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Abstract: The development of hybrid renewable energy systems (HRESs) can be the most feasible
solution for a stable, environment-friendly, and cost-effective power generation, especially in rural
and island territories. In this studied HRES, solar and wind energy are used as the major resources.
Moreover, the electrolyzed hydrogen is utilized to store energy for the operation of a fuel cell. In
case of insufficiency, battery and fuel cell are storage systems that supply energy, while a diesel
generator adds a backup system to meet the load demand under bad weather conditions. An
isolated HRES energy management system (EMS) based on a Deep Q Network (DQN) is introduced
to ensure the reliable and efficient operation of the system. A DQN can deal with the problem
of continuous state spaces and manage the dynamic behavior of hybrid systems without exact
mathematical models. Following the power consumption data from Basco island of the Philippines,
HOMER software is used to calculate the capacity of each component in the proposed power plant.
In MATLAB/Simulink, the plant and its DQN-based EMS are simulated. Under different load profile
scenarios, the proposed method is compared to the convectional dispatch (CD) control for a validation.
Based on the outstanding performances with fewer fuel consumption, DQN is a very powerful and
potential method for energy management.

Keywords: hybrid renewable energy system (HRES); isolated microgrid; energy management system
(EMS); Deep Q Network (DQN); HOMER software

1. Introduction

The worldwide increase in energy demand leads to the consideration of using renew-
able energy types such as solar, wind, tidal, and geothermal. Currently, fossil fuels are
still the major reliable power sources especially for rural and island electrification. On the
other hand, fossil fuel price is constantly increasing, and fossil fuels are responsible for
global environmental pollution. Consequently, many countries have recently opted for the
long-term sustainable development of renewable energy. By 2025, the Ministry of Economic
Affairs (Taiwan) aims at increasing the share of renewable energy to 20% within the total
power generation, as well as phasing out nuclear energy. Several developing countries such
as Philippines, Thailand, and Vietnam have changed their power development plan based
on green energy. We consider them some of the most typical countries for the deployment
of renewable energy power plants [1].

The recent development of solar and wind energy has recently been considered
because of the available amount of solar radiation and wind distribution. These energy
types are environment-friendly and cost effective, but unpredictable and uncontrollable
as well due to the significant dependence on weather conditions. In order to improve the
operational ability and efficiency of these power systems, the concept of a hybrid renewable
energy system (HRES) was created [2]. In terms of power generation for rural and island
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areas, HRES is more cost effective than a grid extension. Depending on the distance from a
power station, a grid extension can range from 10,000 to 50,000 USD per kilometer [3].

In a HRES, the combination for sustainable and reliable power supply of renewable
energy resources, energy storage systems (ESSs), and diesel generators (DGs) can create
economic, technical, environmental, and social benefits to investors. The role of ESSs is to
store the excess energy from renewable energy sources. DGs can be operated when both
renewable energy resources and ESSs are out of power. The configuration and topology of
a hybrid HRES system can vary in several ways. The most generic classification includes
on-grid and off-grid systems. According to the bus interconnection or the physical link
between all components, the system can be classified as DC, AC, or hybrid DC/AC [4]. To
ensure a high level of system reliability and operational efficiency, energy management
algorithms are needed to manage the power flow inside the system. In particular, this
algorithm has to allow for the variation of load demand and the system complexity.

Energy management system (EMS) is one of the most important components of the
HRES. The main function of EMS is to balance power between the system components
reducing the amount of fossil fuel used for power generation. The EMS control can be
classical and intelligent [4,5]. Classical EMS is based on linear, nonlinear, or dynamic
programming [6]. We can also find rule-based and flowchart methods [7]. More latest
classical EMS controllers are based on proportional-integral controller [8], sliding mode
controller [9], and H-infinity controller [10]. Classical EMS, which may require complicated
mathematical models with various system variables, has low computational complexity.
Compared to classic EMS, the intelligent one seems to be more robust and more efficient.
Examples include the fuzzy logic (FL) [11], the artificial neural network controller (ANN),
the Neural-Fuzzy controller (ANFIS) [12], and a model predictive controller (MPC). In
addition, evolutionary algorithms-based EMS methods have been also developed, such
as the Particle Swarm Optimization (PSO), the Genetic Algorithm [13], and the Modified
Bat Algorithm (MBA) [14]. Recently, machine learning has been applied for EMS such as
support vector machine (SVM) [15]. Among these intelligent EMS methods fuzzy logic,
neural network, and ANFIS are definitely popular.

