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Abstract: Neuropeptides are mainly secreted from the human central and peripheral nervous systems.
Neuropeptides bind to its cognate rhodopsin-like G-protein coupled receptor (GPCR) and perform
various physiological functions. Conventional cancer treatments in clinical practice still present many
drawbacks due to the lack of selectivity toward the target cell, drug-resistance, and side-effects, thus
pushing for the development of new therapeutic agents and therapies. Recent research suggests
that neuropeptides influence cancer cell proliferation, invasion, metastasis, and angiogenesis and,
therefore, they could be exploited as a target for novel anticancer therapies. Very recently, targeted
approaches that inhibit neuropeptides and their associated receptors are being developed in cancer
treatment. This review focuses on various neuropeptides and their potential utility as drug targets by
different inhibitors as a recently identified approach to cancer prevention, with particular emphasis
on colorectal cancer.

Keywords: neuropeptide; receptor; inhibitors; cancer; therapeutic agents; bombesin; neurotensin;
vasoactive intestinal peptide; substance P

1. Introduction

Neuropeptides (NPs) are small chains of amino acids that serve as chemical messengers
and are released by neurons as neurotransmitters and neurohormones. Over 100 diverse
classes of NPs with neuromodulatory, neuroinflammatory, and nerve cell proliferation
properties have been characterized [1]. At a cellular level, NPs are ribosomally synthesized
as larger protein-like macromolecules, which are further processed post-translationally into
the vesicle for transportation to their broad range of targets. NPs act mainly by binding to
the single seven-pass transmembrane receptor-like G-Protein Coupled Receptor (GPCR);
however, in exceptional cases, they can also activate more than one GPCRs [2]. Based on
their precise chemical nature and physiological functions, neurotransmitters fall into three
major types (peptidergic, biogenic, and amino acids) of which NPs are an excellent example
of peptidergic neurotransmitters, as schematically shown in Figure 1 and briefly described
in Table 1.
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Figure 1. Chemical classification of neurotransmitters.

Broadly speaking, NPs include neuropeptide Y, calcitonin gene-related peptide (CGRP),
opioids, galanin, vasoactive intestinal peptide (VIP), cannabinoids, substance P, bombesin,
neurotensin, etc., and their essential physiological functions are related to tissue homeosta-
sis, energy metabolism, and development of tumor microenvironment [27,28].

NPs have been meticulously investigated in recent years due to their aberrant behavior
in cancer development. Their increased expression levels have been associated with
the progression of colorectal, breast, lung, glioblastoma, prostate, and head and neck
cancers [29]. Moreover, plenty of studies have also evaluated aberrantly expressed NP
receptors in various human cancers. The consideration that the NP-receptor complex is
coupled with different signaling pathways, including cAMP/EPACs recently related to
cancer cell growth and development, leads to new biological and diagnostic targets [30].

Despite the progress made by research in finding new drugs and optimizing those
already known [31–41] and exploiting new techniques [42–45], exploring novel approaches
might lead to unexpected positive results. In that regard, targeting the receptors with
suitable drugs or inhibitors may help counteract its physiological and pathological role in
cancer initiation and progression through the ligand–receptor complex [46]. Hence, it has
been confirmed that NPs and their receptors are significantly involved in various human
tumors, making them an ideal druggable target in cancer theranostics. Among top-cited
cancers, colorectal cancer (CRC) is one of the most common cancers worldwide. Among
the symptoms, individuals experience changes in bowel habits, stool consistency, rectal
bleeding, abdominal discomfort and pain, anemia, and weight loss. Our most intriguing
observation is that various important NPs (such as amylin, bombesin, and ghrelin) regulate
gastrointestinal functions; however, deviation from the normal functioning of these NPs
may increase the risk of CRC onset, which represents one of the major growing concerns
that need urgent attention. Therefore, mechanistic insight into the function of NPs in
the tumorigenic process might suggest novel strategies for discovering novel inhibitors
exploitable in antitumor therapy. In this review, we will address the possible implication of
NPs in the pathophysiology of CRC and other cancers, and the possibility of their inhibition
by specific molecules utilizable in cancer treatment with particular emphasis on CRC.
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Table 1. List of neurotransmitters with corresponding sources, expression, and their brief description.

Neurotransmitters Sources Expressed Description Refs.

Peptidergic neuropeptides

Neurotensin (C78H121N21O20) Hypothalamus and intestine

Hypothalamus, bronchial epithelial
cell, lymph node, anterior pituitary,
jejunal mucosa, superficial temporal

artery, hippocampus proper,
duodenum, appendix and gallbladder.

Neurotensin is thought to regulate the
luteinizing hormone, prolactin release
and brain dopamine system. Involved
in a wide variety of biological effects,

such as histamine release, vasodilation,
gastrointestinal (GI) muscle

modulation and motility, and
stimulation of intestinal secretion.

[3,4]

Vasoactive intestinal
polypeptide

Gut, pancreas, and
hypothalamus

Appendix, rectum, gastric mucosa,
endothelial cell, transverse colon,

cingulate gyrus and prefrontal cortex

It performs several functions in the
body, such as relaxation of muscle in
digestive tract and heart, control of

fluid secretion, increase in
glycogenolysis and reduction of the

blood pressure.

[5,6]

Substance P (C63H98N18O13S) Brain, spinal cord and
intestine

Hypothalamus, amygdala and
periaqueductal gray

Substance P is associated with
inflammation, pain, anxiety, mood, cell

migration and angiogenesis.
[7,8]

Bombesin (C71H110N24O18S) Brain -

It mediates gastrin release and was also
termed gastrin-releasing peptide. It

participates in various processes, such
as glucose homeostasis, circadian

rhythm, thermoregulation, and many
GI processes.

[9,10]

Neuropeptide Y
(C190H287N55O57) Brain and circulating platelets

Cerebral cortex, thalamus, brainstem,
hypothalamus, amygdala, prostate,

and hippocampus

Neuropeptide Y plays a crucial role in
food intake, reducing stress and pain,
lowering blood pressure, and storing

of energy.

[11,12]

Calcitonin gene-related
peptide (CGRP) Peripheral and central neuron placental syncytiotrophoblast, villous

vascular endothelial cells, and decidua

Calcitonin gene-related peptide is
implicated in vasodilation, appetite
suppression, stem cell mobilization,

and homeostasis.

