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Abstract: The need to deliver accurate predictions of renewable energy generation has long been
recognized by stakeholders in the field and has propelled recent improvements in more precise wind
speed prediction (WSP) methods. Models such as Weibull-probability-density-based WSP (WEB),
Rayleigh-probability-density-based WSP (RYM), autoregressive integrated moving average (ARIMA),
Kalman filter and support vector machines (SVR), artificial neural network (ANN), and hybrid
models have been used for accurate prediction of wind speed with various forecast horizons. This
study intends to incorporate all these methods to achieve a higher WSP accuracy as, thus far, hybrid
wind speed predictions are mainly made by using multivariate time series data. To do so, an error
correction algorithm for the probability-density-based wind speed prediction model is introduced.
Moreover, a comparative analysis of the performance of each method for accurately predicting wind
speed for each time step of short-term forecast horizons is performed. All the models studied are
used to form the prediction model by optimizing the weight function for each time step of a forecast
horizon for each model that contributed to forming the proposed hybrid prediction model. The
National Oceanic and Atmospheric Administration (NOAA) and System Advisory Module (SAM)
databases were used to demonstrate the accuracy of the proposed models and conduct a comparative
analysis. The results of the study show the significant improvement on the performance of wind
speed prediction models through the development of a proposed hybrid prediction model.

Keywords: forecasting; machine learning; Weibull distribution; wind speed

1. Introduction

Wind energy is a variable renewable energy source [1] and the power produced by
the wind turbine hence fluctuates with the variation of wind speed [2]; therefore, in wind
farms, unexpected variations of wind power output may increase the operating costs of
the electricity system. So, intermittency of wind is the biggest challenge for a wind farm to
implement wind energy as a reliable autonomous source of electric power [3]. Moreover, a
wind speed forecasting (WSF) system based on an accurate model that reflects the variation
of wind speed is critical to effective wind energy harvesting, integration of available wind
power into the electrical power grid, and analyzing the efficiency and performance of
wind-turbine-based electrical generation systems [4]. Despite the development of various
WSF methods, accurately predicting wind speed still remains a challenge. Furthermore,
the length of the forecast horizons correlates with the accuracy of forecasting techniques.
Wind speed prediction can have various implications requiring different time scales. For
example, turbine control often necessitates a response time of seconds or fractions of
seconds, whereas grid integration production planning and market response require longer
time horizons. The time scale of prediction also differs according to the energy markets.
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The real-time energy market requires a response in minutes, whereas the day-ahead energy
market requires the prediction up to 24 h ahead as it requires information for energy
trading for the next day [5,6]. There may be a requirement for different time scale forecast
horizons in between these two-time scales. For example, economic load dispatching and
load increment/decrement decisions require a time scale of 30 min to 6 h ahead [3].

Wind speed prediction models have been classified mainly into four categories in the
literature: (a) The persistence model, in which future wind speed is deemed to be equal
to the wind speed at the forecasting time [7]. It is an economical and simple method that
can be adopted by almost everyone to serve as the base model for comparing forecasted
values by other methods and its main drawback is its unsuitability for forecasting more
than a one-time step of forecast horizons; (b) The physical method, in which numerical
weather prediction (NWP) is used by incorporating complex atmospheric characteristics,
including temperature, pressure, and wind shear into wind speed predictions [8]. For long-
term forecasts, NWP produces precise estimates that are generally applied over vast areas.
However, since numerical weather prediction models are memory- and time-intensive,
they are not ideal candidates for short time horizons forecasting; (c) Statistical methods, in
which one can explore the mathematical relationship between the various features of the
wind time series data. This method includes the following models: Weibull-probability-
density-based forecasting (WEB), autoregressive integrated moving average (ARIMA), and
the Bayesian probability density function (BBM) approach. These models are mostly used
for short forecast horizons and are not suitable for longer forecast horizons due to their
non-linearity assumption for wind data; and (d) Artificial intelligence, which includes
neural networks (ANN) [9,10], regression or decision trees (RT) [11,12], support vector
regression (SVR) [13–16], and recurrent neural networks (RNN) [17–19].

This study was inspired by the work of Kadhem et al., Kaplan et al., and Ding et al. [20–22],
where the idea of a probability-density-function-based wind speed prediction model was
introduced. In this study, the performance of various univariate models is compared, and
an error correction algorithm is proposed for the probability-density-based wind speed
prediction model. The contribution of this research is twofold: firstly, the proposed error
correction method is a novel method that improves the performance of the previously
introduced wind-probability-density-based wind speed prediction; and secondly, it intro-
duces a novel hybrid method that is capable of integrating all the studied methods with
an optimized weighted coefficient for both the classical time series method and artificial
intelligence methods.

This manuscript is divided into the following sections: literature review, methodol-
ogy, results and discussion, and conclusion. The literature review section consists of a
description of the wind speed prediction methods found in literature, which forms the
basis of the proposed methodology. The methodology sections consist of a description
of all the methods of wind speed prediction, the method of developing error correction,
and making a hybrid wind speed prediction model. The results tables that were obtained
are presented under the results and discussion section, along with discussion. Finally, the
conclusion of the research and future works on the research area are presented under the
conclusion section.

2. Literature Review

This section is dedicated to the theory related to the current study, the methods
developed, and the description of the time scale of WSP, Weibull and Rayleigh probability
distribution function, support vector regressions, and LSTM networks.