Different from classical EMS, based on the intelligent EMS, simple mathematical
models are required to manage hybrid system dynamic behaviors. However, the current
forms of these methods are still not able to guarantee better performance of optimal
control [15]. Over time, a lot of hybrid studies have been conducted to enhance the global
optimal solutions and the convergence speed. The major purpose is to find the action
that optimizes the value of an objective function. In [16], a method, named as PF3SACO,
was developed to improve the optimization ability and convergence speed, in which PSO
and fuzzy are used to adjust system parameters. In [17], to adapt to complex scenes, the
author proposed a robust tracking method based on a feature weight pool that has multiple
weights for different features. In [18], a variable neighborhood search and non-dominated
sorting genetic algorithm II (VNS-NSGA-II) were applied to optimally solve the routing
problem with multiple time windows. In [19], a principal component analysis (PCA), a
local binary pattern (LBP), and a gray wolf algorithm were combined to optimize the
parameters of kernel extreme learning machine (KELM) for image classification. It can be
confirmed that these hybrid methods are powerful in solving a complex optimal problem,
especially since they can be used to optimize the parameters of machine-learning-based
approaches. However, they would heavily depend on complex mathematical models and
computational complexity.

More studies on agent-based machine learning methods for hybrid EMS have been con-
ducted recently, such as deep learning (DL) and deep reinforcement learning (DRL) [20,21].
Instead of using a complex mathematical control model, these agent-based approaches
can manage the system by learning the control policy from the environmental-interacting
historical data, leading to a potential solution to energy management problems. Following
the concepts of RL and DRL, the control purpose is to obtain the maximum rewards by
continuously interacting with the system environment. Based on exploration-exploitation
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strategies, such as -greedy or softmax, the action with highest reward is taken [22]. Q-
learning is a popular model-free RL algorithm. However, RL-based methods can only
handle discrete control problems which may be hard to implement in practical applications.
DRL-based methods combine RL with deep learning to handle continuous control problems
with large state-action pair. DRL has successfully been implemented to play Go games
and Atari [23]. It should be a powerful method to handle the problems of complex optimal
control with large state spaces by using a deep neural network. It can also be applied in
robotics [23], control of building HVAC [24], and hybrid electric cars [25].

Up to now, studies about the application of RL and DRL for energy management
of a stand-alone microgrid are not common. A self-learning single neural network was
proposed by Huang and Liu (2013) for EMS residential applications [26]. A two-step ahead
Q-learning method was defined by Kuznetsova (2013) for scheduling the operation of
the battery in a wind system. In [27], a three-step ahead Q-learning method was used
to schedule battery operation a solar energy system. A Q-learning-based multi-agent
for a solar system was developed in [28] to reduce the amount of energy consumption.
Based on an autonomous multi-agent system in [29], it can manage RE buying and selling
optically. In [30], authors proposed a multi-agent system to monitor energy generation
and consumption. A Q-learning single agent system was applied to manage a solar
energy system by Kofinas (2016) [31]. In [32], a Q-learning algorithm and a fuzzy reward
function were introduced to improve system performance. It intends to learn about the
power flow between the components of the solar system more efficiently, which includes a
photovoltaic (PV), a battery, load demand, and a desalination unit (for water supply). Later,
Kofinas (2018) [33] proposed a cooperative fuzzy Q-learning-based multi-agent system for
the energy management of a stand-alone microgrid. The latter system included a PV, a
fuel cell, a diesel generator, an electrolyzer, a hydrogen tank, battery, and a desalination
plant. Each component was represented by an agent. Each agent acted as an individual
learner and interacted with other agents. The simulation results from MATLAB/Simulink
indicated that the controller could continuously maintain state and action space. The
learning of each agent took place through exploration/exploitation with fast convergence
towards a policy and with good performance. In [33], the author used fuzzy logic as the
function approximation for determining the Q-values. Similar to the above approach,
deep Q-learning (DQN) applies a neural network to calculate the Q-values in order to
increase the learning capacity of agents. In [25], deep Q-learning was applied for the energy
management of a hybrid electric vehicle. The DRL-based controller acted autonomously to
learn an optimal policy without using any prediction or predefined rule.

The main goal of this study is to propose a DQN algorithm for the energy management
of an isolated HRES and to present a case study about an HRES conducted at Basco island
of the Philippines. It is the extended study of our previous work, which developed a
DRL-based controller to track the maximum power point for PV systems under various
weather and partial shading conditions [34]. DL and DRL are widely used in robotics
and autonomous; however, only a few studies are about DRL application in an HRES for
energy management. Thus, the advantage and novelty of this study is the application of
DQN-based EMS for rural and island areas, in which the system includes battery, DG, and
hydrogen system, as well as a case study with practical load demand data. The adopted
power system in this study consists of a PV system, a wind turbine (WT), a battery, a DG, a
fuel cell, an electrolyzer, and a hydrogen tank. Based on weather data and load demand at
the applied site, we used HOMER software for determining the structure of the HRES.

The major contributions of this paper are described below:

• The implementation and simulation of a DQN-based EMS conducted based on Rein-
forcement Learning Toolbox of MATLAB/Simulink R2021a developed by MathWorks®.

