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Abstract: The pervasive digital innovation of the last decades has led to a remarkable transformation
of maintenance strategies. The data collected from machinery and the extraction of valuable informa-
tion through machine learning (ML) have assumed a crucial role. As a result, data-driven predictive
maintenance (PdM) has received significant attention from academics and industries. However,
practical issues are limiting the implementation of PAM in manufacturing plants. These issues are
related to the availability, quantity, and completeness of the collected data, which do not contain
all machinery health conditions, are often unprovided with the contextual information needed by
ML models, and are huge in terms of gigabytes per minute. As an extension of previous work by
the authors, this paper aims to validate the methodology for streaming fault and novelty detection
that reduces the quantity of data to transfer and store, allows the automatic collection of contextual
information, and recognizes novel system behaviors. Five distinct datasets are collected from the
field, and results show that streaming and incremental clustering-based approaches are effective tools
for obtaining labeled datasets and real-time feedback on the machinery’s health condition.

Keywords: predictive maintenance; industrial application; fault detection and diagnosis; novelty
detection

1. Introduction

Maintenance assumes a critical role in manufacturing companies’ productivity and
profitability [1,2] and has a significant impact on their economic, environmental, and
social dimensions [3]. In 2016, maintenance expenditures and avoidable losses in discrete
manufacturing were estimated at USD 193.6 billion [4]. In addition, lousy maintenance
may compromise the quality of final products and the safety of working environments. For
these reasons, maintenance strategies have evolved from simply repairing an asset after a
failure to predicting the time when equipment will fail to intervene before its breakdown.

Predictive maintenance (PdM) is determining maintenance actions according to regular
inspections of equipment’s physical parameters and degradation mechanisms to intervene
on the machine before its failure [5]. Relevant parameters, such as vibrations, acoustic
emissions, currents, pressures, temperatures, and others, are monitored, and the health
condition of the system is assessed at any point in time based on their historical and current
values. In addition, its future health conditions are predicted to compute its remaining
useful life (RUL) and schedule maintenance interventions accordingly. This process is often
referred to as prognostics and health management (PHM) in the literature and consists of
four main steps: data collection, feature extraction, diagnostics, and prognostics [6].

In the last decades, scientific and industrial interests in PHM have grown, together
with information and communication technologies (ICT) and digital innovation of factories,
whose elements fall into the concept of Industry 4.0. In this context, machines are connected
to the Industrial Internet of Things (IloT) that enables the collection of massive data from
physical assets on the shop floor, their transmission into the cloud, and their processing
with intelligent algorithms to make factories more productive, less costly to operate, and
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more reliable [7]. On the one hand, knowing the system’s health condition in a given
instant leads to maximizing the production profits and minimizing all costs and losses
by implementing efficient and just-in-time maintenance strategies [8]. On the other hand,
data-driven PdM requires the collection of large volumes of historical data from multiple
sources and proper big data processing technologies to build an integrated environment in
which production and maintenance processes can be managed more efficiently [9].