[13,14]

Biogenic neurotransmitter

Dopamine
(C8H11NO2) Substantia nigra ventral brain Brain, blood vessels, kidneys, pancreas,

and gastrointestinal tract

Dopamine regulates norepinephrine
inhibition, vasodilation, increases
sodium excretion, reduces insulin
production and gastrointestinal

motility.

[15,16]

Epinephrine and
Norepinephrine (C9H13NO3)

Adrenal gland and medulla
oblongata Heart, liver, lungs, muscles, and brain

Epinephrine has effects on increasing
blood sugar, heart rate, smooth muscle

contraction, and pupil dilation
[17,18]

Serotonin (C10H12N2O)
Enteric nervous system

located in the GI tract and
brain

-

Sleep, emotion, mood, wound healing,
immune regulation, and insulin

secretion are some of the important
cognitive and peripheral functions

modulated by serotonin.

[19,20]

Acetylcholine (Ach,
C7NH16O2+)

Motor neurons,
parasympathetic nervous

system and brain

Skeleton muscle, brain, and other
organs

Ach is a well-known neurotransmitter
of the neuronal system, it is also

synthesized in non-neuronal cells
including mesothelial, adipocytes,

fibroblast, epithelial, endothelial, and
cancer cells.

[21,22]

Amino acids

Gamma-aminobutyric
acid-GABA, (C4H9NO2) Brain -

GABA is an inhibitory
neurotransmitter that blocks messages
or nerve signals between nerves and

CNS, though its function is well
defined in reducing the feeling of

stress, anxiety, and fear.

[23,24]

Glycine (C2H5NO2) Kidneys and liver -

Glycine is an inhibitory
neurotransmitter of the central nervous
system CNS, produced naturally in the

body and important for the healthy
development of bones, muscles, and

tissues.

[25]

Histamine (C5H9N3) Basophils and mast cells - It plays a central role in inflammatory
response and as itching mediator. [26]

2. Most Significant Neurotransmitters in Cancer Development and Progression

Cancer incidence sometimes arises due to stress-like conditions under the influence
of released neurotransmitters or hormones, which are increased during stressful events.
Studies have demonstrated a strong and consistent link between cancer and the expression
of stress-induced neurotransmitters that are identified as potent mediators for cancer
initiation and progression.
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Prior research has explored the relationship between cancer and dopamine and found
that decreased dopamine expression can result in tumor development [47]. Knockdown of
the expression of dopamine results in the inhibition of IGF-1 (insulin-like growth factor-1),
which is responsible for the proliferation of gastric cancer cells and angiogenesis. Mean-
while, upregulating the Krüppel-like factor 4 (KLF4) gene, a well-known cell cycle regulator,
can also inhibit proliferation [16]. In another study, it was demonstrated that dopamine
could exert an antagonistic action in colon, breast, and stomach cancer, which means its
stimulation could inhibit the growth of tumors [48]. However, the effect of dopamine is not
clear yet as, in some cases, it also proved its inability to inhibit the proliferation and migra-
tion of cancer cells, indicating that its action is either dose-dependent or expression-based
in different cancers [49].

Serotonin is another important neurotransmitter that exerts a mitogenic function in the
development and progression of several cancers, such as lung, prostate, liver, melanoma,
and pancreas [50–52]. An in vitro study showed that tryptophan hydroxylase 1 (TPH1), an
enzyme catalyzing serotonin production, is highly expressed and facilitates breast cancer
onset by sustaining mammary epithelial cells’ growth [53]. Similarly, serotonin secretion
concurrently enhances cell proliferation in the liver and pancreatic cancer. Therapeutically,
inhibition of serotonin receptors, such as the hydroxytryptamine receptor 2B (HTR2B) in
pancreatic cancer and the 5-hydroxytryptamine receptor 2B (5-HT2B) in the liver, has been
shown to prevent cancer cell proliferation, angiogenesis, and metastasis [54,55].

In recent years there has been a rise in the number of studies targeting the complex of
neurotransmitters, i.e., epinephrine (E) and norepinephrine (NE), and their GPCR, which
drive several biological processes in cancer onset and progression, including proliferation,
survival, angiogenesis, and invasion [56]. In addition, much research has been carried
out on the genes encoding GPCR receptors in the context of cancer pathogenesis through
the activation of the signaling cascade via the β1/2-adrenoreceptor (β-AR)—cyclic-AMP
(cAMP)—protein kinase A (PKA). The underlying mechanism of promoting cancer initia-
tion and development by E and NE through β-AR has been correlated to many cancers,
including lung, ovarian, colon, and breast cancer, suggesting that E, NE, and the GPCR
represent a potential diagnostic and therapeutic target in these types of cancer [57–61].

It is now well recognized that acetylcholine (ACh) also has tumor-promoting activity,
including proliferation, differentiation, migration, and angiogenesis in the colon and
gastric cancer via increased expression of vascular endothelial growth factor (VEGF),
cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) [62,63]. This association was also
investigated in another study showing that inhibition of nicotinic ACh (n-ACh) receptors
(n-AChR), which are upregulated in squamous cell lung carcinomas (SCC), limited basal
and nicotine-stimulated growth of SCC [64]. In a different study, it was observed that
n-ACh served as a potent mediator of the nuclear factor kappa B (NFkB) inflammatory
pathway by activating the sympathetic nervous system in stressful events, leading to
a cancer-like condition [65,66]. Researchers suggested novel cancer therapies based on
targeting the ACh receptors [67]. The most common ACh receptors identified in different
types of cancer are the α7-nAChR and the M3-mAChR receptors, which can be inhibited
by antagonists, namely D-tubocurarine, α-bungarotoxin, and secreted Ly-6/uPAR-related
protein 1 (SLURP-1) drug [68]. Similarly, the pharmacological efficacy of M3-mAChR
antagonists (e.g., darifenacin and tiotropium) was exploited to arrest tumor initiation and
progression by minimizing cell proliferation, survival, and angiogenesis in small cell lung
cancer, as well as colon and gastric cancer [69,70].