• Defining a suitable design of the reward functions and neural networks to ensure the
convergence during training process, and the trained EMS is able to respond precisely
under all different weather conditions and load demand.
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• Verifying the efficiency and stability of the proposed EMS system on an isolated HRES,
which is designed based on HOMER software with practical data from Basco island.

• Conducting a performance comparison between the proposed method and the pre-
determined-rule conventional dispatch (CD) control for validation.

The rest of the paper is organized as follows. The mathematical models of the system
components are introduced in Section 2. The DQN algorithm and the CD control are
introduced in Section 3. The performance of EMS controller based on DQN is simulated in
Section 4. The final section describes the conclusion and future work directions.

2. Mathematical Models of the System Components

This section describes the mathematical models of the system components, which are
used to calculate their power generation and consumption. In this HRES, solar and wind
energy are the primary energy resources. Short-term energy storage technologies have the
ability to store and discharge energy for minutes or hours after being charged. In contrast,
long-term energy storage can extend the storage time between charging and discharging to
weeks or seasons [35]. In HRES, FCs can be used as a long-term energy storage option [4].
However, the slow dynamics of fuel cells and their degradation due to frequent start up
and shut down cycles are a major disadvantage. Hence, batteries are also needed to create
a hybrid system in which they take care of the power deficit and act as a short-term energy
storage medium [36]. Batteries can provide or absorb large power gradients in short time.
However, due to their short lifetime, high self-discharge rate, sensitivity to environment
conditions, and limited storage capacity, batteries are not suitable for long-term solution.

2.1. PV System

A PV system is composed of one or more solar panels integrated with inverter or other
electrical and mechanical hardware, using energy from the Sun to generate electricity. The
output power of the PV system is strongly affected by the amount of solar radiation and
the ambient temperature. The expression for the PV-generated power is as follows [22]:

PPV = Vpv Ipv = Ipv

{
q

AkT
ln
( Iph − Ipv + Ipvo

Ipvo

)
− IpvRs

}
(1)

where k is the Boltzmann constant, A is the non-ideality factor, q is the electron charge, T is
temperature, q is the light-generated current, Ipvo is the dark saturation current, and Rs is
the series resistance.

2.2. Wind Turbine System

During wind power generation, the blow of the wind generates kinetic energy, which
drives the blades allowing the turbine to rotate. The mechanical energy then gets converted
into electricity by the generator. The wind turbine system is significantly influenced by the
wind speed. The generated power of the WT system is obtained from the manufacturers as
follows [3]:

PWT =


0 i f V< Vin or V >Vout

Pr

(
V−Vin
Vr−Vin

)3
i f Vin ≤ V < Vr

Pr i f Vr ≤ V ≤ Vout

(2)

where PWT denotes the output power at a particular value of wind speed. Pr represents the
rated capacity. Vin, Vr, Vout stand for the cut-in, rated, and cut-out speeds, respectively.

2.3. Battery Storage System

Among various kinds of battery storage systems such as lithium-ion battery or nickel-
zinc battery, we chose lead-acid batteries for their low cost (300–600 USD per kWh). Lead-
acid batteries have a good cycle efficiency of up to 90% and a low self-discharge rate of less
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than 0.3% [37]. They are designed to withstand more deep discharge cycles, which make
them suitable for an HRES.

One of the most important parameters of the battery system is the SOC, which ex-
presses the level of charge relative to its capacity. The excess power is used to charge the
battery, while a power deficiency towards the load demand discharges the battery. The
battery SOC can be defined as follows [38]:

SOCt+1 = SOCt ±
PBatηBat

Pn,Bat
× 100 (3)

where SOCt+1 and SOCt contain the battery SOC at the next time step and the current step,
respectively. PBat stands for the battery power charging or discharging (kWh), while Pn,Bat
denotes the battery rated capacity, and ηBat denotes the round-trip efficiency.

When the battery is turned on during the operation, the charging and discharging
rates of the battery are defined based on the amount of power required at the current time
step, always satisfying:

PBat,discharge ≤ PBat ≤ PBat, charge (4)

where PBat,discharge with negative sign indicates the discharge rate of battery, and PBat, charge
with positive sign shows the charge rate of battery.

At any time-step, the value of SOC must satisfy:

SOCmin ≤ SOC ≤ SOCmax (5)

2.4. Diesel Generator

In the HRES system, a diesel generator is used as the back-up system when the load
demand cannot be met by other components. The diesel generator ensures the availability,
reliability, and quality of the power system all the time. We chose the model of the DG
system according to its fuel consumption. In [39], an approximate linear model is presented
where the hourly fuel consumption is calculated from the rated capacity of the DG and its
operating power.

