is located in its attractive
domain. In this case, the quasi-potential is the stationary solution of the Hamilton–Jacobi
equation (Equation (11)), i.e.,

H
(
x,∇xV(xeq; x)

)
= 0 (17)

The optimal path xop (OP), defined as the most probable path connecting xeq and x, is
the projection of the trajectory lying on the unstable manifold of the fixed point (xeq, 0) for
the Hamiltonian system (Equation (7)). It corresponds to the solution of the constrained
Hamiltonian problem: .

x = ∂H
∂p ,

.
p = − ∂H

∂x
lim

t→−∞
x(t) = xeq, x(0) = x (18)

If the quasi-potential is given in advance, the optimal fluctuation field for the OP will
be as follows:

.
x = b(x) + A(x)∇xV(xeq; x) (19)

3. Prehistorical Description of the Optimal Fluctuations

In this section, we explore both the OP and NOP by means of another quantity, called
prehistory probability density (PPD). We derive the evolution equation of the PPD and
then relate it to the time reversal of the original diffusion process. We can see that, as ε� 1,
the PPD has good properties of being capable of pinpointing the locations of both the OP
and the NOP, and providing the statistical features of the nearby paths.

3.1. In the Stationary Cases
3.1.1. Evolutionary Law of the PPD

Motivated by the original definition of the PPD exhibited in equilibrium systems [24],
we here define the PPD for our general Langevin dynamics (Equation (1)) as follows:

ph(x, t|x f ) =
ρs(x)
ρs(x f )

p(x f |x, t), t < 0, x, x f ∈ D (20)

where p(x f

∣∣∣x, t) = p(x f , 0
∣∣∣x, t) = p(x f ,−t

∣∣∣x, 0) represents the transition probability from x
to x f over the time span −t. It can be seen that the PPD actually describes the prehistorical
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law of the stationary process conditionally on the prescribed state x f . Our purpose here is
to show that the PPD will focus on the OP as the noise intensity approaches zero.

Recall that the stationary density ρs and the function p(x f

∣∣∣x, t) obey the stationary
forward equation and the Kolmogorov backward equation, respectively:

L∗xρε
s(x) =

ε

2∑
i,j

∂2

∂xi∂xj

(
Aij(x)ρε

s(x)
)
−∑

i

∂

∂xi
(bε

i (x)ρ
ε
s(x)) = 0,

∫
Rn

ρε
s(x)dx = 1 (21)

−
∂p(x f |x, t)

∂t
= Lx p(x f |x, t) =

ε

2∑
i,j

Aij(x)
∂2 p(x f |x, t)

∂xi∂xj
+ ∑

i
bε

i (x)
∂p(x f |x, t)

∂xi
(22)

where L∗x represents the Fokker–Planck operator, with Lx being its adjoint. These equations
can then be applied to derive the evolution of the PPD over time. We have two results; the
first is as follows:

− ∂ph(x,t|x f )

∂t = L∗x ph(x, t|x f )

= ε
2 ∑

i,j

∂2

∂xi∂xj

(
Aij(x)ph(x, t|x f )

)
−∑

i

∂
∂xi

(
b

ε
i (x)ph(x, t|x f )

)
, t < 0 (23)

b
ε
i (x) = −bi(x) + ∑

j

ε

ρs(x)
∂

∂xj

(
Aij(x)ρs(x)

)
(24)

After a time-reversed transformation t→ −t , we have:
∂ph(x,−t|x f )

∂t
= L∗x ph(x,−t|x f ), t > 0 (25)

which, thus, relates ph(x,−t
∣∣∣x f ) to a new diffusion process:

dyε
t =

¯
b

ε

(yε
t)dt +

√
εσ(yε

t)dw(t)

=

(
−bi(yε

t) + ∑
j

ε
ρs(yε

t )
∂

∂yj

(
Aij(yε

t)ρs(yε
t)
))

dt +
√

εσ(yε
t)dw(t), t > 0

(26)

Note that for ph(x, 0
∣∣∣x f ) = δ(x− x f ) , the PPD actually acts as the transition probability

density of this new process with the initial condition yε(0) = x f , i.e.,

ph(y,−t
∣∣∣x f ) = p(y, t

∣∣∣x f ), t > 0 (27)

Whereas, the second is:

∂ph(x, t
∣∣∣x f )

∂t
=

ε

2∑
i,j

∂2

∂xi∂xj

(
Aij(x)ph(x, t

∣∣∣x f )
)
−∑

i

∂

∂xi

(
b̃ε

i (x, t)ph(x, t|x f )
)

, t < 0 (28)

b̃ε
i (x, t) = bi(x) + ∑

j
εAij(x)

∂

∂xj
ln p(x f |x, t) (29)

This relates ph(x, t|x f ) to another diffusion process:

dzε
t =

~
b

ε

(zε
t , t)dt +

√
εσ(zε

t)dw(t)

=

(
bi(zε

t) + ∑
j

εAij(zε
t)

∂
∂zj

ln p(x f |zε
t , t)

)
dt +

√
εσ(zε

t)dw(t), t < 0
(30)

In fact, Equations (23) and (28) describe the evolutionary law of the PPD in the
negative and positive directions of time, respectively. The first equation has the advantage
that only the information of ρs is needed, while for the second, a collection of density{

p(x f |x, t), t < 0
}

is required. We discuss the interpretation of these new processes in
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Section 3.4. In the following section, we use the former to see what happens when the noise
intensity is close to zero.

3.1.2. For the Weak Noise Limit

According to the large deviation theory, the stationary density ρs(x) is exponentially
dominated by the quasi-potential. We have the following WKB-type approximation:

ρε
s(x) =

Cε
s(x)

εn/2 exp
(
−

V(xeq, x)
ε

)
, x ∈ D (31)

where Cε
s(x) = Cs(x) + o(ε). Substituting it into Equation (24), we get:

¯
b

ε

(x) = −b(x)−A(x)∇V(xeq, x) + ε

(
A(x)∇Cs(x)

Cs(x)
+∇ ·A(x)

)
+ o(ε) (32)

For weak noise limit, the ε-independent part represents the average dynamics of yε
t :

.
y0

t = −b(y0
t )−A(y0

t )∇yV(xeq, y0
t ) (33)

Compared with Equation (19), we can see that this is exactly the time reversal of the
optimal fluctuation field. According to the law of large numbers,

∀T > 0, ∀δ > 0, lim
ε→0

Px f

(
max0≤t≤T

∣∣∣yε
t − y0

t

∣∣∣> δ
)
= 0 (34)

As a result, p(y, t|x f ) focuses on y0
t if y0(0) = x f ; that is, the OP xop(t) follows the peak

trajectory of the PPD ph(x, t|x f ) .
If the quasi-potential is smooth, for each point x f , there exists a unique OP connecting

it with the fixed point xeq. This satisfies Equation (19); thus, the PPD has a single peak
trajectory. This is a trivial situation.