2.1. Time Scale in Wind Speed Prediction

One of the important subjects in wind speed prediction is the time scale requirement
of forecast horizons; since the different application of wind speed prediction requires
different types of time scale, the classification of the time scale of forecast horizons in wind
speed prediction methods is an ambiguous subject [3]. Turbine control often necessitates
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a response time of seconds or fractions of seconds, whereas grid integration production
planning and market response require longer time horizons. The time scale of prediction
also differs according to the energy markets; the real-time energy market requires the
response in minutes, whereas the day-ahead energy market requires the prediction up to
24 h ahead as it requires information for energy trading for the next day [5,6]; also, there
may be a requirement of different time scale forecast horizons in between these two time
scales. For example, economic load dispatching and load increment/decrement decisions
require a time scale of 30 min to 6 h ahead [3]. In this study, we focus on short-term wind
speed prediction (a few hours ahead prediction, not exceeding 12 h).

2.2. Wind-Probability-Distribution-Function-Based Wind Speed Prediction Model

Wind-probability-distribution-function-based WSP models were developed by assum-
ing that wind speed follows the same distribution for the next time period. This approach
is aligned with the concept behind the persistence model (PM), according to which, any
future wind speed value is equal to its last known value of wind speed due to the high
autocorrelation on the behavior of the wind speed [7]. Despite its simplicity, the PM pro-
duces excellent WSP results and is used to assess the quality of new WSP methods [23].
PMs forecast wind speed (ut+h) at any future time, as t + h, h > 0 is the same as wind speed
(ut) at current time t.

ut+h = ut, h > 0 (1)

Wind speed follows non-negative and right-skewed distribution rather than the nor-
mal distribution [24]. Several probabilities distribution functions are right-skewed and non-
negative and are used for modeling wind speed. Weibull distribution and Rayleigh distribu-
tion are the most common probability distribution functions for wind speed modeling [25].
Although the Weibull distribution function is the most widely used function, there is no
consensus on which best describes wind speed data for a specific case study site. There-
fore, in this study, we consider both Weibull- and Rayleigh-based wind speed modeling
and forecasting.

2.2.1. Weibull-Distribution-Based WSP (WEB)

The Weibull probability density function is a two-parameter distribution with a di-
mensionless shape parameter k and a velocity scale parameter c in m/s [26].

f (u) =
k
c

(u
c

)k−1
exp

[
−
(u

c

)k
]

(2)

where f (u) denotes the probability distribution of wind speed u. The quality of wind
resources can be evaluated from the parameters c and k. The parameter c is proportional to
the wind speed, and k characterizes the shape of the Weibull distribution. Variable wind
speeds are indicated by smaller values of k, whilst constant wind speeds are indicated
by greater values. Typical values of k are between 1 and 3 [27]. Even though there are
numerous methods to derive Weibull parameters, such as the graphical method, method of
moments, maximum likelihood method, standard deviation method, modified maximum
likelihood method, power density method, and equivalent energy method, the maximum
likelihood method is deemed to be the best fit [28]; this method employs the following
expression to calculate shape parameters (k) using an iterative process [26]:

k =

(
∑N

i=1 uk
i ln(ui)

∑N
i=1 uk

i
− ∑N

i=1 ln(ui)

N

)−1

(3)

where ui is the wind speed at the time step of i and the number of time steps is given by
N. After getting the shape parameter k, the expression below is used to measure the scale
parameter c [26].

c =
(

1
N ∑N

i=1 uk
i

)1/k
(4)
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Similar to the PM method, the Weibull-distribution-based wind speed prediction
model (WEB) assumes that wind speed follows the same distribution for the next time
period. So, the mean speed (u′) can be used as a point forecast in the WEB [25].

u′ = c Γ

(
1 +

1
k

)
(5)

where Γ is the gamma function, defined as:
∫ ∞

0 exp(−u)(u)x−1dx.
Median and mode can also be used for forecasting purposes [22]. However, mean

speed might not provide accurate predictions due to the skewness in the Weibull probability
density function.

median = c (ln 2)1/k (6)

mode = c
(

1− 1
k

)1/k
(7)

where mode = 0 when k ≤ 1. It is practically not possible to have a scale factor less than 1 at
commercial wind farms [22]. In our study, we used mean speed as point forecast in WEB.

The cumulative distribution F(u) is an integral of the probability distribution function
given by Equation (8), which gives the probability of getting wind speed u or less.

F(u) = 1− exp
[
−
(u

c

)k
]

(8)

Assume, R = F(u) = 1− exp
[
−
(u

c

)k
]

(9)

Using inverse transform, we get:

u = c
[
−ln(1− R)

1
k
]

(10)

where R is a random variable with values between 0 and 1 and, as shown in Equation (9),
representing the cumulative distribution function [21]. The values of random variable
R between 0 and 1 should be uniformly distributed. Hence, in this way, we have used
Equation (10) to simulate a wind speed using parameters of the Weibull distribution
function and the method is represented as WEBS.