The large body of existing literature on PdAM mainly focuses on improving the accuracy
of data processing through machine learning (ML) and deep learning (DL) algorithms. In
particular, several data-driven fault detection and diagnosis approaches are developed
and applied to different domains. Supervised models, such as shallow or deep artificial
neural networks (ANNSs) [10,11], are largely adopted for rotating machinery fault diagnosis.
In these applications, signals are collected from the component in one or more health
conditions and the goal is to build a classification model that classifies future signals
into one of those conditions with the highest accuracy. Therefore, all fault classes are
known in advance. Unsupervised models, such as k-means [12] or autoencoders [13],
are used for fault detection, whose aim is to automatically detect any fault in its early
stage [14]. In these applications, only two classes, health or damaged, are often considered.
Therefore, diagnosing the detected fault is not automatic but requires human intervention.
In addition, industrial artificial intelligence deals with industrial big data, characterized
by the so-called 3Bs challenges, broken data, bad quality data, and background [15]. In
the big challenge to fit the Al in industries and implement data-driven PdM, the more
significant issues are related to the large amount of data generated by machines, the lack
of contextual information, the unbalanced datasets, and the dynamic nature of industrial
environments [16]. Consequently, latency, bandwidth, and network scalability limit the real-
time monitoring of machinery. The absence of labels indicating the actual health condition
and the lack of data in all faulty modes restrict the use of supervised ML models [17].
Finally, the accuracy of these models reduces with time because of their poor ability to
learn from current data and adapt to multiple scenarios. Given these issues, the traditional
offline and batch fault diagnosis, which relies on many labeled data, may be ineffective and
impracticable in real-world applications. In other words, the system health management
has to handle unlabeled and unbalanced datasets and operate in an evolving environment.
These two aspects are strictly correlated and can be addressed by integrating offline and
batch processing with online and streaming models to recognize both known conditions
(fault diagnosis) and detect unknown behaviors (novelty detection) [18]. Offline batch
processing aims to uncover valuable information from accumulated data for fault prediction
and is suitable for stored data, as it mainly focuses on the accuracy and comprehensiveness
of analysis instead of focusing on real-time fault detection and diagnosis. On the other hand,
real-time streaming processing is needed in variable and complex operating conditions to
realize a real-time diagnosis and ensure timely maintenance. In a previous work [19], the
authors proposed a novel framework for implementing PdM. In particular, the framework
consists of an edge layer, in which raw signals are collected and processed to extract relevant
information at a component and system level (i.e., feature extraction); in addition, novelty
detection algorithms are also applied to streaming data to discover new system behaviors
and component faults. This information is finally collected in the cloud, where supervised
ML models are built on historical data and updated based on newly collected data.

This paper is an extension of [19], in which the proposed framework is validated on
a dataset collected from a test rig built in the Department of Industrial Engineering of
the University of Bologna, Italy, and on four real industrial datasets, which differ for the
components under analysis, the kind of collected signals, the quantity of the data, and the
number of health and fault conditions.

The remainder of the paper is organized as follows. Section 2 describes the research
questions and the main contributions of this paper. Section 3 provides an overview of the
existing literature on fault detection and diagnosis using incremental learning for streaming
data. Section 4 describes the available datasets and the experimental scenario. Section 5
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shows the results obtained by applying a clustering-based approach for novelty detection.
Finally, Section 6 concludes the work by discussing the implications from the industrial
point of view and providing future research directions.

2. Research Questions and Contributions

The core of a data-driven PdM strategy is transforming raw data into useful informa-
tion to support the decision-making process. Although ML and DL methods are powerful,
industrial contexts impose some constraints on their use in the PdM field for several reasons.
The first limitation is the lack of a systematic methodology for collecting and managing the
massive data available from one or more plants. The second limitation is the lack of labeled
historical data and industrial environments” dynamic and heterogeneous nature.

Concerning the first point, the main issues concern the types of data that need to be
available for building accurate and robust models for fault detection and diagnosis, the
time at which the data are required, and how they can be organized for facilitating the
preprocessing phase. Indeed, the data are often physically taken from the machinery and
stored in a PC, in which ML models for fault diagnosis are built. However, these datasets
are unlabeled, i.e., the health condition associated with the condition monitoring data and
the system working condition, and are not included. Therefore, a time-consuming phase
is necessary for assigning the correct label to all observations. In addition, the massive
amount of condition monitoring data leads to collecting only a few minutes of data per day,
limiting the use of complex classification models and the analysis of the system behavior.

Concerning the second point, the main issues concern data availability and the ability
to learn new behaviors as they occur. Indeed, during the training phase, classification
models for fault diagnosis learn the relationships between the condition monitoring data
and the corresponding health condition. Therefore, when applied to new data, they can
only classify the observations into the classes involved in the learning process. However,
not all fault conditions are known in advance or can be simulated because of safety issues.
Hence, these models fail to recognize and classify observations corresponding to a health
condition not included in the training set. In addition, industrial contexts are inherently
dynamic, which makes classification models trained on historical data obsolete and less
accurate as the operating condition of a system changes or a modification of the context of
use is introduced.