Clear, strong, and well-documented evidence supports the expression of glutamate
and its receptors as a prognostic biomarker in several cancers [71,72], including prostate,
glioma, melanoma, colorectal, and gastric cancer, suggesting that aberrant glutamate
signaling is one of the key factors for cancer development and progression [73,74]. One
prospective study showed that treatment of colon cancer cells with an antagonist inhibited
cell growth by downregulating the level of the metabotropic glutamate receptor 4 (mGluR4),
whereas the opposite effect was observed by treatment with an agonist, possibly because of
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the increased expression of mGluR4 in the presence of 5-fluorouracil (5-FU), suggesting
that mGluR4 antagonists may reduce the chance of cancer onset as well as improve the
health of patients undergoing cancer treatments [75,76].

Along the same lines of information, it is also well documented that gamma-aminobutyric
acid (GABA) and its receptors play a dominant role in cancers, as confirmed by its modified
activity in colon, glioma, breast, ovarian, and gastric cancers [77,78]. A number of studies
suggest that GABA receptors are overexpressed in several cancers, including breast [46],
prostate [53], and pancreatic cancer [50,51]. In contrast, low expression of GABA receptors
was found in liver cancer [79–81]. Increased cell division was likely due to activation of
the mitogen-activated protein kinase (MAPK) pathway in gastric cancer cells under the
effect of muscimol, a potent agonist for the GABAA receptors [82]. Similarly, Takehara
and colleagues showed that pancreatic cancer was developed due to activation of the
MAKP/ERK pathway via an increase in secondary messengers, such as Ca2+ ions, in a
GABA independent manner [83,84].

3. Neuropeptides: Peptidergic Neurotransmitters

Neuropeptides are peptide hormones that the neuroendocrine system uses as chemical
signals to communicate among cells. They are a set of signaling messengers that regulate
exocrine and endocrine secretion, smooth muscle contraction, blood pressure, and inflam-
mation by acting as neurotransmitters, paracrine regulators, and hormones. Numerous
NPs are localized in the brain and co-released with neurotransmitters to reach their target,
where they perform a wide variety of functions.

NPs are said to serve as modulators depending on the condition in which they are
challenged; however, they generally function in the brain in a paracrine manner. Growing
evidence supports that during stress, injury, and pain, they act as potent neurotransmitters
and trophic factors that mediate the inhibitory or stimulatory action of the nervous system.
In recent years, several biomolecules, such as neurotensin, substance P (SP), vasoactive
intestinal polypeptide (VIP), bombesin, opioids, and neuropeptide Y have emerged as
potential forms of NPs whose action as neuronal mediators has been extensively studied
in different pathological conditions, including cancer [80,85]. As discussed earlier, severe
consequences of stress are often correlated with oncogenesis in different cancers. However,
NPs related to cancer development and progression are listed in Table 2.

Table 2. NPs related to cancer development and progression and their main characteristics.

Neuropeptides Number of Amino
Acids Discovery Related Cancers Tumorigenic Properties Refs.

Neurotensin 13 Carraway and Leeman
in 1973

Pancreatic, lung, breast,
prostate, and colorectal cancer

Increased cell proliferation and
migration [86,87]

Vasoactive intestinal
polypeptide (VIP) 28 Said and Mutt in 1970

Neuroblastoma, pituitary
adenomas, colorectal cancer,

endometrial, and lung cancer

Increased cell proliferation,
metastasis, invasion, and

angiogenesis
[88,89]

Substance P 11 Von Euler and Gaddum
in 1931

Glioblastoma, breast, acute
lymphoblastic

Leukemia, colorectal cancer,
melanoma, and gastric cancer

Increased cell proliferation,
migration, invasion, and

angiogenesis;
pro-inflammatory effect

[90,91]

Bombesin 14 Battey and Wada in
1991

Prostate, gastric, lung, breast,
colorectal cancer,

renal cell carcinoma, small cell
lung carcinoma,

neuroendocrine, squamous,
colon, and pituitary cancer

Promoted vascularization,
tumor growth, and

differentiation
[92–95]

Neuropeptide Y 36 Tatemoto and Mutt in
1982

Neuroblastoma, colorectal
cancer, breast, Ewing sarcoma,

and prostate cancer

Induced cell growth,
vascularization, and

angiogenesis;
pro-inflammatory effect

[46,96,97]

Calcitonin gene-related
peptide (CGRP) 37 Amara and colleagues

in 1982

Prostate, lung, colorectal
cancer, pancreatic, ovarian,

endometrial, pituitary, renal,
and hepatic cancer

Promoted angiogenesis,
lymphangiogenesis, cell

growth, neovascularization,
proliferation, and migration

[98–101]
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NPs and their associated receptors have been extensively investigated to identify
their critical role in complex diseases such as obesity, diabetes, Alzheimer’s, and other
nervous system disorders. Moreover, the presence of NPs in several disease pathogenesis
has been widely described. Still, the critical role of NPs and their associated receptors in the
development of cancers and their potential implication for specific therapy and prevention
of cancer is not well-defined [102]. NPs have been studied by several researchers who
provided mechanistic insight into the biological significance of the neuronal system in
tumor progression [101,102]. NPs have been found to bind to multiple receptors expressed
in endothelial cells and induce cell proliferation, migration, survival, and differentiation,
as well as promote angiogenesis, thus suggesting that NPs are tumor-promoting factors
during cancer development and progression. Galli and colleagues demonstrated that
a higher serum concentration of neuropeptide Y (NPY) in neuroblastoma patients was
significantly correlated with poor prognosis and survival outcomes [97]. Moreover, elevated
NPY circulation in serum was linked to metastasis and angiogenesis. This study supports
the higher expression of NPY in patients with neuroblastoma and suggests its potential
exploitation as a therapeutic biomarker for monitoring cancer progression. The diagnostics
potential of NPY was also evaluated in CRC patients in different samples, such as tissue, cell
lines, and feces. Interestingly, the results showed a significantly hypermethylated promoter
region of NPY in CRC tissues as well as fecal exfoliated cells. Moreover, treatment with
5-aza-2′-deoxycytidine (a demethylating agent) suppressed the methylation level of NPY
in CpG Island at the promoter region and normalized its transcriptional expression in vivo,
indicating that tissue and fecal NPY methylation could be a potential biomarker in CRC
patients [103]. NPs, such as neurotensin (NTS) and its cognate low-affinity receptors NTSR1
and NTSR2, mediate several biological functions, including gastric acid secretion, bowel
motility, and fatty acid absorption. Growing evidence shows that NTS is also strongly
implicated in a number of mechanisms involved in tumor growth, proliferation, survival,
metastatic spread, and invasiveness. The recent resurgence of NTS and NTSR1 and NTSR2
complexes in cancer-inducing cell proliferation and development by pathway deregulation,
such as the Wnt/β-catenin signaling pathway, enlightens its role in the carcinogenesis
process. In fact, it has been suggested as a potential prognostic biomarker in head and neck
squamous cell carcinoma, lung, colon, and breast cancers [104,105].