2.2.2. Rayleigh-Distribution-Based WSP (RYM)

The Rayleigh probability distribution function is a special case of the Weibull distribu-
tion function where k = 2. Therefore, in this case, the scale parameter can be determined
using the following expression:

c =
2u′
√

π
(11)

Therefore, the probability density function represented by Rayleigh distribution and
its cumulative distribution function are given as:

f (u) =
2u
c2 exp

[
−
(u

c

)2
]

(12)

F(u) = 1− exp
[
−
(u

c

)2
]

(13)

Similar to Equations (9) and (10), using an inverse transform of Equation (12), we get,

u = −c × ln (1 − R) (14)

Hence, Equation (14) can be used to simulate wind speed using the parameter of the
Rayleigh distribution function.
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2.3. Autoregressive Integrated Moving Average (ARIMA) Model

In ARIMA, a time series model reproduces the patterns of a variable’s previous
movements across time and uses this information to forecast its future movements [29].
Wind speed measurements obtained over time tend to be positively correlated. Many
parametric time series models that consider the autoregressive (AR) process exist to account
for this autocorrelation [30]. In an autoregressive model, we forecast the wind speed using
a linear combination of past wind speed values.

ut = γ1ut−1 + γ2ut−2 + · · ·+ γput−p + ε t (15)

Equation (15) provides the AR model of order p, where γ is the autoregression coef-
ficient and ε t is the noise in time t. A moving average term is added in the autoregres-
sive model, and the autoregressive moving average model is developed and described
as follows:

The autoregressive moving average (ARMA) model is a type of autoregressive model
that also adapts the moving average model. It is a statistical model that could be used
for time series prediction of future wind speed values using past values and lagged fore-
cast error. A general ARMA is denoted by ARMA (p, q) and can be expressed by the
following expressions:

ut = δ + ∑p
i=1 γi ut−i + ∑q

j=1 ∅jet−j + et (16)

where the second term from the right in Equation (16) is the moving average (MA) part
of the ARMA model, δ is the constant, ∅j is the jth moving average coefficient, et is the
error term at time period t, and ut is the value of wind speed predicted at time step t. If the
differencing is added to the ARMA model, the model is transformed into the ARIMA model.
Therefore, the ARIMA model, introduced by Box and Jenkins, includes autoregression
(AR), a moving average (MA), and differencing [31]. The non-seasonal model structure of
ARIMA is expressed in the form of ARIMA (p, d, q), where d is the order of differencing (I)
to make the model stationary. Hence, the seasonal time series is stationery in nature and
becomes zero, and the ARIMA model is converted to the ARMA model [32].

2.4. Support Vector Regression (SVR)

Support vector regression is an extension of a support vector machine and was pro-
posed by Drucker et al. [33]. A support vector machine was initially developed for the
classification problem. SVR is based on the structural error minimization principle and
consists of the ‘Kernel Trick’ and other optimization features that allow it to perform a
noise-robust and non-linear regression [34,35]. Its stability and accuracy depend on several
aspects, such as parameter tuning and feature selection. Parameter tuning is a procedure
consisting of properly selecting the kernel function and its parameters and penalization
term [36]. Feature selection consists of the selection of the most important variables of
the model to describe the behavior of the trend [37]. SVR does the best trade-off between
Field’s empirical error and complexity [38].

2.5. Long Short-Term Memory (LSTM) Model

Recurrent neural networks (RNN) are a suitable model for time series forecasting
problems. However, RNN are not suitable for long-term dependency tasks due to the van-
ishing/exploding gradient decent issues [39]. Therefore, the LSTM neural network arises,
which can learn the long-term dependency jobs very efficiently compared to the general
RNN model [40]. The LSTM model solves the vanishing/exploding gradient decent issues
with gates present within each cell of an LSTM network [41–43]. LSTM is one of the popular
artificial recurrent neural network architectures used in wind speed prediction [44]. The
LSTM neural network was first proposed by Hochreiter and Schmidhuber [45]. An LSTM
cell’s internal state memory offers the internal storing of pertinent historical information.
The flow of information through the cell is controlled by the cell’s input, output, and forget
gates and the mathematical implementation of each LSTM cell is described using Equations
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(17) to (22). With the help of these gates, LSTM analyzes and saves pertinent data [46].
The phrase stacked/deep LSTM is often used to denote the LSTM network, referring to an
LSTM network with two or more hidden layers. An LSTM network with a detail structure
of an LSTM cell is shown in Figure 1.
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I Step: Forget layer
ft = ∅(w f .[yt−1, xt] + β f (17)

II Step: Update of new values (It) and creation of a vector of new information (
∼
g) to

add to the cell state.
It = ∅(wi.[yt−1, xt] + βi) (18)
∼
g = tanh(wi.[yt−1, xt] + βs) (19)

III Step: Final cell state
gt = ft.gt−1 + It .

∼
g (20)

IV Step: Last stage using a sigmoid function and a tanh, regenerating values between
−1 and 1.