Given these issues, the research questions (RQs) that this paper wants to address can
be summarized as follows:

1. RQ1. Which data are needed for building an accurate and robust predictive model for
diagnostics? How should the dataset be organized?

2. RQ2. How can labels be automatically obtained, considering that novel behaviors can
occur during machine functioning?

Underpinned by RQ1, the first purpose of this paper is to exploit the experience
derived from several collaborations with industries in the Emilia Romagna region (Italy)
and the knowledge acquired from the existing literature for proposing a classification of the
available data and explaining how each kind of extracted data can contribute to building
a health management system. RQ2 requires acting at the data analysis level, focusing
on different approaches and learning paradigms to integrate historical information with
streaming data to provide real-time feedback on the machinery’s health condition for the
maintenance actions scheduling. Hence, the second purpose of this paper is to validate
a general method for the automatic labeling of streaming data that can reduce the data
preprocessing and facilitate the data analysis that creates value and supports the decision-
making process. Finally, a transversal goal of this paper is to provide knowledge to scholars
and practitioners on the criticalities affecting the realization of a PdM strategy for the health
management of industrial assets.

The main contributions of the present work may be summarized as follows:

1.  The definition of the data and information flows in an edge-cloud-based PdM system;
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2. The validation of novelty detection approaches on five distinct datasets from different
industrial contexts, with a particular focus on the tasks performed on streaming
data leading to the reduction in the quantity of data and the automatic labeling of
collected datasets.

3. Related Works
3.1. Data Collection

According to [20], the types of data used for predictive maintenance are maintenance
history (73%), asset usage (72%), asset condition (71%), condition data, and maintenance
history of other assets within the company (42%), environmental data (29%), condition
data, and maintenance history of other assets from other companies (9%), and others
(7%). Tiddens et al. [21] grouped the data required for predictive maintenance into four
categories: (1) asset history data, which include historical records of failures, inspections,
and the related costs; (2) usage and process data, which entail operational data, e.g.,
running hours, mileage, or tons produced; (3) stressor data, which include the operating
conditions of the system, such as the load exerted on the system, and environmental data;
and (4) condition monitoring data, which include signals able to reveal the system’s health
conditions and provide indication of failures. Although all these data may contribute to
implementing a predictive maintenance strategy, intelligent fault diagnosis only relies on
condition monitoring data in practice. In particular, vibration signals have been used most
frequently for machinery health management, followed by acoustic emissions, force/torque,
temperature, and electric signals [22]. In a few cases, the data are directly provided by
machine log systems, without installing sensors for the collection of condition monitoring
data [23]. However, the number of studies exploring other types of data for predictive
maintenance and the industrial applications that exploit the Industry 4.0 technologies for
intelligent maintenance is limited.

Condition monitoring data, such as force, vibration, temperature, voltage, and others,
reveal the health state of equipment working under certain operating condition, and are
fundamental to building a fault diagnosis model, estimating its parameters, and verify-
ing/validating its maturity [24]. However, raw data are redundant and noisy and cannot
be directly used for fault diagnosis. Therefore, when using a data-driven approach for
diagnostics and prognostics, processing and transforming raw signals is a fundamental
step [25]. In particular, it is crucial to extract some characteristics from raw signals, named
features, which must be relevant and nonredundant. The relevance of a feature concerns
its ability to distinguish the different healthy and faulty conditions of the system under
analysis. The set of features must contain the minimum informative content, i.e., it has
to be nonredundant, to reduce the computational complexity of machine learning (ML)
algorithms used for fault diagnosis.

Feature extraction and dimensionality reduction notably reduce the amount of data, which
may have an important implication from the data sharing and storage perspective [26,27].
Through the IloT architecture, it is possible to collect the data from all machines on a
shop floor and query streaming data used for machine learning models [28]. They can be
trained by resorting to the cloud computing paradigm, which represents a hosting platform
that provides diagnosis solutions as a service [29]. However, the transmission of massive
data to the cloud can generate high response times, which is unsuitable for fault detection
systems for which real-time responses are essential. Performing data processing at the
edge may solve this issue [30] because only features extracted at the edge may be sent to
the cloud [31]. In addition, the reduced amount of data from the transmission into the
cloud of relevant features may allow a more accessible aggregation of data collected from
similar machines installed in different plants, obtaining larger datasets for model training.
Therefore, a proper infrastructure should include sensor networks, edge devices, and cloud
data centers to distribute the computing among different “devices” and reduce the latency
of both transferring and inference and the required storage memory.
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Several IoT architectures have been proposed in the literature for data collection
and PdM. However, to the best of our knowledge, none of them explains the data and
information to collect and how.