It has been shown that the substance P-neurokinin-1 receptor SP/NK-1R complex
is frequently dysregulated in cancer, confirming its role as a growth-promoting and anti-
apoptotic factor in CRC, breast, and prostate cancer. In gastrointestinal (GI) cancer, the
NK-1 receptor was also found to be overexpressed in GI tumor cells, and the binding of SP
to the NK-1 receptor was implicated in many biological functions, such as proliferation,
migration, metastasis, and angiogenesis [106,107]. Therefore, a therapeutic approach
against the NK-1 receptor could potentially inhibit the growth-promoting activity of the GI
tumor cells. For example, NK-1 receptor inhibition with antagonists, such as fosaprepitant,
L-732,138, aprepitant, and L-733,060, induced an antineoplastic effect against GI tumors
by inhibiting cell migration and angiogenesis, inducing apoptosis, and counteracting the
Warburg effect [108,109].

Aberrant expression of galanin receptors (GalRs) could be also considered a risk factor
for human GI cancers, in particular stomach epithelial cells and gastric cancer cells. GalRs
(GalR1, GalR2, and GalR3) belong to the GPCRs family that interacts with galanin (Gal)
and regulate a range of biological processes, including tumorigenesis [110,111]. A study
demonstrated that elevated Gal expression in samples from CRC patients along with high
serum concentration can be considered a serious risk of invasion and metastasis [112].
Despite a clear understanding of the role of Gal in CRC cases, its receptors have been less
explored except GalR1, but this does not overwhelmingly support the role of GalRs in the
pathogenesis of CRC. The possible role of GalRs in CRC tissue and colon epithelial cells was
also evaluated in a recent study showing that GalR2, GalR1, and GalR3 present stronger
immunoreactivity in human colon cancer cells compared to epithelial cells (enterocytes and
goblet cells) in the large intestine of CRC patients. Furthermore, GalR3 with significantly
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higher immunoreactivity and survival rate in CRC patients was suggested to be an excel-
lent prognostic biomarker for CRC patients [113]. A close association between Gal and
CRC occurrence has been also reported by other researchers who observed a differential
expression of Gal at different stages of the CRC in addition to GalR1 expression measured
with the help of the IHC method. Their study concluded that underexpressed Gal is directly
correlated with an advanced CRC stage [114].

4. Promising Neuropeptides Inhibitors for the Development of Effective
Cancer Therapy

Numerous therapeutic approaches targeting NPs and their receptors have been es-
tablished to counteract the effect of these peptides, especially in cancer [81]. Several
antagonists, inhibitors, and antibodies have been developed against each NP and their re-
ceptors, directly or indirectly disrupting their function and downregulating their potential
activity in cancer development. Therefore, a wide range of novel enhanced combination
therapies and various inhibitors may serve as a promising strategic therapeutic option for
the treatment of cancer patients [115].

4.1. Emerging Neuropeptides Inhibitors in Colorectal Cancer

Colorectal cancer (CRC) is one of the most common cancers, mainly due to alterations
in genetic and epigenetic factors that lead to tumor progression and development [116,117].
Several NPs have been identified that play a significant role in stimulating various im-
portant signaling pathways, thus leading to CRC development [118]. Therefore, the de-
velopment of specific inhibitors targeting these NPs may serve as a potential therapeutic
approach for CRC treatment. The following section briefly describes various NPs and their
specific inhibitors used for therapeutic purposes in the treatment of CRC.

4.1.1. Bombesin

Bombesin (BB) and its receptors (BBR) have been reported to be overexpressed in many
cancers, including CRC. Two commonly known BB-related peptides, including gastrin-
releasing-peptide (GRP) and neuromedin-B (NMB) and their respective GPCR receptors,
i.e., GRPR (also known as BB2) and NMBR (also known as BB1), are expressed at a higher
level in CRC patients [119]. Stimulation of these NPs has been shown to increase tumor
differentiation and progression, acting mainly as morphogenetic molecules. Therefore,
various therapeutic options have been developed for regulating the expression of BB-related
peptides and their receptors in CRC. Researchers in their study highlighted the potential
inhibitory effect of various BBR antagonists in affecting the development and progression
of tumors in patients with CRC [94]. Various combinational therapies, including the use
of a suitable antagonist together with a potent inhibitor, have been reported to have even
more inhibitory effects on CRC cancer cells [120]. With the help of experimental analysis, it
was observed that the application of RC-3095, a GRPR antagonist, together with several
cytotoxic agents, such as 5-FU and irinotecan, results in downregulation and growth
inhibition of CRC xenografts. Another study reported the antitumor activity and inhibitory
tendency of AN-215, a BB-conjugated analog containing doxorubicin, in CRC [121]. These
compounds help target and regulate the growth and proliferation of cancer cells.

4.1.2. Neurotensin

Neurotensin (NTS), together with its receptor, plays a pivotal role in stimulating
oncogenesis and tumorigenesis in CRC cells and significantly influences many signaling
pathways, such as Wnt/β-catenin, MAPK, PI3K/AKT, and Src/Raf dependent pathway.
Growing evidence indicates that the NTSR1-NTS interaction activates RAS and PLC, fur-
ther stimulating other downstream signaling processes. Remarkably, activation of the RAS
gene induces an increase in the production of NTS, which exhibits autocrine and paracrine
properties and simultaneously upregulates the AKT gene, which has been found to inhibit
apoptosis in colon cells [85–87]. On the other hand, PLC plays a critical role in convert-
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ing PIP2 to IP3, which increases calcium ion production. The increased concentration of
calcium ions stimulates several downstream regulatory genes, such as AKT, c-Fos, EGFR,
NF-κB, and CAMKII, which further promote various cellular metabolic processes, such as
apoptosis, signal transduction, activation of MAP Kinase, AKT pathway, ion channels mod-
ulation, tumor cell proliferation and survival, cell invasion and metastasis. The regulatory
role of NTS in promoting CRC through signaling processes has been depicted in Figure 2.