∂t = ∅(w∂.[yt−1, xt] + β∂) (21)

yt = ∂t.tan h(gt) (22)

In Equations (17) to (22), xt is the input,
∼
g is the state of the network, gt is the temporary

state and yt is the output state at time step t. It denotes the input gate, ∂t represents the
output gate and ft denotes the forget gate. The weight corresponding to the hidden layer,
input layer, and output layer is denoted by w f , wi, and w∂, respectively. β f , βi βs, and β∂

represent bias corresponding to the input, sate of network, temporary state, and output
layer of the network. ∅ and tanh represent the sigmoid and tanh activation function, which
is defined by the following expressions:

∅ (z) =
1

1 + e−z (23)

tan h(z) =
ez − e−z

ez + e−z (24)
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3. Methodology
3.1. Proposed Hybrid Method for WSP

In the hybrid wind speed prediction model, all five models are used, i.e, PM, WEB,
ARIMA, SVR, and LSTM. For each time step of a forecast horizon, a weight parameter is
assigned. The weight parameter is then optimized using linear optimization by minimizing
the loss function. Any one of the performance parameters, such as MAPE, MAE, and RMSE,
is taken as a loss function to be minimized. After deriving weight parameters for each time
step for each model, the hybrid WSP model is applied to predict the future time step wind
speed up to given forecast horizons.

3.2. Data Acquisition

Data for this study comprise wind speed data at a hub height of 80 m and were
extracted from the National Renewable Energy Laboratory System Advisor Model (SAM)
database [46]. The hub height of 80 m was chosen as the commercial larger scale wind
turbine operates mostly at this hub height. We have collected data from four different
regions (South Plains region of Texas, Southern Offshore region of Texas, Hills region of
Arizona, and Hills region of West Virginia) in the United States to encompass various
weather conditions. The variations of wind speed and direction, being dominant features
for WSP, are shown in Figure 2. The dataset contains pressure and temperature data as
well. The data were sampled at hourly intervals.
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3.3. Statistical Analysis

Basic statistical analysis is performed using the method presented in Section 2.2.1.
The scale and shape parameters are calculated using Equations (3) and (4) for the WEB.
The mean speed is calculated using Equation (5) for point forecast using WBM. Scale and
shape parameters are used in Equation (10) to simulate wind speed data for WSP using
WEBS. Similarly, the scale parameter for Rayleigh probability distribution is calculated
using Equation (11) for the RYM. In addition, Equation (14) is used to simulate wind speed
data for WSP using RYMS.

3.4. Error Correction and Wind Speed Generation

The flow diagram in Figure 3 shows the proposed algorithm for error correction
for the simulated wind speed using Equations (10) and (14) for Weibull and Rayleigh
distribution functions, respectively. Initially, the sequential variation data of wind speed
is calculated, and mean variation is recorded. We assume that the wind distribution
follows the persistence model. Hence, the predicted wind speed should also have the same
sequential variation. Therefore, the simulated wind speed is checked each time to ensure
that it is within the acceptable range (−α and α). If it is not within the limits, the algorithm
of Gaussian filtering is applied [21]; this algorithm would prevent unnecessary deviations
of the predicted value from the range extracted from historical data. Thus, error-corrected
wind speed is generated and is used as the predicted value for WEBS and RYMS and
input for other machine learning models. The error-corrected model based on WEBS is
abbreviated as WEBSEC and the error-corrected model based on RYMS is abbreviated
as RYMSEC.
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Figure 3. Error correction algorithm for simulated wind speed using Weibull and Rayleigh
distribution function.

3.5. Data Preprocessing

Many machine learning algorithms compare attributes of data points to detect trends in
the data. However, problems would arise when features were on different scales. Therefore,
data are normalized before being sent for training in machine learning models. One of the
most prevalent methods of data normalization is the min–max method in which values are
transformed to possess values between 0 and 1. Therefore, if x and x′ are the actual and
normalized values of the feature and max and min are maximum and minimum values of
the feature, then the normalization can be represented by Equation (25)

x′ =
x−min

max−min
(25)
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After the normalization process, the dataset is divided into training and testing
datasets. Usually, 70% of the data are used for the training of the model and the re-
maining 30% are used for testing the model. Out of the testing dataset, 10% of the total
dataset is used for the validation of the model performance. However, we have train and
test datasets for short forecast horizons of 6 h. For this, we have taken the last six time-step
data as a test set and the remaining data as a training dataset.

3.6. Performance Evaluation

The evaluation of the performance of the individual models and the hybrid model
proposed in this study is performed using popular statistical error indicators such as MAE,
RMSE, and MAPE [47]. If xj, xp

j , and x′j indicate the actual, predicted, and mean value of
the wind speed, respectively, and n is the number of samples, each error indicator can be
expressed using Equations (26) to (28) as follows:

MAE =
1
n ∑n

j=1

∣∣∣xj − xp
j

∣∣∣ (26)

RMSE =

√
1
n ∑n

j=1

(
xj − xp

j

)2
xj − xp

j (27)

MAPE =
1
n ∑n

t=1

∣∣∣∣∣ xj − xp
j

xj

∣∣∣∣∣ × 100% (28)

4. Results and Discussion
4.1. Probability Distribution Function Parameter Result

The estimation of Weibull and Rayleigh parameters for year 2010 at the South Plains
region of Texas, Southern Offshore region of Texas, Hills region of West Virginia, and Hills
region of Arizona are presented in this section. The shape and scale parameters were
estimated for the whole year’s data for all locations. Details are shown in Table 1.

Table 1. Scale and shape parameters for four locations for the year 2010.