3.2. Streaming Novelty Detection

According to [32], two strategies exist to cope with unlabeled and unbalanced datasets.
The first one considers evolving algorithms, according to which the learning phase is
repeated as required to manage state detection (as new data are available), especially in
case of unbalanced data. The second strategy deals with incompleteness and uncertainty of
labels through semi-supervised learning approaches. A solution that integrates the two
strategies may consider novelty detection in the evolving learning framework [33].

In evolving environments, observations arrive in a data stream, with no labels except
for the initial training set [34]. When unlabeled observations arrive in the data streams,
new labels may emerge. The main goal of incremental learning is to recognize abnormal
conditions (anomalies) that have never occurred before while classifying machinery con-
ditions (nominal and fault health conditions) as one of the known classes if there is no
novel abnormality [35]. In other words, incremental learning approaches allow detection
of the so-called concept drift, which occurs in the data stream when a machinery condition
changes. In addition, they should also determine whether the concept drift corresponds
to a known machinery operating condition or a novel operating condition. This problem,
known as novelty detection in a data stream, is rarely addressed in the literature [36]. In
other words, novelty detection deals with detecting new data samples that an ML model
was not previously aware of [37,38].

Novelty detection is traditionally seen as a one-class classification problem in which
only the nominal class is available. Unlike anomaly detection, novelty detection does
not look for one single observation differing from the nominal data. On the contrary, it
looks for a set of points that are not explained by the diagnosis model [39]. In addition,
novelty detection recognizes novel behaviors when two or more classes exist. In these
cases, a condition is considered novel when it differs from all known classes [40]. In these
cases, the problem is recognizing novelties and classifying the known observations into
one of the existing classes. In [41], a threshold-based classifier is adopted, which defines a
fault as unknown when none of the classifier output exceeds a defined threshold. Carifio,
J.A. et al. [42] introduce a methodology to discover new patterns when only nominal
data are available. The methodology consists of an ensemble-based classifier, used for
novelty detection, and an evolving classifier that is used for diagnosis. Similarly, the hybrid
approach introduced in [43] aims at diagnosing known faults and detecting unknown faults
using time—frequency features. In [44], the authors introduce a novel algorithm that learns
drifting concepts from streaming and unlabeled data. An application of that algorithm to
fault diagnosis is proposed in [45], where gradual and abrupt changes are first detected,
and a classifier is then updated to include the new class.

Other approaches to novelty detection are based on semi-supervised and unsuper-
vised learning. In the first category, several clustering algorithms for streaming processing
have been proposed, such as OnLine Novelty Detection and Drift Detection Algorithm
(OLINDDA) [46], Higia [47], and Multlclass learNing Algorithm for data Streams (MI-
NAS) [48]. Basically, these algorithms generate a model using labeled data during an
offline training phase; then, novel patterns made of examples that the model does not
explain are recognized as unknown sets during the online phase. The second category
of clustering-based approaches for novelty detection does not require any training phase.
These models rely on the idea that distinct clusters correspond to distinct system condi-
tions [49]. Therefore, each point can be either integrated into one existing clustering if the
data are compatible with the existing model structure or generate a new cluster. In the first
case, the parameters of existing clusters are updated to include the information provided
by the last point [50]. In [51], a recursive algorithm for clustering and drift detection
is proposed, in which clusters are updated according to the similarity between the data
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and the changes occurring in the data flow. For this reason, the algorithm is more robust
to outliers and noise. However, these algorithms need to know the cluster membership
function in advance. In contrast, in [52], the membership function based on the input data
density and distribution, therefore, is extracted from the data, and represents their density
and distribution. In this context, the concept of cluster is replaced by the concept of cloud,
which, unlike clusters, has no boundaries, could have any shape, and does not have a
center. Therefore, the variables affecting the cloud shape and the assignment of points to the
cloud are the local and global density, which are calculated recursively as new data arrive.
Based on these concepts, ref. [53] proposed a two-step methodology for fault detection and
identification in streaming data. First, faults are detected through autonomous anomalous
detection (AAD). Then, a fuzzy classifier named AutoClass assigns the data sample to
existing clouds or new clouds, depending on their closeness to the cloud center. Contrary
to the AutoClass algorithm, the autonomous data partitioning (ADP) algorithm proposed
in [54] is an evolving clustering algorithm that does not impose a data generation model
on the empirical observation and is free from user-specific parameters.