Figure 2. Signaling cascade driven by NTS interacting with NTSR1. This complex is involved in the
gene regulation of various biological processes via activating the RAS-PI3K-AKT and PLC-IP3-Ca2+,
finally contributing to cancer progression. Abbreviations: NTSR1: neurotensin receptor type 1; PI3K:
phosphatidylinositol-3-kinase; PLC: protein lipase C; PIP2: phosphatidylinositol-4,5-bisphosphate;
IP3: inositol trisphosphate; ER: endoplasmic reticulum; AKT, protein kinase B; EGFR: epidermal
growth factor receptor; NF-kB: nuclear factor of kappa-light-chain-enhancer of activated B-cells;
CAMKII: calcium/calmodulin-dependent protein kinase II.

Researchers highlighted the elevated expression of more than 40% of NTS receptors in
human CRC cell lines and activation of the Wnt/APC signaling pathway, which led to the
upregulation of their oncogenic activity. It is clear that the NTS-NTSR1 complex in CRC
cell lines (HT29, HCT116, SW620, SW480) raises the possibility that this complex increases
the risk of CRC progression [122]. Thus, the expression of NTS/NTSR1 directly influences
CRC progression and development and can serve as a potential molecular biomarker
in CRC diagnosis and prognosis. Several treatments have already been proposed for
targeting the expression of NTS/NTSR in CRC. Sodium butyrate (NaBT) was reported
to have a beneficial effect in downregulating the NTS and NTSR activity [123]. NaBT
is a histone deacetylase inhibitor that directly hinders the functional activity of NTSR
mRNA, protein, and promoter function, thereby suspending the growth and proliferation
of CRC cells and increasing their apoptosis. In another study, Iwase et al. 1996 identified a
potent NTSR antagonist, SR48692, which downregulates the expression of NTS and inhibits
tumor growth and development [124]. Concurrent work by Maoret et al. also considered
a similar approach based on a non-peptidic NTSR antagonist, i.e., SR 48692. In vitro
experiments revealed that SR48692 markedly reduces colony formation by interacting with
the NTSR expressed in colon cancer cells [109]. Further support for this positive result
was obtained in vivo. Treatment with SR 48,692 (1.7 µmol/kg every 24 h) reduced the
tumor formed by xenografted SW480 and HCT116 cells in nude mice, suggesting that SR
48,692 deserves further attention as it could be an antagonist with potential anticancer
activity in the treatment of colon cancer. Another therapeutic approach exploited the use
of various antioxidants and dietary compounds on the activity and function of NTS in
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CRC. For example, natural products, such as curcumin, effectively inhibited the secretion
of NTS-mediated IL-8 protein and downregulated the migration activity of colon cells [125].
Cyanidin, another dietary product, has also been shown to have an inhibitory effect on
NTS and other pathways related to cancer cell metabolism induced by the epidermal
growth factor (EGF) [126]. A nanotechnological approach proposed by Hernandez and co-
workers exploited NTS-based polyplex gene nanocarriers targeting specifically the NTSR,
demonstrating its feasibility as an effective therapeutic approach for treating CRC [127].

4.1.3. Vasoactive Intestinal Peptide

Vasoactive intestinal peptide (VIP) has been reported to contribute significantly to
CRC progression and development, although in some cases it inhibited it. Nevertheless,
VIP antagonists have been used as potential inhibitors to limit the neoplastic progression
of several cancer cell lines. Levy and colleagues demonstrated the in vitro antineoplastic
activity of VIP hybrid antagonists, such as NTS6–11VIP7–28, in CRC cell lines (HCT-15)
expressing functional VIP receptors [128]. NTS6–11VIP7–28 was able to inhibit cancer growth
and proliferation at nanomolar concentrations, showing its potential as a potent preventing
agent in cancer therapy and confirming that the VIP hybrid antagonist could be efficiently
utilized as a potential therapeutic approach for treating and preventing CRC.

4.1.4. Substance P

Substance P (SP) supports the proliferation and development of cancer cells in CRC,
mainly due to the activation of NK1R with the help of various proinflammatory cytokines.
Application of Spantide 1, an antagonist of NK1R, resulted in a decreased expression of
cancer cells in CRC [94]. Aprepitant, another NK1R antagonist, also significantly down-
regulated cellular growth and proliferation of two colon cancer cell lines, i.e., LiM6 and
DLD1 [90]. Inactivation of the SP/NK1R signaling pathways led to aberrant inhibition
of the Wnt signaling pathway, thus resulting in the downregulation of various cellu-
lar processes [90,91]. However, SP/NK2R signaling in CRC has not been explored well
yet [129]. The influential work of Xiang and colleagues gave rise to a renewed interest in
understanding the higher expression of NK2R, which was demonstrated to be associated
with tumorigenesis, metastasis, and poor survival of CRC patients. The higher expres-
sion of NK2R in colon cancer was observed due to interferon (IFNα/β) stimulation and
polyinosinic-polycytidylic acid (poly I:C) administration in vitro and in vivo, respectively.
However, the use of a potent and selective antagonist (GR 159897) against the NK2R,
inhibited the tumor cell proliferation in vitro and the tumor formation in cancer-bearing
mice, suggesting it is an optimistic target in patients with colon cancer [130].