Fuelt = αDGPDG,t + βDGPr,t (6)

where Fuelt expresses the fuel consumption (l). PDG,t denotes the operating power, while
Pr,t denotes the rated power of the DG system (kW). The coefficients of the fuel con-
sumption are αDG = 0.246 and βDG = 0.08145. They were used similarly in several
studies [40,41].

2.5. Fuel Cell

A fuel cell (FC) uses the chemical energy of hydrogen or another fuel to produce
electricity. There are various types of FCs available in the market. The so-called proton
exchange membrane fuel cell (PEMFC) is the most frequently used. The advantages of
PEMFC include high-power density, low operating temperature, small size, and good
performance at start up and shut down. For this reason, PEMFC was chosen for this project.
The hourly hydrogen consumption can be expressed as follows [9]:

qH2,con =
PFC

Elow,H2 ηthermU f ηFC
(7)

where PFC denotes the output power supplied by the FC, Elow,H2 = 33.35 kWh/kg assumes
the lower heating value of the hydrogen, ηtherm = 0.98 is the thermodynamic efficiency
at 289 K, while U f is the fuel utilization coefficient, namely, the ratio between the mass
of fuel entering the FC and the mass of fuel reacting in the FC. Finally, ηFC denotes the
FC efficiency.
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2.6. Electrolyzer

To supply the hydrogen fuel for the operation of the FC, an electrolyzer is used. It
generates hydrogen from water via electrolysis. The chemical reaction in an electrolyzer
is the reverse of that in an FC. The power absorbed by the electrolyzer and the generated
hydrogen mass are related by the expression below [9]:

PEL = BqH2, nom + AqH2, gen (8)

where PEL denotes the power consumed by the electrolyzer system, qH2, nom denotes the
nominal hydrogen mass flow generated by the electrolyzer, while qH2, gen symbolizes the
actual generated hydrogen mass flow (kg/h). A and B are the consumption coefficients
of the electrolyzer power curve where A = 10 kW/kg and B = 40 kW/kg were used in
this paper.

2.7. Hydrogen Tank

In the HRES, a hydrogen tank is used as the container of hydrogen that is generated
by the electrolyzer and is consumed by the FC system. Hydrogen can be stored as either
liquid or pressurized gas. There are three methods to store the hydrogen: compressed
high-pressure gas, hydrogen-absorbing materials, and liquid storage, among which, the
first one is the most common. The hydrogen level in a hydrogen tank can be determined by
the following expression [9]:

LH2(t + 1) = LH2(t) +
qH2, gen − qH2,con

CAPH2

(9)

where LH2(t + 1) and LH2(t) stand for the level of the hydrogen at the next and the current
time-steps, respectively, and CAPH2 denotes the capacity of the hydrogen tank (kg).

2.8. Power Balance

Power balance is the state of equality between the produced energy and the load
demand. More exactly, at each time step, the total possible power generation should never
fall short of the power consumption. The weather data collection for feasibility extended
over one year to facilitate system analysis and to allow for scheduling the operation of the
whole system. The power balance equation is expressed as follows:

PPV + PWT + PBat + PDG + PFC + PEL = PLoad (10)

3. Energy Management of an HRES Based on Deep Q-Network
3.1. Introduction of the Proposed HRES

EMS is one of the most important parts to ensure the system is in reliable and efficient
operation. The main function of the EMS is to balance the power flow between the system
components, and simultaneously reduce the amount of fossil fuel and cost of energy
production. A proposed DC/AC-bus system for power generation is presented in Figure 1.
Excess energy from PV and WT will be stored in the battery and hydrogen system by
controlling the K_Battery and K_Electrolyzer switches. In case PV and WT cannot fulfill
the load demand, based on the available energy levels of system components, EMS will
discharge battery or turn on FC and DG by K_Fuel-Cell and K_Diesel switches, respectively.

The proposed EMS control schema is presented in Figure 2. It is a learning-based
approach, so no explicit mathematical model of the system is needed. A Markov Decision
Process (MDP) of the EMS is needed for the implementation of the DQN algorithm. Based
on the MDP model, the objective is to find the optimal policy for dispatch control of the
system components to ensure a stable operation of the power system with the lowest cost
of energy. An MDP model of the EMS is firstly defined in Section 3.2, including states (S),
actions (A), transition probabilities (P), and rewards (R). It is considered as a tuple S, A, P,
R. In which, “S” is a finite set of states which describes the all the operating point of the
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system. “A” is the control action. “P” is the probability of moving from one state to another
one. “R” is an immediate return given to an agent when he or she performs specific action
or task. Good action will receive positive reward while bad action will get punished.