To summarize, novelty detection approaches may be classified according to the learning
paradigm they adopt, which can be supervised or unsupervised, and the necessity of a training
phase before the streaming application. Consequently, three approaches can be distinguished:

1.  Classification-based approaches that require a training phase on one or more classes
(e.g., COMPOSE);

2. Clustering-based approaches that require a training phase on one or more classes (e.g.,
OLINDDA and MINAS);

3. Clustering-based approaches that can be applied from scratch (e.g., ADP).

More recently, deep learning models, such as autoencoders and long short-term
memory (LSTM) networks [55,56], are used to detect novelties. However, they require a
large amount of data and a high computational effort for training. In addition, they have to
be retrained each time a novel behavior is detected [57].

4. Experimental Design

In this section, five different datasets are analyzed. They have been collected from
different automatic machinery during tests simulating nominal and improper working
conditions of one or more components. The components under analysis, the collected
signals, the health conditions, the corresponding durations, and the sampling frequency of
raw signals for each dataset are summarized in Table 1.

Table 1. Description of the available datasets.

) ) Health . Raw D.ata
Dataset Environment Component/s Signals Conditions Dataset Duration . Sampling
requency (Hz)
Nominal 1 82.8 min
. . . Nominal 2 184.2 min
Dataset 1 Laboratory Electric Motor Vibration Nominal 3 77 4 min 12,800
Fault 1 25.8 min
Nominal 15s
Fault 1 15s
Dataset 2 Industry Case packer Current Fault 2 15s 500
Fault 3 15s
Fault 4 7.05s
Nominal 1599 s
Dataset 3 Industry Suction cups Pressure Fault s1 11.65s 10,000
Fault s2 3.52s
Nominal 1 67.5 (M1)-8196.5 (M2) h
Dataset 4 Industry Extruder Temperature Nggﬂgl 2 7%( (M)l)—326 (1\5[2) })1 1
Nominal 266.4s
Dataset 5 Industry Sealing Group Displacement Fault s1 160 s 1000

Fault s2 152s
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4.1. Dataset 1: Electric Motor

The first dataset was collected from a test rig built in the laboratory of the Department
of Industrial Engineering, University of Bologna, Italy. The platform includes an asyn-
chronous motor, a gearbox consisting of two pulleys that exchange the rotation through a
belt, two shafts that share the motion thanks to a couple of gears, and an electromagnetic
brake. The full description of the system can be found in [19]. Three triaxial accelerometers,
characterized by an acceleration range of 500 Gpeak, are placed on the system. The first one
is placed on the bearing’s support; the second one is placed next to the second pulley; and
the third one is placed close to the gearboxes. Data are collected with a sampling frequency
of 12.8 kHz.

The available dataset includes vibration signals collected during tests simulating four
distinct operating conditions: Nominal 1, Nominal 2, Nominal 3, and Fault 1. In the first
three conditions, all components of the test rig, i.e., the electric motor, the belt, the pulleys,
and the gears, are in optimal conditions. Different values of the distance between the
pulleys and the braking torque determine the implemented operating condition. During
the fourth test, a sudden failure occurred to the electric motor. The first 5 min of data
collected in each condition are depicted in Figure 1.