Location
Weibull Parameter Rayleigh Parameter

k c c

South Plains TX 2.4 10.2 10.16
Southern Offshore TX 2.45 10 10.05
Hills region WV 2.19 8.22 8.23
Hills region AR 1.84 7.39 7.4

4.2. Comparative Study of Probability-Distribution-Function-Based WSP Models

First, Weibull and Rayleigh parameters were calculated as shown in Table 1. It is
clearly seen in the table that the probability distribution for both Weibull and Rayleigh
distribution functions were almost the same as the shape parameters of all three sites,
close to two. We then investigated the forecasting accuracy using both Weibull- and
Rayleigh-distribution-based models.

The results from the analysis of the probability-density-based wind prediction model
are presented in Tables 2–5. The performance of the models was assessed through various
performance metrics such as RMSE, MAE, and RMSE. This analysis was performed for
short-term forecast horizons. While evaluating the performance of the next seven hours of
time step, each hour of the time step was also evaluated to know about the detail of the
forecasting model.
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Table 2. Performance results of different WSP models for the South Plains TX region.

RMSE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 1.02 1.1 0.61 2.18 3.48 1.1 1.07 1.51
WEBS 0.33 4.15 0.22 4.48 1.89 3.008 0.4 2.07

WEBSEC 1.77 1.28 0.19 3.82 0.62 2.81 0.02 1.50
RYM 1.02 1.1 0.61 2.19 3.48 3.16 1.1 1.81

RYMS 5.62 4.54 2.4 4.69 1.99 6.39 1.24 3.84
RYMSEC 1.3 0.52 0.4 4.67 5.36 1.02 5.26 2.65

MAE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 1.02 1.1 0.61 2.18 3.48 3.16 1.1 1.81
WEBS 0.32 4.17 0.22 4.48 1.89 3.008 0.4 2.07

WEBSEC 1.77 1.28 0.19 3.82 0.62 2.81 0.01 1.50
RYM 1.02 0.107 0.61 2.19 3.48 3.16 1.1 1.67

RYMS 5.62 4.54 2.4 4.69 1.99 6.39 1.24 3.84
RYMSEC 1.36 0.52 0.4 4.67 5.36 1.02 5.26 2.66

MAPE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 0.12 0.14 0.064 0.19 0.27 0.25 0.1 0.16
WEBS 0.04 0.52 0.023 0.4 0.15 0.24 0.04 0.20

WEBSEC 0.22 0.16 0.02 0.34 0.05 0.23 0.001 0.15
RYM 0.12 0.14 0.06 0.19 0.27 0.26 0.1 0.16

RYMS 0.7 0.57 0.25 0.41 0.16 0.52 0.12 0.39
RYMSEC 0.17 0.06 0.04 0.41 0.42 0.08 0.52 0.24

Table 3. Performance results of different WSP models for Southern Offshore TX region.

RMSE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 3.47 1.68 1.85 2.02 2.75 2.94 2.43 2.45
WEBS 0.35 5.91 2.54 0.55 0.68 1.51 1.04 1.80

WEBSEC 0.19 0.25 3.7 0.63 0.7 2.65 2.32 1.49
RYM 3.45 1.69 1.86 2.03 2.76 2.94 2.44 2.45

RYMS 4.64 4.96 4.65 3.13 0.75 5.59 0.78 3.50
RYMSEC 1.41 0.75 3.28 1.21 0.66 2.7 0.37 1.48

MAE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 3.47 1.68 1.85 2.02 2.75 2.94 2.43 2.45
WEBS 0.35 5.91 2.54 0.54 0.68 1.51 1.4 1.85

WEBSEC 0.19 0.25 3.7 0.63 0.7 2.68 2.32 1.50
RYM 3.46 1.69 1.86 2.03 2.76 2.94 2.44 2.45

RYMS 4.64 4.69 4.65 3.13 0.75 5.59 0.78 3.46
RYMSEC 1.41 0.75 3.28 1.21 0.66 2.7 0.37 1.48

MAPE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 0.63 0.15 0.17 0.18 0.23 0.24 0.21 0.26
WEBS 0.06 0.55 0.23 0.04 0.05 0.12 0.12 0.17

WEBSEC 0.04 0.24 0.344 0.06 0.06 0.22 0.2 0.17
RYM 0.63 0.16 0.17 0.18 0.23 0.24 0.21 0.26

RYMS 0.85 0.46 0.43 0.28 0.06 0.47 0.06 0.37
RYMSEC 0.26 0.07 0.3 0.11 0.05 0.22 0.03 0.15
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Table 4. Performance results of different WSP models for West Virginia Hills.

RMSE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 0.05 1.28 1.77 2.24 2.49 2.48 2.54 1.84
WEBS 0.94 3.03 5.56 0.2 0.1 2.47 2.9 2.17

WEBSEC 2.07 0.26 1.39 0.41 1.84 1.69 1.44 1.30
RYM 0.05 1.28 1.76 2.24 2.48 2.47 2.54 1.83

RYMS 0.91 1.63 0.02 4.29 8.11 2.8 0.6 2.62
RYMSEC 0.2 2.29 1.65 0.06 0.07 1.06 0.59 0.85

MAE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average
WEB 0.05 1.28 1.77 2.22 2.49 2.48 2.54 1.83

WEBS 0.94 3.03 5.56 0.2 0.1 2.47 2.9 2.17
WEBSEC 2.07 0.26 1.39 0.411 0.84 1.69 1.44 1.16

RYM 0.05 1.28 1.76 2.24 2.48 2.47 2.54 1.83
RYMS 0.91 1.63 0.29 4.29 8.11 2.8 0.6 2.66

RYMSEC 0.2 2.29 1.65 0.06 0.07 1.06 0.59 0.85

MAPE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average
WEB 0.007 0.15 0.19 0.23 0.25 0.25 0.26 0.19

WEBS 0.13 0.35 0.61 0.02 0.01 0.25 0.29 0.24
WEBSEC 0.28 0.03 0.15 0.04 0.18 0.17 0.14 0.14

RYM 0.008 0.14 0.19 0.23 0.25 0.25 0.25 0.19
RYMS 0.12 0.19 0.003 0.45 0.82 0.28 0.06 0.27

RYMSEC 0.02 0.26 0.18 0.006 0.007 0.1 0.06 0.09

Table 5. Performance results of different WSP models for Arizona Hills region.