The main complexity comes from the case where the quasi-potential is non-differentiable.
This is a frequent occurrence for systems far from equilibrium. Since the quasi-potential is
a solution to the optimization problem (Equation (13)), the principle of variation is applied
to transform it into the constrained Hamiltonian problem (Equation (18)). We can divide
the domain D into three parts (D = D1 ∪ D2 ∪ D3) as follows:

1. We say that x f ∈ D1 if there exists a unique solution to the constrained Hamiltonian
problem with x(0) = x f . This is the OP; thus, the PPD has a single peak trajectory.

2. We say that x f ∈ D2 if there exist multiple solutions to the constrained Hamiltonian
problem with x(0) = x f and, among them, there exists a unique one that has the
minimum action. This is the OP. In this case, the PPD will have multiple peak
trajectories. Each of them corresponds to one solution to the constrained Hamiltonian
problem. As ε→ 0 , the exponential convergence rate (Equation (2)) highlights the OP,
as it has the minimum action. As a result, the PPD possesses a unique highest peak
trajectory located at the OP.

3. We say that x f ∈ D3 if there exist multiple solutions to the constrained Hamiltonian
problem with x(0) = x f and there exists more than one path with the same mini-
mum action. This is the case where multiple OPs coexist, and each of them satisfies
Equation (19). Let xop1 and xop2 denote two of the OPs.

(
xop1(t),∇V(xeq, xop1(t))

)
and(

xop2(t),∇V(xeq, xop2(t))
)

are then the corresponding Hamiltonian trajectories. Since
Equation (7) is a smooth vector field, these trajectories are also smooth. This suggests
that non-differentiability does not occur along these paths except at the endpoint. At
x f , the trajectories must have distinct momentum∇V(xeq, xop1(0)) 6= ∇V(xeq, xop2(0)).
The level set of the quasi-potential intersects itself transversely there and, consequently,
the non-differentiability emerges. In fact, D3 consists of all of the non-differentiable
points of the quasi-potential. At these points, the PPD possesses multiple peak trajec-
tories with the same height, and if we vary the target point x f and let it pass through
D3 transversely, the height of these peak trajectories changes, resulting in the highest
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peak trajectory—that is, the OP—switching from one of them to another suddenly.
This is why D3 is often called the switching region.

Furthermore, along the OP, the local deviation ζ = x− xop is approximatively Gaussian, i.e.,

ph(x, t|x f ) = C exp
(
− 1

2ε

(
x− xop(t)

)T
κ(t)−1(x− xop(t)

))
, x→ xop(t) (35)

The local Gaussian approximation can be reformulated in terms of the new diffusion
process, as follows:

− dζt = ∇x
_
b

0
(xop(t))ζtdt +

√
εσ(xop(t))dw(t), t < 0, ζ(0) = 0 (36)

The noise-independent dispersion parameter, defined as κ(t) = (Eζtζt
T − EζtEζt

T)/ε,
satisfies the time-varying Lyapunov differential equation:

.
κ = −∇x

_
b

0(
xop(t)

)
κ− κ

(
∇x

_
b

0(
xop(t)

))T
+

1
2

A
(
xop(t)

)
, t < 0, κ(0) = 0 (37)

In summary, the results shown here provide us with a complete picture of the optimal
fluctuation in the stationary states. The method here is based on the evolutionary law of the
PPD instead of the complex path integral technique. Consequently, it extends the original
derivation of the PPD in equilibrium systems described in [24] (where b(x) = −∇U(x) and
A(x) = I) to more general Langevin dynamics (Equation (1)), without requiring detailed
balance. It is also notable that the empirical VG relaxation method proposed in [34] for
calculating the dispersion of the PPD in non-equilibrium systems is essentially the same as
Equation (37). In addition, this also testifies theoretically that the PPD is a powerful tool for
us to illustrate the coexistence of multiple OPs, as shown by the numerical experiments
in [11]. Next, we extend the PPD to nonstationary states, to show that similar properties
still hold there.

3.2. In the Nonstationary Cases
3.2.1. Evolutionary Law of the Nonstationary PPD

Here, we consider the transition from a point x0 to x f over the time span T. Similar to
the stationary cases, the nonstationary PPD is defined as follows:

ph(x, t|x f , T; x0, 0) =
p(x, t|x0, 0)p(x f , T|x, t)

p(x f , T|x0, 0)
, 0 ≤ t ≤ T (38)

This describes the prehistorical law of the stochastic process conditionally on the initial
state xε(0) = x0 and final state xε(T) = x f . The functions p(x, t|x0, 0) and p(x f , T|x, t)
obey the Kolmogorov forward equation (Fokker–Planck equation) and the Kolmogorov
backward equation, respectively:

∂p(x, t|x0, 0)
∂t

= L∗x p(x, t|x0, 0) (39)

−
∂p(x f , T|x, t)

∂t
= Lx p(x f , T|x, t) (40)

It is therefore straightforward to obtain

∂ph(x, t|x f , T; x0, 0)
∂t

=
p(x f , T|x, t)

p(x f , T|x0, 0)
∂p(x, t|x0, 0)

∂t
+

p(x, t|x0, 0)
p(x f , T|x0, 0)

∂p(x f , T|x, t)
∂t

(41)

Substituting Equations (39) and (40) into Equation (41) and regrouping the terms
yields two distinct expressions of the evolutionary law. The first is as follows:

− ∂ph
∂t

=
ε

2∑
i,j

∂2

∂xi∂xj

(
Aij(x)ph

)
−∑

i

∂

∂xi

(
b

ε
i (x, T − t)ph

)
, 0 ≤ t ≤ T (42)
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b
ε
i (x, T − t) = −bi(x) + ∑

j

ε

p(x, t|x0)