A description of the DQN algorithm for EMS control is shown in the following part.
In the DQN approach, a deep neural network is designed to approximate the action-value
function and the DQN algorithm is adopted to train the neural network. It takes the state
of the HRES as inputs, and outputs are the signals for dispatch control of the system
components. The combination of the states of K_Battery, K_Electrolyzer, K_Fuel-Cell, and
K_Diesel basically determines the system modes of operations. Finally, in Section 3.4, a
conventional-based EMS is also applied for the validation of the proposed method.
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3.2. Markov Decision Process Model for the EMS
3.2.1. States and State Variables

During the operation of the HRES, the EMS controller receives a current state, it
takes action, and moves to the next state based on its knowledge. The state information
provides the basis for power flow control among all system components. The elements of
our proposed HRES include PV, WT, DG, battery, and hydrogen system. The state variables
are defined as combinations of the powers of load, PV, WT, DG, battery, fuel cell, and
electrolyzer, as well as the state of charge, and the percentage of hydrogen in the tank (LH2 ):

S =
{

PLoad, PPV , PWT , PDG, PBat, PFC, PEL, SOC, LH2

}
(11)
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3.2.2. Actions and Action Variables

Given the state at the current time step st, the EMS controller chooses an action and
moves to next state by opening or dispatching the operation of following elements: DG,
fuel cell, electrolyzer, and battery system. The action set A is formed by 4-component
control signals:

A =
{

σBattery × σDG × σFC × σEL
}

(12)

The control actions of the battery system are discharging (−1), stopping (0), and
charging (1), that is:

σBattery = {−1, 0, 1} (13)

The control action variable of the diesel generator is in Equation (14), including stop,
operating 25%, 50%, 75%, and full capacity, that is:

σDG = {0, 0.25, 0.5, 0.75, 1} (14)

The control action variables of FC and electrolyzer are defined as σFC and σEL, respec-
tively, including ON (0) and OFF (1), that is:

σFC = {0, 1} (15)

σEL = {0, 1} (16)

3.2.3. Transition Probability

Transition probability defines the probability that the agent moves from one state to
another state. Given an action at, where t denotes the current time step, the transition
probability from a current state st to the next state st+1 = s′ is denoted by Pa

ss′ , that is [42]:

Pa
ss′ = P

[
St+1 = s′|St = s, At = a

]
(17)

In model-based energy management approaches, the transition probabilities Pa
ss′ are

estimated by Monte Carlo simulation based on the prior probability distribution, or they
are predicted by a short-term prediction model. However, in a model-free approach such
as the DQN algorithm, they are estimated through learning from data.

3.2.4. Rewards

Reward function is used to calculate the reward from environment in response to a
given state and action. It describes how the agent ought to behave. A good reward function
can accelerate convergence during the training process. It can also affect the controller
performance. For a simple approach, our designed reward function is the consumption of
the reward from each system component as follows:

rt(st, at) = rt,Bat + rt,FC + rt,EL + rt,DG (18)

where rt,Bat, rt,FC, rt,EL, and rt,DG are the rewards from the subsystems: battery, fuel cell,
electrolyzer, and diesel generator.

The component rewards are essentially defined as follows:

rt,Bat =


PBat

Pdischarge,max
i f
(

PPV + PWT + PDG − PLoad
ηinverter

)
≥ 0

− PBat
Pdischarge,max

otherwise
(19)

rt,FC =


2∗PFC

PFC,max
i f
(

PPV + PWT − PBat − PLoad
ηinverter

)
≤ 0 and SOC ≤ 0.5

PFC
PFC,max

i f
(

PPV + PWT − PBat − PLoad
ηinverter

)
≤ 0

− PFC
PFC,max

otherwise

(20)
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rt,EL =


2∗PEL

PEL,max
i f
(

PPV + PWT + PDG − PBat − PLoad
ηinverter

)
≥ 0 and SOC ≥ 0.9

PEL
PEL,max

i f
(

PPV + PWT + PDG − PBat − PLoad
ηinverter

)
≥ 0

− PEL
PEL,max

otherwise

(21)

rt,DG = − Fuelt
Fuelmax

(22)

where ηinverter is the inverter efficiency, Fuelt is the fuel consumption of the diesel generator
based on the actual operating power at time step t, and Fuelmax is the fuel consumption at
the maximum capacity.

As shown in Equations (19)–(22), the component reward functions are defined based
on the result of the power balance function. For example, the battery will get negative
reward when the sum of PV, WT, and DG powers is smaller than 0. Thus, the agent will
learn to avoid choosing the negative-reward actions. The reward functions of FC and EL
are similar to that of battery. For DG reward function, more fuel consumption means more
negative rewards. Thus, it helps the agent to stop the operation time of the DG as much
as possible.