4.1.5. Neuropeptide Y

Neuropeptide Y is secreted from tumor cells and acts through multiple receptors,
especially the Y2 receptor (Y2R). It mediates proliferation and angiogenesis during cancer
development. However, in some cases, it mediated chemoresistance by virtue of its Y5
receptor under various pathological conditions. Consequently, it was observed that altered
expression of NPY and its receptors are directly correlated with poor clinical manifestations,
low survival, and enhanced cell proliferation in different types of cancer, suggesting
NPY as a remarkable drug target [131]. Overexpression of NPY activates the Y2 receptor
on colonic endothelial cells and has a direct impact on angiogenesis and tumor growth
following activation of the ERK/MAPK pathway in colon adenocarcinoma. However, it
was demonstrated that the use of a specific Y2R antagonist inhibited the NPY-induced
angiogenesis and orthotopic HT29 tumor growth in colon adenocarcinoma [132].

4.1.6. Orexins

Orexin-A and orexin-B are two new NPs that interact with their respective receptors
(OX1R and OX2R) and are involved in different pathophysiologic processes, including
inflammation, ulcerative colitis, and cancer [133,134]. Previous studies have demonstrated
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a strong and consistent link between OX1R and OX2R expression in cancer. The high
prevalence of OX1R in GI cancer is responsible for metastasis to the lung and liver from the
colon [135]. It is noteworthy that orexins and their receptors’ antagonists were found to
exert an antitumor effect on the growth of colon cancer cells, possibly due to the induction
of mitochondrial apoptosis [136]. Circumstantial evidence supported that orexin treatment
reduces the cell proliferation in colon cancer cell lines (HT-29, Caco-2, and LoVo) by promot-
ing apoptosis, and diminishes the tumor growth in tumor-bearing mice and xenografted
tumor in nude mice. However, the antitumor activity of orexin can be reversed by using
suitable inhibitors, such as NSC-87877 and PD169316 [137].

4.2. Neuropeptides Inhibitors: A Promising Approach also for Other Cancers

In addition to CRC, neuropeptides have also been identified as significant cell growth
factors for various other cancers [90]. As our understanding of the impact of neuropeptide
growth factors in other cancer improves, new strategies in translational research for diag-
nosing and predicting the disease and its treatment have appeared. Similarly, to the case of
CRC, several NPs, such as substance P, neurotensin, and bombesin, have been reported to
initiate signaling pathways that lead to the development and progression of other tumors.
Thus, inhibitory mechanisms against specific NPs and their receptors must be developed
to regulate oncogenic mechanisms. In terms of treatment, antibodies, antagonists, and
selective inhibitors could target neuropeptides, growth factors, receptors, and signaling
pathways that regulate their mitogenic effects [85]. Further on in this review, we briefly
highlighted some inhibitors of specific NPs and their receptors in several prominent cancers.

4.2.1. Breast Cancer

Breast cancer is a heterogeneous disease resulting mainly from a mutation in BRCA1,
BRCA2, and other important regulatory genes. It is one of the most common malignancies
affecting women worldwide. Various novel therapeutic approaches, including bioactive
lipids, plant-derived secondary metabolites, multi-omics approach, next-generation se-
quencing (NGS), and precision medicine, have been exploited for its treatment; however,
the search for successful clinical therapy is still active [138–140]. Substance P (SP) has been
associated with activation of the neurokinin-1 receptor system (NK1R), which upregulates
various intracellular processes responsible for tumor initialization and development in
breast cancer [90]. The inhibitory effects of various NK1R antagonists, such as Aprepitant,
L-732,138, L-733, 060, CP-96345, C-9994, MEN 11467, and SR14033, on different breast
cancer cell lines have been identified experimentally and their role in inducing apoptosis
and inhibiting cellular growth has been established [141–143].

Another therapeutic approach targeting SP took advantage of Spantide III, which
effectively caused cell death and reduced cell proliferation [144]. Neurotensin and its
receptors are directly correlated to the size of the tumor, recurrence, and survival rate
in breast cancer patients [105]. Possible treatments with a previously developed radio-
labeled neurotensin analog, Tc-NT-XI, were inefficient and inaccurate [145]. Therefore,
new generations with more stable compounds, such as 99mTc-NT-XIX (99mTc-(N-His)Ac-
(Arg-N-CH3)-Arg-Pro-(dimethyl-Tyr)-(tert-Leu)-Leu, 188Re-NT-XIX, and 18F-DEG-VS-NT
(18F-(2-(2-(2-fluoroethoxy)ethoxy)ethylsulfonyl)ethene-neurotensin), have been developed
which mainly target the NTSR receptor and efficiently inhibit tumor development and
progression in BC [146]. Bombesin/gastrin-releasing peptide (GRP) and GRPR have been
found to be elevated in 62% of breast cancer patients. A study highlighted the role of two
BB/GRP antagonists, i.e., RC-3095 and RC-3940-II, in significantly reducing the growth
and proliferation of BC cells. These antagonists directly downregulated the secretions
of bFGF, IGF-II, and VEGF-A in breast cancer cells, thereby inhibiting angiogenesis [92].
Similarly, there is a well-recognized association between neuropeptide Y and its receptors
and human breast cancer, which has been demonstrated to promote cell proliferation, mi-
gration, and vascularization. Investigation through the Y5R agonist resulted in an increased
proliferation rate and further application of Y5R blockade L-152,804 led to attenuation in
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a concentration-dependent manner, which resulted in the inhibition of the proliferative
impact of the Y5R agonist treatment [147].

4.2.2. Prostate Cancer

Prostate cancer is one of the most common cancers in men and occurs mainly due
to genetic and environmental factors [148]. Various NPs involved in the development
and progression of prostate cancer have been identified. Therefore, specific inhibitors
against these NPs have been developed. For example, a specific GRPR antagonist 68Ga-
RM2, also known as BAY 86-7548 (68Ga-DOTA-4-amino-1-carboxymethyl-piperi- dine-D-
Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), has been developed and frequently used for
inhibiting prostate cancer progression [149]. 64Cu-CB-TE2A-AR-06 (CB-TE2APEG4-D-Phe-
Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), another GRPR antagonist, was recently developed
and found to be metabolically stable and efficient for cancer treatment and inhibition.
Neuropeptide Y and its receptors have also been found to play a prominent role in prostate
cancer development and progression. Specific inhibitors targeting NPY, such as BIBP32226,
a recently discovered Y1R antagonist, could be used effectively in the treatment of prostate
cancer by inhibiting cellular proliferation and growth [150].