∂

∂xj

(
Aij(x)p(x, t

∣∣x0)
)

(43)

Whereas the second is as follows:
∂ph
∂t

=
ε

2∑
i,j

∂2

∂xi∂xj

(
Aij(x)ph

)
−∑

i

∂

∂xi

(
b̃ε

i (x, t)ph

)
, 0 ≤ t ≤ T (44)

b̃ε
i (x, t) = bi(x) + ∑

j
εAij(x)

∂

∂xj
ln p(x f , T|x, t) (45)

The former is related to a new diffusion process yε
t :

dyε
t =

_
b

ε
(yε

t , t)dt +
√

εσ(yε
t)dw(t)

=

(
−bi(yε

t) + ∑
j

ε
p(yε

t ,T−t|x0)
∂

∂yj

(
Aij(yε

t)p(yε
t , T − t

∣∣x0)
))

dt +
√

εσ(yε
t)dw(t)

(46)
in the sense of:

ph(y, T − t|x f , T; x0, 0) = p(y, t|x f , 0), 0 ≤ t ≤ T (47)

Meanwhile the second equation (Equation (44)) can be related to another diffusion
process zε

t :

dzε
t =

~
b

ε

(zε
t , t)dt +

√
εσ(zε

t)dw(t)

=

(
bi(zε

t) + ∑
j

εAij(zε
t)

∂
∂zj

ln p(x f , T|zε
t , t)

)
dt +

√
εσ(zε

t)dw(t), 0 ≤ t ≤ T
(48)

in the sense of:
ph(z, t|x f , T; x0, 0) = p̃(z, t|x0, 0), 0 ≤ t ≤ T (49)

The process shown in Equation (48) is called the generalized Brownian bridge, which has
been derived in [35–38] to display transition paths starting at x0 at time 0 and conditioned to end
at a given point x f at time T. It is worth noting that although Equations (42) and (44) have the
same meaning in depicting the evolutionary process of the PPD, different prior information
is needed in the actual calculation. In Equation (42), {p(x, t|x0), 0 ≤ t ≤ T} is needed, while
in Equation (44),

{
p(x f , T

∣∣∣x, t), 0 ≤ t ≤ T
}

is required. Here, we use the former to show
that the PPD will focus on the NOP as the noise intensity approaches zero.

3.2.2. For the Weak Noise Limit

Note that the conditional probability p(x, t|x0) has the WKB approximation of the
following form:

p(x, t|x0) =
C(x, t, x0, ε)

εn/2 exp
(
−V(x0; t, x)

ε

)
(50)

Substituting it into Equation (43), and expanding for ε � 1, we can determine the
average dynamics of yε

t :
.
y0

t =
_
b

0
(y0

t , t) = −b(y0
t )−A(y0

t )∇yV(x0; T − t, y0
t ) (51)

After a time-reversed transformation t→ T − t , this will have the same form as
Equation (12). In this case, p(y, t

∣∣∣x f , 0) will focus on y0
t if y0(0) = x f . Consequently, the

NOP will be achieved at the peak trajectory of the nonstationary PPD.
If V(x0; t, x) is a smooth function, there exists a unique path connecting x0 with the

prescribed point x f ; thus, the PPD has a single peak trajectory. However, what is similar to
stationary cases is the troublesome non-differentiability. In nonstationary cases, this takes
place more frequently—even in equilibrium systems. Here, we can also divide the space
Rn×R into three parts (F1 ∪ F2 ∪ F3) according to the number of solutions to the constrained
Hamiltonian problem (Equation (10)), as well as their value of the action (Equation (3)).
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For points (x f , T) located in these sets, the nonstationary PPD possesses a unique peak
trajectory, a unique highest peak trajectory, and multiple highest peak trajectories with the
same height. This is similar to the stationary situation, which will not be repeated here.

In addition, it is also worth pointing out that the local deviation ζ = x− xnop along
the NOP is still Gaussian, i.e.,

ph(xnop + ζ, t|x f , T; x0, 0) = C exp
(
− 1

2ε
ζTκ(t)−1

ζ

)
, 0 < t < T (52)

Here, the noise-independent dispersion parameter κ(t) is the finite-time solution of
the time-varying Lyapunov equation:

.
κ = −∇x

_
b

0(
xnop(t), T − t

)
κ− κ

(
∇x

_
b
(
xnop(t), T − t

))T
+ 1

2 A
(
xnop(t)

)
, 0 < t < T

κ(0) = 0, κ(T) = 0
(53)

Note that
lim
t→0

ph(x, t|x f , T; x0, 0) = δ(x− x0) (54)

lim
t→T

ph(x, t|x f , T; x0, 0) = δ(x− x f ) (55)

If one of the initial conditions in Equation (53) is valid, the other will hold automatically.
The results here show that the nonstationary PPD has a good property of being able to

pinpoint the location of the NOP, and can also be applied to identify points where there are
multiple coexisting NOPs. In particular, this negates the assertions made in [39], saying
that the PPD is non-Gaussian and highly asymmetrical. To illustrate the above theoretical
analysis more intuitively, a numerical algorithm and its application to a simple example, in
this case, are presented in Section 4.

3.3. In the Quasi-Stationary Cases

Here, we restrict our investigations to the domain D defined previously. Consider the
diffusion that is absorbed in the boundary ∂D. The law of it, represented by

pabs(x, t|x0) = Px0(x
ε
t ' x, t < τε

∂D|x0), x ∈ D (56)

satisfies the Kolmogorov forward equation:
∂pabs

∂t = L∗x pabs, t > 0, x ∈ D
pabs(x, t|x0) = 0, x ∈ ∂D

(57)

The probability in D continues to be lost as time evolves, in the sense of∫
D

pabs(x, t|x0)dx = Px0(t < τε
∂D) (58)

which corresponds to the probability that the stochastic trajectories escape from D. The
quasi-stationary distribution is then defined as the invariant probability measure with
respect to the law of temporal evolution, conditionally on not having left the domain D up
to the moment t, namely [40]:

ρqs(x) =
∫

D Px0 (x
ε
t'x,t<τε

∂D)ρqs(x0)dx0∫
D Px0 (t<τε

∂D)ρqs(x0)dx0

=
∫

D pabs(x,t|x0)ρqs(x0)dx0∫
D Px0 (t<τε

∂D)ρqs(x0)dx0

(59)

This is the eigenfunction associated with the principal eigenvalue −λ1 for the Fokker–
Planck operator L∗ with a homogeneous boundary condition [41,42]. For any initial
distribution p0, the quasi-stationary distribution can be approached by the so-called Yaglom
limit of the conditional probability [43]:

ρqs(x) = lim
t→∞

∫
D Px0(x

ε
t ' x, t < τε

∂D)p0(x0)dx0∫
D Px0(t < τε

∂D)p0(x0)dx0
(60)



Appl. Sci. 2022, 12, 8569 11 of 25

Now, consider a timescale in the following range:

1� t� exp
(

V(xeq, ∂D)

ε

)
(61)

A typical example of such a timescale is t ∼ exp
((

V(xeq, ∂D)− η
)
/ε
)
, in which the

process forgets its initial position and Px0(t < τε
∂D) is still close to one. It follows that

p(x, t|x0) = Px0(x
ε
t ' x, t < τε

∂D) + Px0(x
ε
t ' x, t ≥ τε

∂D) = pabs(x, t|x0) + o(1) (62)

pabs(x, t|x0) ' ρqs(x)Px0(t < τε
∂D) (63)

As a consequence, during the range of time (Equation (61)), the distribution p(x, t|x0)
is well approximated by the quasi-stationary distribution ρqs(x) and, in particular, it does
not depend on the time or the initial position x0.

In the definition of the quasi-stationary distribution, a repulsive effect of the boundary
is inevitable due to the conditioning with respect to the event

{
t < τε

∂D
}

. In a domain
far away from ∂D, this effect disappears. Therefore, the quasi-stationary distribution
approximately has a WKB-type form, i.e.,

ρqs(x) =
Cqs(x)

εn/2 exp
(
−

V(xeq, x)
ε

)
(64)

However, this effect implies that the quasi-stationary density vanishes in the neighbor-
hood of ∂D and, thus, boundary layer approximation has to be performed to obtain the
exact expression of ρqs, which is non-negligible in the calculation of the transition rate and
the distribution of the exit position. Accordingly, for x near the boundary, we have

ρqs(x) =
Cbl(πD(x), η(x)/ε)

εn/2 exp
(
−

V(xeq, x)
ε

)
(65)

where πD(x) is the orthogonal projection of x onto ∂D, and η(x) is the distance between x
and πD(x). The boundary layer develops on a characteristic length scale ε, and when away
from the boundary, this expression return to the usual WKB form (Equation (64)) quickly, i.e.,

lim
d→∞

Cbl(y, d) = Cqst(y), y ∈ ∂D (66)

Note that only the principal order term of the probability determinates the behaviors
of large fluctuation, as indicated above. Assume that the system is initially in the quasi-
stationary state. Substituting Equations (62), (63), and (65) into Equation (46), we get the
same average dynamics as those of the stationary cases. This result shows that even if the
stationary probability density does not exist, or we have no knowledge of its existence,
the same optimal fluctuation in the timescale before escaping can also be displayed in the
attractive domain of some fixed points.

3.4. Interpretation of the PPD
3.4.1. Time Reversal of the Diffusion Process

In the following section, we fix the time interval as [0, T]. Let {xε
t , 0 ≤ t ≤ T} be a

solution to the stochastic differential Equation (1), with its laws at each moment represented
by {p(x, t), 0 ≤ t ≤ T}. The law of the forward evolution process

p(x, t0)→ p(x, t1)→ · · · → p(x, tM), 0 = t0 < t1 < . . . < tM = T (67)

is given by the following forward equation:

∂p(x, t)
∂t

= L∗x p(x, t) (68)

It is natural to ask how the backward process, i.e.,

p(x, t0)← p(x, t1)← · · · ← p(x, tM), 0 = t0 < t1 < . . . < tM = T (69)
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evolves. If we define the reversed process as yε
t = xε

T−t, it is equivalent to asking how the
laws p(y, t) = p(y, T − t) of the reversed process evolve.

It was proven that the reversed Markov process is also Markovian, while the reversed
diffusion is not necessarily a diffusion. A sufficient condition for the reversibility of the
diffusion property requires smoothness of the coefficients as well as the uniform non-
degeneracy of the diffusion term [44]. Under this condition, the reversed process yε

t is also
a diffusion, whose generator is given as follows [45,46]:

Ly,t = ∑
i,j

ε

2
Aij(y)

∂2

∂yi∂yj
+ ∑

i
b

ε
i (y, t)

∂

∂yi
(70)

b
ε
i (y, t) = −bi(y) + ∑

j

ε

p(y, T − t)
∂

∂yj

(
Aij(y)p(y, T − t)

)
(71)

In other words,
∂p(y,T−t)

∂t = L∗y,t p(y, T − t)

= ∑
i,j

ε
2

∂2

∂yi∂yj

(
Aij(y)p(y, T − t)

)
+ ∑

i

∂
∂yi

(
b

ε
i (y, t)p(y, T − t)

)
(72)

where L∗y,t is the adjoint operator of Ly,t. After a time-reversed transformation t→ T − t ,
we have

− ∂p(y,t)
∂t = L∗y,T−t p(y, t)

= ∑
i,j

ε
2

∂2

∂yi∂yj

(
Aij(y)p(y, t)

)
+ ∑

i

∂
∂yi

(
b

ε
i (y, T − t)p(y, t)

)
(73)

which gives the evolutionary law of the backward process (Equation (69)). It can be seen
that the reversed process is generally time-nonhomogeneous, and its evolutionary law
depends on the density p(x, t). Different choices of the initial density p(x, 0) yield different
laws {p(x, t), 0 ≤ t ≤ T} and, thus, different reversed evolution laws.