In addition, the agent receives a big penalty if these parameters are out of their
boundaries as shown below:

SOCmin ≤ SOC ≤ SOCmax (23)

PBat,discharge ≤ PBat ≤ PBat,charge (24)

LH2,min ≤ LH2 ≤ LH2,max (25)

0 ≤ PFC ≤ PFC,max (26)

0 ≤ PEL ≤ PEL,max (27)

3.3. Methodology of the DQN-Based EMS

In this part, the DQN algorithm is described. Its objective is to find an optimal policy
that maximizes the expected total rewards from a starting state. Figure 3 shows a graph of
DQN-based EMS. The optimal policy is formulated as [42]:

Vπ∗(s) = maxEπ

[
T

∑
t=0

γtrt+1|s0 = s

]
(28)

where π∗ ∈ Π is the optimal policy in response to a given state and action. It is a strategy
which is applied by the agent to decide the next action based on the current state. 0 < γ < 1
is the discount factor used to define the importance of future reward. Eπ denotes the
expected value of reward according to the policy the agent follows.

In the DQN formulation, the optimal policy is represented by the optimal action-
value function:

Vπ∗(s) = maxQπ∗(s, a) (29)

where Vπ∗(s) is the optimal state-value function of an MDP. It is the expected return
starting from state “s” following optimal π∗; Qπ∗(s, a) is the optimal action-value function.
It is the expected return starting from state “s”, following optimal policy π∗, taking action
“a”. It focuses on the particular action at the particular state.

It is expressed as follows [42]:

Qπ∗(s, a) = Eπ∗

[
∞

∑
k=1

γk−1rt+k|st = s, at = a

]
= Eπ∗

[
rt + γmaxQπ∗(st+1, at+1)|st = s, at = a

]
(30)
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Following the optimal action-value function, the optimal policy can be determined
by [42]:

π∗(s) = argmaxQπ∗(s, a) (31)

In the DQN algorithm as shown in Figure 4, a deep neural network is used to cal-
culate Qπ∗(s, a). It is expressed as Q(s, a|θ) network, where θ is the weight vector of the
neural networks. As shown in the pseudo code in Figure 4, two separate Q-networks are
used. Q(s, a|θ) represents the prediction network, while Q(s, a|θ′) represents the target
network [42]. To train the Q-network, a gradient descent is applied to minimize the loss
function of the target and prediction networks. In every time step of the training process,
the prediction Q network is updated by back-propagation method. In contrast, the target
network is frozen. After a period of C time steps (C steps in the algorithm), its weights are
updated by simply copying the weights from the current prediction Q network. Freezing
the target Q network for a period of time helps stabilize the training process. In general,
the Deep Q Network must be trained through the process in Figure 4 to ensure that EMS
controller always chooses the best action. Then, EMS uses its trained Deep Q Network to
calculate the Q value based on the current state information, and the next action is chosen
following that Q value.
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3.4. Methodology of the Conventional Dispatch-Based EMS

The EMS controller chooses the operational mode of an HRES according to the power
difference between generation and consumption and the available power in the energy
storage system. It aims to satisfy the power demand all the time with the lowest fuel
consumption. Following the work in [14], an convectional dispatch EMS method is ap-
plied in this study. It is used to compare with DQN-based method in term of system
performance efficiency. The control actions of CD method are the same as DQN, includ-
ing switching on/off the diesel generator, the fuel cell, and the electrolyzer, as well as
charging/stopping/discharging the battery. The flow chart of the considered method is
shown in Figures 5 and 6. This controller chooses the operational mode according to the
power difference between generation and consumption and the available power in the
energy storage system. It aims to satisfy the power demand all the time with the lowest
fuel consumption.
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4. Results and Discussion
4.1. Site Description

Based on the weather and load data collected from this area, an optimal configuration
of HRES is calculated by HOMER software [43]. Then, its simulation model is defined
in MATLAB/Simulink for the implementation of our DQN-based EMS. In this part, the
introduction of Basco Island is presented. This island is about 190 km away from Taiwan
and is located in the northern region of the Philippines, where the major economic sectors
are farming and fishing. On the island, the current source for power generation are diesel
generators and fossil fuels, which require high operational costs due to the constantly
increasing fuel prices and logistic costs. The location of Basco Island is excellent for marine
resource management and tourism. As the government supports developing a sustainable
economy, the local governors took the opportunity to invest in a more environment-friendly
power system for the local community. Thus, research plays an important role in the
economic development plan in this area. It ensures the continuous power supply with low
cost of energy and environmental friendliness.