RMSE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 4.42 3.007 3.92 3.9 2.6 1.75 2.07 3.10
WEBS 1.5 1.6 2.2 1.5 2.4 1.7 2.2 1.87

WEBSEC 1.16 1.69 1.23 1.29 0.38 1.66 0.35 1.11
RYM 4.42 3.007 3.92 3.9 2.6 1.7 2.07 3.09

RYMS 0.53 2.04 1.03 7.06 1.35 1.09 2.84 2.28
RYMSEC 0.36 1.66 1.97 0.23 0.6 1.64 0.77 1.03

MAE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 4.42 3.007 3.92 3.9 2.6 1.75 2.07 3.10
WEBS 1.15 1.6 2.2 1.5 2.4 1.7 2.2 1.82

WEBSEC 0.17 0.7 1.2 1.3 0.4 0.7 0.4 0.70
RYM 4.42 3.007 3.92 3.9 2.6 1.75 2.07 3.10

RYMS 0.53 2.04 1.03 7.06 1.35 1.09 2.84 2.28
RYMSEC 0.36 1.66 1.97 0.23 0.606 1.64 0.77 1.03

MAPE

Model t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Average

WEB 2.06 0.84 1.47 1.46 0.65 0.36 0.46 1.04
WEBS 0.72 0.45 0.84 0.54 0.6 0.35 0.5 0.57

WEBSEC 0.54 0.47 0.46 0.48 0.09 0.3 0.07 0.34
RYM 2.06 0.84 1.47 1.46 0.65 0.36 0.46 1.04

RYMS 0.24 0.57 0.39 2.64 0.3 0.22 0.63 0.71
RYMSEC 0.16 0.46 0.74 0.08 0.15 0.34 0.17 0.30
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The results from Tables 2–5 imply that for all the regions, the error-corrected simu-
lated probability-distribution-based model is more accurate than the general probability-
distribution-based model and the simulated probability-distribution-based model. In the
South Plains region of Texas, the error-corrected model can improve the general Weibull-
based model to achieve a MAPE as low as 15%, RMSE as low as 1.5, and MAE as low as 1.5.
In the Southern Texas Offshore region, the error-corrected model can improve the general
Weibull-based model to achieve a MAPE as low as 17%, RMSE as low as 1.49, and MAE as
low as 1.5. In the West Virginia Hills region, the error-corrected model can improve the
general Rayleigh-based model to achieve a MAPE as low as 9%, RMSE as low as 0.85, and
MAE as low as 0.85. Similarly, in the Arizona Hills region, the error-corrected model can
improve the general Rayleigh-based model to achieve a MAPE as low as 30%, RMSE as
low as 1.03, and MAE as low as 1.03.

The results show that for the South Plains Texas region and Southern Offshore Texas
region, the Weibull-based model gives better results. In contrast, for the West Virginia Hills
and Arizona Hills region, the Rayleigh-based model gives a better result. Therefore, it can
be concluded that the wind distribution of the first two regions, i.e., South Plains TX and
Southern Offshore region, can be more accurately described using the Weibull probability
density function than the Rayleigh probability distribution function. In contrast, for the
last two regions, i.e., West Virginia Hills and Arizona Hills region, wind distribution can
be accurately described using the Rayleigh probability distribution function. Hence, the
wind speed prediction model based on the probability distribution function also depends
on how accurately that model describes the region’s wind speed.

4.3. Comparative Analysis of Univariate Models

In this section, short-term forecasting was performed for six hours forecast horizon
using seven different models based on the persistence model, classical time series model,
and machine learning models. The results of short-term forecasting for four different case
study sites are presented in Tables 6–9. The LSTM model emerged as the clear winner for
the short-term wind speed prediction for all four case study sites. The LSTM model can
produce a result with a MAPE as low as 3.53%, MAE as low as 0.4, and RMSE as low as 0.51.
WEBSEC is also competitive with the LSTM model with a MAPE as low as 9.82, MAE as
low as 1.09, and RMSE as low as 1.26. However, for site IV, whose wind speed distribution
is not well described by the Weibull probability distribution function, the WEBSEC also
does not give a good result. The SVR model is also competitive compared to the LSTM and
WEBSEC models.