3.4.2. Interpretation of the Stationary and Nonstationary PPD

If the initial density is chosen as p(x, 0) = δ(x − x0), we have p(x, t) = p(x, t|x0) .
Substituting this into Equation (73), we get

− ∂p(x,t|x0)
∂t = L∗x,T−t p(x, t|x0)

= ∑
i,j

ε
2

∂2

∂xi∂xj

(
Aij(x)p(x, t

∣∣x0)
)
+ ∑

i

∂
∂xi

(
b

ε
i (x, T − t)p(x, t|x0)

)
(74)

b
ε
i (x, T − t) = −bi(x) + ∑

j

ε

p(x, t|x0)

∂

∂xj

(
Aij(x)p(x, t

∣∣x0)
)

(75)

which, thus, gives the evolutionary law of the backward process

p(x, t0|x0) = δ(x− x0)← p(x, t1|x0)← · · · ← p(x, tM|x0), 0 = t0 < t1 < . . . < tM = T (76)

In this case, the nonstationary PPD actually serves as the transition probability density
of the process (Equation (76)) in the sense of∫

p(x f , T|x0)ph(x, t|x f , T; x0, 0)dx f =
∫

p(x, t|x0, 0)p(x f , T|x, t)dx f = p(x, t|x0) (77)

Thus, it satisfies

−
∂ph(x, t|x f , T; x0, 0)

∂t
= L∗x,T−t ph(x, t|x f , T; x0, 0) (78)

which is the same as Equation (42).
If the system initially lies in its stationary state, we have p(x, t) = ρs(x). The expres-

sions in Equations (70) and (71) can be simplified as follows:
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Ly = ∑
i,j

ε

2
Aij(y)

∂2

∂yi∂yj
+ ∑

j
b

ε
i (y)

∂

∂yi
(79)

b
ε
i (y) = −bi(y) + ∑

j

ε

ρs(y)
∂

∂yj

(
Aij(y)ρs(y)

)
(80)

In this case, the backward process ρs(x)← ρs(x)← · · · ← ρs(x) can be described
as follows:

0 = −∂ρs(x)
∂t

= L∗xρs(x) (81)

Similarly, the stationary PPD is the transition probability density of the backward
process in the sense of∫

ρs(x)ph(x, t|x f )dx f =
∫

ρs(x)p(x f |x, t)dx f = ρs(x) (82)

This, of course, satisfies Equation (23).

3.4.3. Relationship between yε
t and zε

t

In fact, Equation (44) describes the forward evolution process of the PPD, i.e.,

δ(x− x0) = ph(x, t0|x f , T; x0, 0)→ ph(x, t1|x f , T; x0, 0)
→ · · · → ph(x, tM|x f , T; x0, 0) = δ(x− x f )

, 0 = t0 < t1 < . . . < tM = T (83)

Motivated by the relationship between Equations (68) and (72), we can find that the
corresponding backward evolution process should obey

− ∂ph
∂t

=
ε

2∑
i,j

∂2

∂xi∂xj

(
Aij(x)ph

)
−∑

i

∂

∂xi

(
b̃

ε

i (x, T − t)ph

)
, 0 ≤ t ≤ T (84)

where

b̃
ε

i (x, T − t) = −b̃ε
i (x, t) + ∑

j

ε
ph(x,t|x f ,T;x0,0)

∂
∂xj

(
Aij(x)ph(x, t|x f , T; x0, 0)

)
= −bi(x)−∑

j
εAij(x) ∂

∂xj
ln p(x f , T|x, t)

+∑
j

ε
p(x,t|x0,0)p(x f ,T|x,t)

∂
∂xj

(
Aij(x)p(x, t|x0, 0)p(x f , T|x, t)

)
= −bi(x) + ∑

j

ε
p(x,t|x0,0)

∂
∂xj

(
Aij(x)p(x, t

∣∣x0, 0)
)
= b

ε
i (x, T − t)

(85)

After a time-reversed transformation t→ T − t , we can determine the drift field of
Equation (46). Thus, yε

t and zε
t , conditioned at yε

0 = x f and zε
0 = x0 respectively, are the

time-reversed process of one another, which describe the backward and forward evolution
of the nonstationary PPD, respectively.

For yε
t in Equation (26) and zε

t in Equation (30) in the stationary cases, the conclusion
will be similar, which will not be repeated here.

3.4.4. At Equilibrium

We say the system in Equation (1) is at equilibrium if it is stationary and its law is time-
symmetrical, i.e., Lx = Lx. Thus, we can obtain the following condition of detailed balance:

2A−1(x)
(

b(x)− ε

2
∇ ·A(x)

)
= ε∇ ln(ρs(x)) (86)

If expressing the stationary density as ρs(x) = exp(−U(x, ε)/ε), we can obtain

2A−1(x)
(

b(x)− ε

2
∇ ·A(x)

)
= −∇U(x, ε) (87)

That is, it requires A−1(x)
(
b(x)− ε

2∇ ·A(x)
)

to be a gradient field. We can thus divide
it into the following three categories:
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1. A(x) = I and b(x) = −∇u0(x), such that u0(xeq) = 0. In this case, the quasi-potential
V(xeq, x) = 2u0(x), as it satisfies the Hamilton–Jacobi equation (Equation (17)). The
potential at equilibrium is U(x, ε) = 2u0(x) + const, as the normalization condition∫

ρs(x)dx = 1 should be satisfied. Thus, the quasi-potential coincides with the
potential up to a constant. The optimal fluctuation field will be as follows:

b(x) + A(x)∇xV(xeq; x) = −b(x) (88)

That is, the OP will follow the time reversal of the deterministic average dynamics.
As a result, time symmetry for the optimal fluctuations and relaxation motions (in the
absence of noise) under the time-reversed transformation holds.

2. A−1(x)∇ ·A(x) = ∇u1(x) and A−1(x)b(x) = −∇u0(x), such that u0(xeq) = 0. In this
case, Equation (87) will hold for any choice of ε. Similarly, the quasi-potential satisfies
V(xeq, x) = 2u0(x), and Equation (88) is still valid, but U(x, ε) = 2u0(x) + εu1(x) + const.
The deviation of the metastable states (i.e., minimum points of U) from the fixed points of
the average system will emerge due to the non-homogeneity of the diffusion coefficient.

3. A−1(x)b(x) is not a gradient field. In this case, if Equation (87) is valid, it holds
only for an isolated point ε = ε0. This is the case where neither A−1(x)b(x) nor
A−1(x)∇ ·A(x) is a gradient field, while their linear combination is. If ε0 is small
enough, we can also approximate the potential by breaking it down into two parts
U(x, ε0) = U0(x) + ε0U1(x, ε0) + const such that U0(xeq) = 0, where the ε0-independent
part U0(x) is nothing but the quasi-potential, with exp(−U1) being the prefactor of
the WKB approximation (Equation (31)). The deviation of the metastable states from
the fixed points of the average system still exists, but the optimal fluctuation field will
not coincide with −b(x). This is very different from the case of additive noise.