Figure 7 shows the diagram of our presented HRES in HOMER software (left), as well
as the load profile through the year at Basco station (right) presented in HOMER software.
A daily power consumption with an average demand of 700 kW every hour is shown in
Figure 8. The weather data used for system simulation were taken from the database of the
National Renewable Energy Lab (NREL), which can be generated by HOMER software.
The average year around solar radiation is 4.44 kWh/m2/day, while that of the wind speed
is 7.22 m/s. Following the data, the energy system should supply 18 MWh a day with a
peak power of 1.4 MW.
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Following the analysis in HOMER software, the optimal configuration of HRES in
this case study is obtained [43]. It is reliable, environmentally friendly, and cost-effective.
The proposed design includes a 5483 kW PV system, 236 pieces of 10 kW wind turbines, a
20,948 kWh battery system (48 V DC, 4 modules, 5237 strings), a 750 kW diesel generator, a
500 kW Fuel Cell system, a 3000 kW electrolyzer, a 500 kg hydrogen tank, and a 1575 kW
converter. The Net Present Cost (NPC) of the system means the present value of the
costs of investment and operation of a system over its lifetime. In this study, it was
about 72.5 million USD. The Cost of Energy (COE), as the average cost per kWh of useful
electrical energy produced by the system, was about 0.696 USD/kW. Furthermore, it can
be concluded that the combination of the FC and the battery as the storage system is the
best option for the design of HRES with lowest cost of energy. In this kind of system, FC is
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for a long term, while the battery is for short-term usage. Following the load demand at
the applied area, the system is practical and cost-effective.
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4.2. Implementation of DQN-Based EMS in MATLAB/Simulink

We carried out the simulation of the designed HRES in the Reinforcement Learning
Toolbox of the MATLAB/Simulink environment. The time interval between two time-steps
was one hour. There was a total of 5000 episodes during the training process where each
episode ran for a randomly selected 48-h period. At the beginning of each episode, random
initial conditions were generated including the initial state of charge and the initial amount
of hydrogen in the tank.

Based on the experiences from previous publication [34] as well as trial-and-error
during the training process, the structure of the network and its training parameters were
determined. This is a usable reference in this area because there are not many publications
that discuss details of the implementation of DRL for an HRES. In this study, the structure
of the critic network applied for the DQN method is depicted in Figure 8, while the initial
setting parameters for the simulation are displayed in Table 1. The amount that the network
weights are updated during training is referred to as the step size or the learning rate (α).
A large learning rate helps the agent to learn faster, and it could obtain the local optimal
solution. On the other hand, a smaller learning rate may allow the agent to learn a global
solution but may take significantly longer to train. In this study, the learning rate of the
critic network is set to 0.001. It would mean that weights in the Q network are updated
0.1% of the estimated weight error each updating time. The action space of DQN comprises
the combination of the actions of the four system components: battery, fuel cell, electrolyzer,
and diesel generator.

Table 1. Parameters for the simulation of the DQN-based EMS.

Specifications Value

Memory capacity
Batch size 64

Discount factor (γ) 0.9
Exploration rate (ε) 1

Decay of exploration rate 0.001
Minimum exploration rate (εmin) 0.01
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The discount factor (γ) affects how much weight it gives to future rewards in the value
function. γ = 0 means that the agent will be completely myopic and only studies actions
that produce an immediate reward. γ = 1 means that the agent will assess each of its actions
based on the sum total of all of its future rewards. Exploration rate (ε) is the probability that
our agent will explore the environment rather than exploit it. It is set to 1 at the beginning
and reduced gradually over the training time. This ensures that the agent has enough time
to explore and learn all about the environment.

4.3. Training Result

The training progress of the EMS controller based on the DQN algorithm is shown in
Figure 9. The blue line represents the total reward in each episode, while average reward
of total episodes at every time step is indicated by the red line. The estimation of the
discounted long-term reward of critics when each episode starts, episode Q0, is marked
as the yellow line in the graph. The average reward of total episodes at every time step
flattens after 500 episodes. During the training process, we save the trained agents for
online use when the average reward passes the design average value.
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4.4. Performance under Various Conditions

We used two scenarios for validating the performance of the proposed method. Each
test also included a comparison with a conventional dispatch-based control. In the first
scenarios, the operation of the diesel generator is totally turned off by the controller, because
the battery and hydrogen system can fulfill the load the demand in case of not enough
from solar PV and wind turbine. The second scenario is used to test for the operation of
a diesel generator when all other energy resources run out of energy. It starts with less
energy from PV and WT, so the operation of battery and hydrogen are required. Finally,
diesel generation must be turned on to ensure the operation of the power system.

The simulation period was two days long using one-hour intervals between consec-
utive steps. WT, PV, and load demand were randomly generated from the year-round
data. SOC and hydrogen levels were initialized with random values. Training based on
random inputs shows the proposed DQN method can make effective schedules for the
EMS in a deterministic environment from any initial conditions. The SOC minimum level
was set to 30% in order to avoid running into deep discharging, thereby increasing battery
lifetime. The minimum hydrogen level was set to 0. The simulation was implemented in
the Reinforcement Learning Toolbox of MATLAB/Simulink software.
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4.4.1. Scenario 1