4.4. Development of Univariate Hybrid Model

The hybrid model based on a univariate wind forecasting model using persistence,
classical time series, and machine learning models was developed after analyzing the
performance of the model for predicting each time step of the total forecast horizon. For
this, wind data of four case study sites were analyzed. After analyzing the performance of
the individual model, a liner optimization was performed to minimize the performance
metrics values to obtain thevweight function for each model contributing to the hybrid
wind speed prediction model. The test data were divided again into the test and train
data to evaluate the performance of the individual model and thus determine the weight
function on the forecasted value on the test data. Then, the weight function was applied to
the wind speed prediction value on the training dataset, thus determining the wind speed
prediction value from the hybrid model. The performance results of the individual model
of each time step of the forecast horizon are presented in Tables 6–9.
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Table 6. Performance results of different univariate WSP models for South Plains TX region.

RMSE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 0.68 0.98 1.28 0.47 0.14 2.88 1.07
WEBSEC 0.05 2.28 0.53 0.97 1.2 0.97 1.00
ARIMA 0.13 0.44 0.81 1.12 1.33 1.45 0.88

SVR 2.49 2.97 2.97 3.29 2.03 1.49 2.54
LSTM 0.05 2.28 0.53 0.97 1.2 0.97 1.00

MAE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 0.68 0.98 1.28 0.474 0.146 2.88 1.07
WEBSEC 0.39 2.3 0.78 1.52 2.37 2.83 1.70
ARIMA 0.2 0.488 0.56 1.67 2.51 0.4 0.97

SVR 0.2 0.38 0.008 1.21 0.57 2.99 0.89
LSTM 0.39 2.35 0.78 1.52 2.37 2.83 1.71

MAPE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 6.75 9.94 13.38 4.56 1.32 36.17 12.02
WEBSEC 3.92 23.52 0.08 0.14 0.21 0.35 4.70
ARIMA 2.004 4.93 5.89 16.16 22.81 5.05 9.47

SVR 1.9 3.8 0.9 11.7 5.2 37.57 10.18
LSTM 3.9 23.52 8.22 14.7 21.56 0.35 12.04

Table 7. Performance results of different univariate WSP models for Southern Offshore TX region.

RMSE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 2.65 2.65 2.65 2.65 2.65 2.65 2.65
WEBSEC 0.13 0.45 2.81 3.75 1.05 0.58 1.46
ARIMA 3.27 3.17 2.97 2.75 2.6 2.48 2.87

SVR 4.08 2.85 1.44 0.56 0.07 0.38 1.56
LSTM 0.03 0.04 0.06 0.07 0.09 0.1 0.07

MAE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 0.29 1.63 2.59 3.27 3.813 4.3 2.65
WEBSEC 2.21 1.47 2.75 4.37 2.21 1.06 2.35
ARIMA 0.92 2.15 2.91 3.37 3.76 4.13 2.87

SVR 0.94 1.04 0.59 0.39 0.44 0.47 0.65
LSTM 2.3 0.96 0.01 0.69 1.2 1.75 1.15

MAPE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 3.14 20.12 36.23 50.55 64.35 79.1 42.25
WEBSEC 23.45 18.13 38.54 67.64 37.43 19.64 34.14
ARIMA 9.7 26.5 40.7 52.16 63.59 76.03 44.78

SVR 10.05 12.83 8.31 6.1 7.5 8.7 8.92
LSTM 24.5 11.9 0.014 10.8 21.2 32.2 16.77
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Table 8. Performance results of different univariate WSP models for West Virginia Hills region.

RMSE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 2.23 2.23 2.23 2.23 2.23 2.23 2.23
WEBSEC 4.07 0.31 2.61 1.78 1.91 0.11 1.80
ARIMA 1.9 1.5 1.2 0.96 0.77 0.61 1.16

SVR 0.58 1.96 3.39 3.49 3.009 2.7 2.52
LSTM 0.22 0.19 0.16 0.14 0.13 0.12 0.16

MAE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 0.99 2.29 2.73 2.6 2.35 2.34 2.22
WEBSEC 2.84 0.25 3.18 2.16 1.79 0.003 1.70
ARIMA 0.7 1.64 1.79 1.33 0.89 0.72 1.18

SVR 0.77 0.68 0.24 0.53 0.3 0.04 0.43
LSTM 1.007 0.25 0.72 0.51 0.25 0.23 0.49

MAPE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 11.64 31.53 41.17 37.31 32.53 32.37 31.09
WEBSEC 33.16 3.46 46.89 30.99 24.84 0.05 23.23
ARIMA 8.2 22.5 26.4 19.1 12.3 10.007 16.42

SVR 8.9 9.4 3.6 7.6 4.1 0.6 5.70
LSTM 11.7 3.5 10.7 7.4 3.4 3.2 6.65

Table 9. Performance results of different univariate WSP models for Arizona Hills region.

RMSE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 0.79 0.79 0.79 0.79 0.79 0.79 0.79
WEBSEC 2.23 0.44 0.28 2.01 0.59 2.29 1.31
ARIMA 1.008 1.23 1.42 1.59 1.7 1.87 1.47

SVR 0.018 0.24 1.001 0.15 0.26 4.01 0.95
LSTM 2.08 2.05 2.03 2.06 2.02 2.01 2.04

MAE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 0.22 0.89 0.421 0.08 3.81 2.38 1.30
WEBSEC 1.21 2.13 0.93 1.3 3.61 3.89 2.18
ARIMA 0.009 0.45 0.2 0.88 4.76 3.47 1.63