4. Numerical Algorithm and Results

An advantage of the PPD is that it permits us to analyze the optimal fluctuation
statistically. If

C(x, t; x f ) =
{

x(s), s ≤ 0|x(0) = x f , x(t) = x
}

, t < 0 (89)

then we have

ph(x, t|x f ) = P
{

xε
t ∈ C(x, t; x f )|p(x, s) = ρs(qs)(x), s < 0

}
, t < 0 (90)

This implies that the stationary PPD can be obtained by calculating the laws of the prehistory
positions for all possible large fluctuations reaching the given state x f , conditioned in the
stationary or quasi-stationary states. Specifically, we need to:

1. Simulate the Langevin dynamics for a sufficiently long time until they reach their
stationary or quasi-stationary state;

2. Extract the sample trajectories that hit x f ;
3. Obtain the PPD by calculating the law of the prehistorical positions of these trajectories

statistically.

Searching for its peak trajectory yields the OP. The idea presented in [12,24,25,31] for
calculating the PPD and the OP is essentially the same as Equation (90).

Moreover, when the system in Equation (1) is an equilibrium system, we have

∂ph(x,−t|x f )

∂t
= L∗x ph(x,−t|x f ) = L∗x ph(x,−t|x f ), t > 0 (91)

This suggests that the stationary PPD, in this case, can be obtained by solving the
Fokker–Planck equation or simulating the Langevin motions, as described in [27–29].

However, unlike the stationary or quasi-stationary cases—where observing large
fluctuations is always possible provided that the observation period is long enough—in
the nonstationary cases, the occurrence of large excursions from the average dynamics
over a finite time span is essentially rare, which means that applying traditional techniques
such as the Monte Carlo method to extract the optimal path is almost impossible. In
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order to address this difficulty, the methods of cell mapping and Gaussian approximation
for short time increments are used here to turn the evolution of diffusions to that of the
corresponding Markov chains. Then, the nonstationary PPD can be obtained by solving
the discrete version of Equation (78) (see below for details).

4.1. Algorithm

For simplicity, we assume the dimension n = 1. In order to track the temporal
evolution of the law of the stochastic variable xε

t numerically, the discretization of both the
state space and time is necessary, which is formulated as follows:

First, we assume that a domain E = [a, b] containing points x0 and x f could be chosen
such that the vector field b(x) at the boundary ∂E points towards its interior; meanwhile:

min
x∈∂E,0≤t≤T

V(x0; t, x) > V(x f ; T, x0) (92)

It follows that, for vanishing noise, almost all trajectories will stay in this domain over
the interval [0, T], and the event of escaping from E becomes more unlikely than that of
transition between x0 and x f . In other words, the NOP connecting x0 and x f is wholly
contained in the domain E, and neglecting all of the trajectories escaping before the moment
T has almost no effect on the calculation of the NOP. Thus, focusing on the trajectories not
having left from the domain E up to time T will be precise enough.

Next, we divide the domain E into N subintervals with uniform sizes ∆x = (b− a)/N.
The i-th cell is defined as the interval [a + (i− 1)∆x, a + i∆x]. We choose a representative
element in each cell as x(i) = a + (i− 1/2)∆x. The whole state space is then partitioned
into N + 1 cells, with the (N + 1)-th cell being defined as the complement of E.

Similarly, we discretize the time interval [0, T] into M steps of uniform sizes ∆t = T/M.
A large enough M could be chosen such that the local Gaussian approximation could be
applied, i.e.,

xt+∆t ' xt + b(xt)∆t +
√

εσ(xt)w∆t (93)

Let {pm(i), m = 0, 1, · · · , M, i = 1, 2, · · · , N + 1} denote the probability of observing
the process in the i-th cell at the moment m∆t. A Markov chain can then be defined to
describe the discrete-time evolution of the absorbed diffusion, i.e.,

pm+1(j) = ∑
i

pm(i)Pi,j, j = 1, 2, · · · , N + 1, m = 0, 1, · · · , M− 1 (94)

with its transition probability
{

Pi,j, i, j = 1, 2, · · · , N + 1
}

given as follows:

Pi,j =
1√

2πε∆t
exp

(
− (x(j)−x(i)−b(x(i))∆t)2

2ε∆t

)
∆x, i, j = 1, 2, · · · , N

Pi,N+1 = 1−
N
∑

j=1
Pij, PN+1,i = 0, i = 1, 2, · · · , N

PN+1,N+1 = 1

(95)

To calculate the NOP, we need to explore the reversed evolution of the original process.
The evolution pm+1 → pm is generally time-inhomogeneous, with its transition probability
having the following form:

P(m)
i,j =

{
pm(j)Pj,i
pm+1(i)

, pm+1(i) > 0
0, pm+1(i) = 0

(96)

Thus, if we choose the distribution p0 and pM to be the probability concentrated on
the cells containing x0 and x f , respectively, the nonstationary PPD is then given as follows:

pm(j) = ∑
i

pm+1(i)P(m)
i,j (97)

Searching for the peak of pm and calculating its local Gaussian coefficient can yield
the NOP and its dispersion. The numerical results are displayed next.
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4.2. Example

We here choose A(x) = 1 and b(x) = −U′(x) with the potential U(x) = 1
4 x4 − 1

2 x2.
This is a prototypical example of a double-well system. It has two minimum points,
xsl = −1 and xsr = 1, corresponding to the two stable fixed points, and a local maximum
point xu = 0 corresponding to the unstable fixed point of the average system. The global
structure of the potential is displayed in Figure 1. It can be seen that restricting the domain
to E = [−2, 2] is precise enough for our calculation. In the following section, we partition
the domain E into N = 1000 cells, and discretize the time interval [−2, 2] into M = 1000
small segments. The algorithm designed above can then be applied to show the effects of
various parameters x0, x f and T on the nonstationary optimal fluctuations.