The first scenario aimed at demonstrating the performance of the proposed DQN
approach without the operation of the diesel generator. Figure 10 indicates the available
power from the PV (green) and WT (blue) systems. The load demand is depicted by the
red line. The simulation result is displayed in Figure 11. The three subfigures on the left
apply for the DQN-based (red) EMS method, while on the right, apply for the CD-based
(blue) EMS method. The first row displays the SOC of the battery. The second row displays
the level of hydrogen in the tank. The third row displays the fuel consumption of the
diesel generator.
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Figure 11 shows that the diesel generators remained shut down under both methods.
The SOCs on the left and right are almost identical. Between steps 0 and 5, the battery
was charged by the power production of the WT system. Between steps 5 and 11, the
battery switched to discharging due to no power from PV and WT. Between steps 11 and
24, more renewable power was available, so the battery was charged, and the excess power
was used to run the electrolyzer. The amount of hydrogen increased between 17 and
20 h and between 38 and 43 h. Under the DQN method, the battery itself handled the
problem of insufficient renewable input. Since the fuel cell remained shut down, there was
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no reduction of the hydrogen level in the tank over the simulation time. Under the CD
approach, the fuel cell operated during steps 21–25 and 45–46, reducing the hydrogen level.

4.4.2. Scenario 2

The second scenario aimed at demonstrating the performance of the proposed DQN
approach with the operation of the diesel generator. Similar to the previous case, Figure 12
shows the PV and WT productions and the load demand, while Figure 13 demonstrates
the performance of the DQN- and CD-based methods. No renewable energy was available
at the beginning. The level of SOC was 45%, and the amount of hydrogen in the tank was
10%. Thus, the diesel generator was forced to operate when power deficit occurred.
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From 0 to 4 time-steps, since no power was available from PV and WT, the battery
discharged to its lower limit of 30%. The fuel cell supplied the power demand from 5
to 7 time-steps, resulting in the reduction of the hydrogen level. Since the power deficit
persisted, the diesel generator turned on from 6 to 8 time-steps. The battery was charged
fully from 9 to 15 time-steps when more power was produced by PV and WT. Similarly,
extra power was used by the electrolyzer to generate hydrogen. After that, the battery
discharged from 23 to 34 time-steps, and charged to its upper limit by step 38. The diesel
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generator and the fuel cell remained off due to no consumption. The operating time of the
diesel generator under both methods was 2 h. However, the proposed DQN method only
consumed 353 L, while the CD-based method consumed 492 L.

5. Conclusions

This study presents a DQN-based control to solve the complex problem of energy
management in an HRES, where the energy flow between the HRES units is managed.
The power system for case study on Basco Island, Philippines, includes a PV system,
a WT system, a battery system, a diesel generator, and a hydrogen system. Due to its
advantages of non-polluting power generation, the hydrogen system is considered for use
in the proposed HRES. In the hydrogen system, an electrolyzer uses the excess energy from
PV and WT to generate hydrogen for the operation of the fuel cell when an occasion of
power shortage occurs. In the field of HRES, most of the current studies applied Q-leaning
method, which has the limitation of a finite state and action space. In order to confront
with continuous state space and large discrete action space, we introduced a deep neural
network, allowing the agent to use function approximation to generalize across states,
instead of using a Q look-up table. For any given state, the agent will choose the action
with the highest value of reward and move to the next state. An MDP model of the HRES
and the reward functions are formulated for the implementation of the proposed method
in MATLAB/Simulink environment.

A basic rule-based EMS method named CD is considered to compare with the pro-
posed DQN following the power efficiency. Based on this comparison, we know that the
proposed method is always equal to or at least is better than the CD method. Despite only
two scenarios considered for the result analysis, it can be concluded that the proposed
method has good performance and outperforms the CD method under any uncertain
environment. This is because the agent is trained based on the random initial conditions
with random weather data and load demand, generated from the whole-year data.

The future work is to perform comparative real-time experiments with different
advanced EMS methods such as Fuzzy, ANFIS, and PSO. Furthermore, to overcome the
disadvantage of our proposed method, which is using a simple network structure and a
basic reward function, a better study on the design of deep neural networks and gradient
reward functions should be considered for fast convergence and less fluctuation of the
average reward during the training process. These two factors ensure that the optimal
policy for optimal EMS control of HRES is always obtained. Moreover, computational
complexity should be an important metric for testing and validation. In addition, lithium-
ion batteries are just as cheap as lead-acid batteries. They have lower self-discharge rates
and higher lifetimes and efficiencies. Moreover, in the size category of multi-MW-storages,
high temperature batteries such as sodium-sulfur batteries may be worth looking into for
the future development. Instead of using two-day data, multiple-year data will be applied
for the simulation.

In conclusion, we believe that deep reinforcement learning is the new potential trend
in the field of energy conversion and management due to the following features: (1) the
ability to learn from experience, (2) the ability to solve complex optimal control problems
without prior environment knowledge, (3) the requirement of a simple mathematical model,
and (4) the ability to handle problems for continuous state and action spaces.
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