4.2.3. Glioblastoma

Primary central nervous system (CNS) tumors account for about 2% of all adult
malignancies. Gliomas account for 40% to 67% of initial tumors in adult CNS cancers [151].
Glioblastoma (GBM) is the most aggressive malignant primary brain tumor of the astrocytic
lineage and, according to the WHO classification, it is a grade IV glioma [152]. Gastrin-
releasing peptide (GRP) released from presynaptic terminals regulates synaptic plasticity,
memory, and fear responses by binding to GRPR specifically localized at postsynaptic
membranes. GRP is a BB-like peptide found in mammals that regulates a variety of
biological responses by activating the GRPR. Many forms of human peripheral tumors
have an abnormal expression of both GRP and GRPR. Human glioma has been shown to
have extensive expression and a high quantity of GRPR [153–155]. The development of
selective GRPR antagonists as potential targeted anticancer drugs has been motivated by
the finding that GRP and GRPRs play a role in cancer progression. For example, the GRPR
antagonist RC-3095 induced a reduced proliferation of C6 rat glioma cells in vitro [156].
Furthermore, RC-3095 alone or in combination with TMZ inhibited the growth of C6
gliomas both in vitro and in vivo [157]. These findings lend credence to the idea that
GRPR antagonists could be helpful in the treatment of glioma. VIP and pituitary adenylate
cyclase-activating polypeptide (PACAP) are structurally related neuropeptides operating
through GPCR subtypes named vasoactive intestinal peptide receptors VPAC1, VPAC2,
and PAC1. Human GBM tumors and GBM cell lines have these receptors [158,159]. Thus,
targeting of the VIP receptor system and associated signaling pathways could also be an
interesting therapeutic option in combination therapy with anti-proliferative drugs.

4.2.4. Lung Cancer

Lung cancer remains the top cause of cancer-related fatalities in both men and women
worldwide [160]. BBR is a class of GPCR consisting of the neuromedin B receptor (NMBR),
the gastrin-releasing peptide receptor (GRPR), and the orphan bombesin-receptor subtype-3
(BRS-3). These receptors are frequently overexpressed in various cancers, including non-
small cell lung cancer (NSCLC) [161]. Research investigations showed that VIP receptors
(VPAC1/2) are overexpressed in various cancers (e.g., breast, prostate, and neuroblastoma
cancers), gaining attention as targets for potential therapy. Moreover, VPAC1 receptors were
found in high amounts in 58% of biopsy samples from patients with lung cancer, indicating
their high pathogenicity in vitro [162,163]. VPAC1/2 are GPCR receptors on which VIP and
PACAP-27 bind with high affinity, increasing the activity of adenylyl cyclase and cAMP
in small cell lung cancer (SCLC) cells through stimulatory (Gs) subunits, subsequently
increasing the secretion rate of BB-like peptides. In numerous cases, VPAC1 antagonists, in
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combination with chemotherapeutic drugs, inhibited lung cancer growth in many SCLC
and NSCLC cells, representing a promising antitumor approach. BB-like peptides have
been observed in the dense core neurosecretory vesicles of SCLC cells. With the addition of
VIP, the secretion of BB-like peptides from SCLC cells increases, which then bind to the BB2
receptor [163–166]. Due to the overexpression of BB2 in tumors, various radiolabeled BB
analogs have been developed to target tumors with cytotoxic drugs for therapy [121]. NTS
is highly expressed in SCLC cells [166]. NTS increases cancer cell survival by activating the
PI3K/Akt/mTOR pathway [167]. NTS also induces overexpression of the EGFR, HER2, and
HER3 genes in lung cancers [168]. However, addition of 2-([1-{7-chloro-4-quinolinyl}-5-{2,6-
dimethoxyphenyl}pyrazole-3-yl]carboxylamino)tricyclo(3.3.1.1.[3.7]) decan-2-carboxylic
acid (SR48692) reversed the signal transduction driven by NTS and reduced clonal growth
and xenograft proliferation in SCLC cells [163]. In this context, inhibitors targeting various
neuropeptides in different cancer types, especially CRC, have been discussed below and
are summarized in Table 3.

Table 3. List of neuropeptides, corresponding receptors, and relative drugs/antagonists useful for
preventing cancer progression.

Neuropeptide Cancer Drugs/Antagonists Targeted Receptors Refs.

Bombesin (neuromedin
B/gastrin-releasing peptide) Small cell lung carcinoma PD176252, PD168368

Gastrin-releasing peptide
receptors-GRPR, neuromedin B

receptor-NMBR [169,170]

Bantag-1 Bombesin-receptor subtype-3

Breast RC-3095, RC-3940-II Gastrin-releasing peptide
receptors-GRPR [92,171,172]

CRC RC-3095, AN-215 Gastrin-releasing peptide
receptors-GRPR [121,154]

Prostate BAY 86-7548,
64Cu-CB-TE2A-AR-06, RC-3095

Gastrin-releasing peptide
receptors-GRPR [149,173]

Ovary PD176252
Gastrin-releasing peptide

receptors-GRPR, neuromedin B
receptor-NMBR

[174]

Glioma PD176252, PD168368 Neuromedin B receptor-NMBR [175]

Pancreatic RC-3095, RC-3925-II, RC-3940-II
and RC-3950-II

Gastrin-releasing peptide
receptors-GRPR [173,176]

Neurotensin Breast
99mTc-NT-XIX, 188Re-NT-XIX,

18F-DEG-VS-NT Neurotensin receptor-NTSR [145,146]

Pancreatic adenocarcinoma 177 Lu-3BP-227 Neurotensin receptor-1 NTSR-1 [177]

CRC
Sodium butyrate, SR48692,

Curcumin, Cyanidin, SR 48692,
177 Lu-3BP-227

Neurotensin receptor-NTSR [109,124]

Small cell lung carcinoma SR48692 Neurotensin receptor-1 NTSR-1 [178]
Vasoactive intestinal

peptide-VIP CRC NTS6-11VIP7-28
Vasoactive intestinal peptide

receptor-VPAC1/2 [128]

Breast VIP hybrid Vasoactive intestinal peptide
receptor VIP receptor [179]

Substance P Breast
Aprepitant, L-732,138, L-733,060,
CP-96345, C-9994, MEN 11467,