Figure 1. The potential U(x) of the double-well model; its two minima correspond to the two
metastable states xsl = −1 and xsr = 1, with an unstable fixed point xu = 0 separating them.

First, we fix x0 = −1 and x f = 1 to study the noise-induced transition between the
two stable states. The global structure of the Hamiltonian system is plotted in Figure 2a.
The red curve indicates the OP from x0 to x f , while the green curve corresponds to the
OP of the reversed transition. This is the maximum-likelihood event with a minimum
cost of the action. Near the fixed points, the momentum p is close to zero, and so is the
velocity

.
x, implying that the stochastic trajectories around it always spend almost-infinite

time oscillating near the fixed points, and occasionally fluctuate to a bounded domain.
However, this is not the case with the NOPs. As a finite time interval [0, T] is required,
the NOPs correspond to the Hamiltonian orbits above the heteroclinic orbit, which can be
parameterized by the initial condition (x0, p0). A typical NOP transitioning between these
two points is shown by a purple curve in Figure 2a. It can be seen that the momentum
here is always positive, meaning that a large bias from the average dynamic always exists.
As a result, this is a rare event with exponentially small probability, and can scarcely
be observed.
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Figure 2. (a) The vector field of the Hamiltonian system. The red and green curves denote the
OP from xsl to xsr and its reverse, respectively. The purple curve is a typical example of the NOP
from xsl to xsr. (b) The time required for a Hamiltonian orbit to hit the line x = xsr from the initial
point (xxl , p0).

To demonstrate how the nonstationary PPD can pinpoint the location of the NOP, we
first calculate the time required for an NOP to reach the target point. As shown in Figure 2b,
this is a monotone function of the initial momentum. For any choice of T, a unique NOP
exists, and no singular behavior arises consequently. The PPD will always present a single
peak trajectory accordingly. Now, let T = 10. The PPDs and their peak trajectories for
various noise intensities are illustrated in Figure 3. The results can be compared with those
obtained by the minimum action method (MAM) [47] (details of the MAM are presented in
Appendix A). This shows that our numerical method could approximate the NOP fairly
well when ε is small enough. However, the matching effect soon fails as ε increases. In
particular, the hopping of the peak trajectory of the PPD occurs, as displayed in Figure 3b,c.
The law for all of the fluctuation paths connecting x0 with x f is initially concentrated on
the domain near x0. Larger noise makes significant fluctuation more likely. Consequently, a
local peak near x f emerges as time goes by, whose height subsequently exceeds that of the
original one and dominates the law at the end. This is a result caused by the ε-dependent
part of Equation (46), including the O(ε) part in the drift term as well as the weak Gaussian
noise. To ensure that the peak trajectory of the PPD converges to the NOP, both of them
require T � 1/ε. As a result, lowering ε or T will reduce the error of our algorithm. As we
can see from Figures 3d and 4, for a fixed T, the peak trajectory of the nonstationary PPD
coincides with the NOP only if the noise intensity is small enough, while for a fixed ε, the
deviation of the peak trajectory from the NOP increases as T increases. The larger T is, the
smaller the ε needed to ensure the matching effect between the two paths. The numerical
results are in perfect agreement with our theoretical predictions.

Next, we explore how the ε-independent parameter κ evolves when T and x f vary. The
NOPs for differential target points x f and T are shown in Figure 5, with their correspond-
ing dispersion parameters displayed in Figure 6. This shows that κ varies approximately
linearly near the initial and the final points, and continuously increases to reach its max-
imum. For a short time span T = 1, κ has a single peak, while if we choose x0 = 1 and
increase T, two peaks of κ will emerge. Moreover, the value of the dispersion parameter
grows dramatically when T increases, as shown in Figure 7. Since the dispersion of the
PPD reflects the sensitivity to fluctuations along the NOP, a larger κ implies that stochastic
trajectories are more likely to be biased from the optimal one and, thus, a smaller ε is needed
to ensure the convergence. This is consistent with our previous analysis. In particular,
it is worth pointing out that κ(t∗) = 1/2 at the moment where the optimal path reaches
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the unstable fixed point xnop(t∗) = 0. This is because the NOP approaches the stationary
one as T becomes large enough. As a result, the value of κ near the unstable fixed point
can be approximately described by the quasi-potential of the reversed process—that is,
κ(t∗) ≈ −1/(2U′′ (0)).

Figure 3. The PPDs and their peak trajectories; here, x0 = −1, x f = 1 and T = 10. (a) ε = 0.001.
(b) ε = 0.01. (c) ε = 0.1. (d) Comparison of the NOP obtained by the MAM and the peak trajectories
of the PPDs with different noise intensities.

Figure 4. Comparison of the NOP obtained by the MAM and the peak trajectories of the PPDs with
different noise intensities: (a) T = 5. (b) T = 7.
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Figure 5. The NOP for different target positions x f . (a) T = 1, ε = 0.01. (b) T = 4, ε = 0.001.

Figure 6. The noise-independent dispersion parameter κ as a function of t and x for different final
positions x f . (a,b) T = 1, ε = 0.01; (c,d) T = 4, ε = 0.001.
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Figure 7. The emergence of multiple peaks of the dispersion parameter κ for distinct time gaps T.
(a) The variations of the dispersion parameter κ with respect to time t. (b) The variations of the
dispersion parameter κ with respect to position x. Here, x f = 1 and ε = 0.001.

In the end, we show the multiple-peaks effect of the PPD. Here, we can assume that
−1 < x0 < x f < 0. In this case, the circular phase trajectories in the interior of the
heteroclinic orbits now serve as the optimal phase orbits of our optimization problem.
The time required for an NOP to reach the target point is illustrated in Figure 8a. We can
divide them into five scenarios, each of which has a typical example displayed in Figure 8b.
This shows that, as T → ∞ , there are only two principal phase orbits as candidates for the
NOP: case B and case C (case A must have a larger action). Which one dominates the PPD
depends on the value of the action. Since they approach the heteroclinic orbits, their action
could be approximately estimated by VB = 2U(x f )− 2U(xsl) and VC = 2U(xu)− 2U(x0),
respectively. Thus, the switch between different optimal paths occurs when xf is close to
a point x∗f satisfying 2U(x∗f )− 2U(xsl) = 2U(xu)− 2U(x0). For our choice of x0 = −0.8,
we get x∗f = −0.2589. The PPD and its peak trajectories for x f = −0.24, −0.25, −0.26 are
presented in Figure 9, confirming the above analysis.