SVR 0.18 0.61 0.6 0.26 3.56 1.59 1.13
LSTM 3.1 3.73 3.24 2.73 0.99 0.41 2.37

MAPE

Models t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

PM 4.7 16.4 8.4 1.9 52.6 11.1 15.85
WEBSEC 25.5 39.2 18.7 29.3 49.9 18.1 30.12
ARIMA 0.2 8.3 4.2 20 65.7 16.19 19.10

SVR 3.8 11.3 12.2 6.05 49.2 74.3 26.14
LSTM 65.1 68.8 65.5 61.3 137.8 19.5 69.67

The observation of the performance of the individual model for each time step of
forecast horizons provides insights into the weight function that needs to be assigned to
the individual model for each time step. Clearly, an individual model is not the best fit
for all the time steps of the given forecast horizon. The t = 1 and t = 2 persistence model
and ARIMA model work well for short-term wind speed prediction. The Weibull-based
model is worse by a noticeable margin for this time step. However, the Weibull-based
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model holds steady performance as forecasting horizon projects into the future, while the
performance of all other models deteriorates. The Weibull-based model is best for t = 6.
The persistence model is worse when the time steps of forecast horizons increase. The two
machine learning models, SVR and LSTM, perform similarly; however, SVR performance
is better by a small margin, making it difficult to choose one over the other for a given time
step of a forecast horizon. This analysis suggests that the persistence model is best for wind
speed prediction one hour or two hours ahead, the Weibull-based model is best for six
hours ahead or longer forecast horizons, and ARIMA or machine learning models are best
for in between these two forecast horizons. However, in this research, we have proposed
to use all these models by providing weight functions for each model in each time step.
The results after providing the weight function for the hybrid model are shown below in
Tables 10–13.

Table 10. Performance results of different univariate hybrid WSP models for South Plains TX region.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

RMSE 0.913 1.4775 1.2345 1.59 1.335 1.1225 1.27875
MAE 0.478 1.0877 0.557 1.4275 2.0095 2.492 1.34195

MAPE 4.7416 10.9635 4.4375 10.893 7.6055 8.429 7.845016667

Table 11. Performance results of different univariate hybrid WSP models for Southern Offshore
region TX.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

RMSE 2.4385 2.2565 1.812 1.7275 1.0715 0.8665 1.695416667
MAE 0.8795 1.511 1.557 2.15 2.10565 1.6975 1.650108333

MAPE 9.38 18.651 21.7755 33.3205 35.776 31.3145 25.03625

Table 12. Performance results of different univariate hybrid WSP models for West Virginia
Hills region.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

RMSE 1.7235 1.678 1.821 1.615 1.65285 0.681 1.528558333
MAE 1.00855 1.543 1.46 1.1545 1.2285 0.267 1.110258333

MAPE 11.798 21.248 21.6115 16.5885 17.0165 3.71455 15.32950833

Table 13. Performance results of different univariate hybrid WSP models for Arizona Hills region.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 Average

RMSE 0.9724 0.945 1.20825 1.3915 0.9315 2.368 1.302775
MAE 0.66385 1.27 1.21705 1.2315 3.392 2.8845 1.776483333

MAPE 13.99 23.42 24.635 27.7925 65.485 26.1035 30.23766667

Results from our four case study sites indicate performance improvement for each
time step of the forecast horizon as well as overall accuracy. The hybrid model can produce
a better result with a MAPE as low as 7.8%, MAE as low as 1.1, and RMSE as low as 1.2.

5. Conclusions

In this research, the performance of wind speed prediction models including persistence-
forecasting-based models, classical time-series-based models, and machine-learning-based
models for short-term forecast horizons was analyzed using four different case study
sites. The results indicated the need for a hybrid wind speed prediction model that can
incorporate all three types of wind speed prediction models to accurately predict wind
speed for short-term forecast horizons. The proposed hybrid wind speed prediction was



Appl. Sci. 2022, 12, 9038 16 of 18

developed using multivariate time series data, together with all of the other three models.
This research highlights the competitive performance of the probability-density-based wind
speed prediction method; the probability distribution of wind speed, which best describes
the wind speed distribution of a given location, is also the best model for the wind speed
prediction of the given location. Moreover, a novel method of error correction for wind
speed forecasting based on the Weibull-distribution-based WSP model was proposed; this
error correction can forecast wind speed accurately with MAPE of 4.7%, MAE of 1.7, and
RMSE of 1, which is comparable to the best model out of the five models studied, i.e., MAPE
of 5.7%, MAE of 0.43, and RMSE of 1.52. The wind speed of a region can be simulated
based on the Weibull distribution parameters.

After analyzing the model’s performance in predicting each time step of the whole
forecast horizon, a hybrid model based on univariate wind forecasting was developed
by incorporating persistence, traditional time series, and machine learning. The weight
function that needs to be allocated to each model for each time step was determined by
observing how well each model performed for each time step of the forecast window.

This study shows the competitive performance of the univariate model, which can be
used where only univariate data are available for wind speed prediction. In this analysis,
we suggested that the persistence model is the most accurate for predicting wind speed
one or two hours in the future, a Weibull-based model for forecast horizons six hours or
longer in the future, and an ARIMA or machine learning model is a good choice for forecast
horizons in between two and six hours. As a result, a univariate model based on weight
functions performs better and gives more weight to the most accurate approach for each
time step. As this method used five different models for wind speed prediction, it might be
more time-consuming when compared to a single model.
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