SR14033, Spantide III
Neurokinin 1 receptor-NK1R [91,142–144]

CRC Spantide 1, Aprepitant,
Fosaprepitant, GR 159897 Neurokinin 1 receptor-NK1R [90,129,130]

Neuropeptide Y Breast
BIBP3226 Y1R

[131]BIIE0246 Y2R
L-152,804 Y5R

Colon adenocarcinoma - Y2R [132]
Prostate BIBP32226 Y1R [150]

Orexin Gastrointestinal tumors and
CRC NSC-87877, PD169316 Orexin receptor -OX1R [136,137]

5. Conclusions and Future Perspectives

Neurotransmitters, including NPs, often exhibit modified expression in several cancers.
However, the utility of NPs as therapeutics in cancer treatment remains largely unclear. As
knowledge of the nervous system and its implication in tumor development is constantly
evolving, the involvement of neuropeptides in the onset and progression of cancer has
also undergone significant advances. In the last few decades, NPs have therefore provided
new opportunities to examine, identify, and characterize their potential therapeutic ex-
ploitation for the diagnosis and treatment of cancer. It is interesting to note that agonists
and antagonists of different types of neurotransmitters and NPs have become increasingly
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available as drugs. For example, serotonin, dopamine, ACh and their receptors, GABA
and β-AR antagonists, and dopamine and its agonists have been exploited for diagnostic
purposes and as potential drug candidates. Finally, NPs and their receptors regulate several
biological processes of the tumor microenvironment; therefore, they may represent a new
targetable approach for cancer therapy.

Based on the knowledge gained from cited studies, the potential of various neu-
ropeptides and their receptor as novel therapeutic targets for cancer treatment has been
demonstrated in several cancers, including colorectal, breast, prostate, glioblastoma, and
lung cancer. Nevertheless, despite the promising results reported in the literature, it be-
comes difficult to determine efficient and specific inhibitors that target neuropeptides due
to limited resources, limited efficacy, and a lack of complete understanding of the func-
tional role of various neuropeptides in cancer development and progression. In order to
significantly increase the efficacy of various anticancer therapeutic drugs and reduce their
side effects in humans, a combined drug therapy system, e.g., including a selective drug
delivery approach along with the application of modified neuropeptides, could potentially
serve as a promising therapeutic approach for cancer treatment [180,181]. For better clini-
cal application of specific neuropeptide inhibitors, it has become important to determine
at which cancer stage the respective neuropeptide receptors respond well. Given these
findings and the challenging perspective, it becomes important to address such limitations,
and perhaps more advanced research on neuropeptides would help in the better clinical
management of cancers, including CRC.

As a result of recent advances in this area, the situation may soon change. Further
improvements in the area of cancer research are expected to provide an enhanced under-
standing of drug selectivity and efficacy for better cancer management.

Author Contributions: Conceptualization, A.S., B.P. and S.S.; methodology, A.S., B.P. and S.S.;
validation, A.S., B.P., A.R. and S.S.; formal analysis, M.J.; writing—original draft preparation, A.S.,
D.R., B.P. and K.K.B.; writing—review and editing, S.S., A.G., A.Q. and A.R.; supervision, S.S.; funding
acquisition, A.R. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by A.R.

Acknowledgments: Authors are thankful to the Director, Motilal Nehru National Institute of Technol-
ogy, Allahabad, India for providing research facilities. The authors are also thankful to the Ministry
of Human Resource and Development, Govt. of India, New Delhi, for providing scholarships
during this tenure. A.G., A.Q., and A.R. would like to acknowledge the support of the following
Italian projects: “Tecnopolo per la medicina di precisione” (TecnoMed Puglia)-Regione Puglia: DGR
n.2117 del 21/11/2018, CUP: B84I18000540002, “Tecnopolo di Nanotecnologia e Fotonica per la
medicina di precisione” (TECNOMED)-FISR/MIUR-CNR: delibera CIPE n. 3449 del 7-08-2017,
CUP: B83B17000010001.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Ach, Acetylcholine; BB, Bombesin; β-AR, β-Adrenergic receptors; COX-2, Cyclooxygenase-2;
CRC, Colorectal cancer; CGRP, calcitonin gene-related peptide; GABA, Gamma-aminobutyric acid;
GPCR, G-Protein Coupled Receptor; GRP, Gastrin-releasing peptide; GI, Gastrointestinal; IGF-1,
HTR2B, Hydroxytryptamine receptor 2B; Insulin-like growth factor-1; IP3, Inositol trisphosphate;
KLF4, Krüppel-like factor 4; MAPK, Mitogen-activated protein kinase; NSCLC, Non-small cell lung
cancer; NMB, Neuromedin-B; NPs, Neuropeptides; NPY, Neuropeptide Y; NTS, Neurotensin; NF-κB,
Nuclear factor of kappa-light-chain-enhancer of activated B-cells; NaBT, Sodium butyrate; NK1R,
Neurokinin 1 Receptor; NGS, Next-generation sequencing; PACAP, Pituitary adenylate cyclase-
activating polypeptide; PKA, Protein kinase A; PIP2, Phosphatidylinositol-4,5-bisphosphate; PGE2,
Prostaglandin E2; SCC, Squamous cell lung carcinomas; SLURP-1, Secreted Ly-6/uPAR-related
protein 1; SP, substance P; TPH1, Tryptophan hydroxylase 1; TMZ, Trimetazidine; VPAC, Vasoactive
intestinal peptide receptor; VIP, Vasoactive intestinal peptide; VEGF, Vascular-Endothelial Growth



Appl. Sci. 2022, 12, 8990 14 of 20

Factor; WHO, World Health Organization.

References
1. Mains, R.E.; Eipper, B.A. Peptides. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Siegel, G.J., Agranoff,

B.W., Albers, R.W., Fisher, S.K., Uhler, M.D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999.
2. Nässel, D.R.; Zandawala, M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior.

Prog. Neurobiol. 2019, 179, 101607. [CrossRef]
3. Carraway, R.; Leeman, S.E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem.

1973, 248, 6854–6861. [CrossRef]
4. Carraway, R.; Leeman, S.E. The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem. 1975, 250, 1907–1911.

[CrossRef]
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