Figure 8. (a) The time required for a Hamiltonian trajectory to hit the line x = x f from the initial
point (x0, p0). There exist five cases with their Hamiltonian orbits drawn in (b). Here, x0 = −0.8 and
x f = −0.3.
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Figure 9. The coexistence of multiple NOPs and mutation of the peak trajectory of the PPD when
varying x f . (a) x f = −0.24. (b) x f = −0.26. (c)x f = −0.25. (d) The two coexisting paths in
(c) corresponding to the transitions x0 → xsl → x0 → x f (solid green line) and x0 → x f → xu → x f
(solid red line). Here x0 = −0.8 and T = 7.

5. Conclusions

The prehistorical description of the optimal fluctuations with the framework of the
Langevin dynamics was presented in this paper. By means of the so-called prehistory
probability density, we showed that both the NOP and the OP are related to the corre-
sponding nonstationary and stationary reversed diffusion motion, respectively. Specifically,
we proved that the PPD, in fact, acts as the transition probability density of the reversed
process. As the noise intensity is close to zero, the stochastic trajectories focus on their
average dynamics due to the law of large numbers, where our optimal fluctuation path is
exactly located. This explains why the peaks of the PPD approximately coincide with the
OP or NOP for vanishing noise. Moreover, we found that near the OP or NOP, the PPD
is approximately Gaussian, with its Gaussian dispersion coefficient being reformulated
by the linear part of the reversed process. This is a result of the type of the central limit
theorem. Thus, the PPD gives us a complete picture of the optimal fluctuations, since it not
only allows us to capture information about the location of the OP and the NOP, but also
provides the characteristics of the nearby paths.

Based on these theoretical analyses, we designed an algorithm and performed it with
a one-dimensional example to visualize the results, showing that the PPD can be used to
precisely position the optimal fluctuation path only if the noise intensity is small enough. In
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particular, it is effective in identifying the coexistence of multiple optimal fluctuation paths.
However, the matching effect soon fails when increasing the noise intensity or the time span.
Lowering ε or T will reduce the error of our algorithm, but from a computational viewpoint,
in order to make our algorithm more precise, noise should neither be set so weak that the
exponentially small probability will be lower than the minimum limit that the computer
can identify, nor so strong that the incompatibility of the peak trajectory of the PPD and the
optimal fluctuation path obtained by large deviation theory will emerge. Moreover, it is
worth pointing out that even though our conclusion is valid in arbitrarily finite dimensions,
due to the limitations of our computational power, the numerical calculation based on the
technique of the PPD is, in fact, only useful for systems with lower dimensions. A higher
dimension implies that the optimal fluctuation path can be observed more rarely, and more
and more computational effort is required, which is an inevitable difficulty known as “the
curse of dimensionality” in computational science.

We should finally note that the results here can also be extended to non-autonomous
cases without any additional assumptions. The only difference is that the invariance of
the time transition transformation is no longer held. Thus, we must express all of the
quantities as functions of two-time parameters. In particular, this technique can also be
used to investigate the projection singularity of the Lagrangian manifold for a periodic
stationary system. One can refer to [12] as a simple example.
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Appendix A. Numerical Solutions of the Optimization Problems in Equations (9) and (13)

According to the gradient descent method, in order to obtain the minimizer of a scalar
function U(x), one needs only to let the variables evolve in the opposite direction of the
gradient field, i.e.,

.
x = −∇U(x) (A1)

The minimum action method [47] is essentially a gradient descent method to obtain
the minimizer of the optimization problem:

V(x0; T, x f ) = min
x(0)=x0,x(T)=x f

S[x(s)] (A2)

That is, one needs only to solve the following partial differential equation:

∂x(τ, t)
∂τ

= − δS[x(·)]
δx

(t) = −
[

dL(x,
.
x)

dx
− d

dt

(
dL(x,

.
x)

d
.
x

)]
, 0 < t < T, τ > 0, (A3)

With the constraints x(0) = x0, x(T) = x f .
Specifically, we can discretize the time interval [0, T] into M steps of uniform sizes

∆t = T/M. If xk
m = x(k∆τ, m∆t), the optimization problem can now be solved in an

iterative manner.



Appl. Sci. 2022, 12, 8569 23 of 25

1. Starting from the kth guess xk
m, compute a descent direction dk

m = − δS[x(·)]
δx

∣∣∣
x=xk

m
;

2. Descend along the descent direction xk+1
m = xk

m + ∆τdk
m to obtain the next guess xk+1

m ;
3. Finally, iterate until convergence.

As we can see, the algorithm here is fundamentally different from that described
in Section 4. The algorithm here is based on the gradient descent method to solve the
optimization problem, while the algorithm in Section 4 is designed to display the peak
trajectory of the nonstationary PPD. The numerical results for distinct noise intensity and
time gap are presented in Figures 3 and 4. It can be seen that the peak trajectory of the
nonstationary PPD coincides with the NOP only if the noise intensity is small enough,
justifying our theoretical analysis performed in Section 3.2.

In addition, it is notable that the gradient descent method can also be applied to
calculate the OP. Since additional minimization over the transition time is required, we
first need to transform the optimization problem in Equation (13) to a form similar to
Equation (9). Based on the Maupertuis principle,

V(xeq; x f ) = inf
T>0

min
x(0)=xeq ,x(T)=x f

S[x(·)]

= min
x(0)=xeq ,x(T)=x f

sup
ϑ:H(x,ϑ)=0

∫ x f
xeq

ϑTdx

= min
x(0)=xeq ,x(1)=x f

sup
ϑ:H(x,ϑ)=0

∫ 1
0 ϑTx’ds

= min
x(0)=xeq ,x(1)=x f

Ŝ[x(·)]

(A4)

where Ŝ[x(·)] represents the geometric minimum action. As we can see, the action is invari-
ant under reparametrization. Thus, it enables us to treat the infinite time—as displayed in
the constraints in Equation (18)—with finite discretization points. The above algorithm can
then be used to calculate the OP, which is known as the geometric minimum action method
(gMAM). Since only the NOP is plotted in this paper, we do not repeat the gMAM here.
One can refer to [48] for further details.
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