ST Sensor1-x o~ Sensor1 -y o Sensor1-z
wn T T 0w T w r T
E R T € 2|
Nominal 1|+ 5 | ! 1
c < c
Nominal 2/2 o [R—— Eowﬁ 2 e — ——
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Fault1 |8 ° T " sl 41 B
S 4 g7l g 2|
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i
C
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Figure 1. Raw signals generated by the system during the three nominal conditions and the fault
condition.

4.2. Dataset 2: Case Packer

In this case, a subgroup of an automatic industrial machine is considered. In particular,
the case packer group is responsible for putting the blisters into the case and sticking
its edges. The incorrect execution of the sticking phase may generate unacceptable final
products. For this reason, it is necessary to recognize the malfunction as soon as possible.
To this aim, the current (mA) absorbed by the main actuator of the system is collected with
a sampling frequency of 500 Hz under different conditions. In total, one normal condition
and four fault conditions were simulated, i.e., without load, with overload, with a regular
load but without withdrawal of the die-cuts, and the emptying of the last die-cuts. The
dataset collected in the nominal condition and in the first three improper conditions include
100 working cycles. The dataset corresponding to the last fault condition includes only
47 working cycles. Each cycle is made of 75 data samples and lasts 0.15 s. Therefore, 15 s of
data have been collected for each condition, except for fault 4, for which the monitoring is
7.05 s. Figure 2 shows the trend of the current signal during one cycle for each condition.
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Figure 2. Current signal trends during the nominal condition and the four improper working conditions.

4.3. Dataset 3: Suction Cups

Like the second dataset, this dataset refers to a critical part of a packaging machine
whose malfunction strongly affects the products” quality. The component under analysis
consists of four suction cups that push the cartoon forward by rotating. A full cycle lasts
0.134 s. In a cycle, the pressure of the suction cups on the cartoon may decrease, causing
the detachment of one or more suction cups. If two suction cups detach, the component
cannot perform its function correctly and an intervention is required. The detachment
of the suction cup is almost instantaneous. A pressure sensor is, therefore, placed on the
component to detect the pressure drops corresponding to the detachment of the suction
cups. Signals are collected at a sampling frequency of 10 kHz, and three experiments
are conducted. First, the data are collected under a nominal condition; then, two fault
conditions are generated, having one (Fault s1) and two (Fault s2) suction cups detached,
respectively. The pressure values in the different conditions are shown in Figure 3.

Nominal Dataset

a)

Pressure (Bar)

0.05

b)
0

-0.05 }

0.1

=
@
— -015
£
=
o 02
2
o

-0.25
Fault 2
kb T h bk TR -
+‘|\|M'Wf‘f““||*‘ﬂw\‘ﬂlﬂlﬁ‘h r 0.3
| | VI I |
Vi \-|\v‘l\./“‘|"‘ ,“. VI \ i n “.‘\, VIV “‘-‘ -‘M 035
APACAVRER N FRVAVAVAVAVRVAVRVAVRVRVAFAVAVAVAVACAVAVAY :
I |
. |- . . . . .
04 . . . . . .
0.5 1 1.5 2 25 3 3.5 4 0 5 10 15 20 25 30 35
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Figure 3. Pressure signals produced by the suction cups during the nominal condition and the two
fault conditions, (a) considered separately, and (b) put in sequence to simulate the detachment of the
first and second suction cup.

4.4. Dataset 4: Extruder

This case study analyzes the behavior of an automatic machine based on signals
collected from 30 different sensors placed on a subgroup made of two electric motors,
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a heated extruder, and a volumetric pump. The sensors measure the temperature and
the percentage of usage of 9 thermos-resistors in different zones, the motor’s power and
velocity, and the input and output pressures of a volumetric pump placed at the end of
the extruder. The operating condition is determined by a set of temperature values, whose
actual signals are collected during the machinery’s functioning. Signals are collected from
two different sources. In the first one, signals are acquired at a frequency of 1Hz. Each
day, almost 8 h of data are recorded; then, files are directly downloaded by the PLC of
machinery. The second one is a low-frequency data source: each day, after 30 min of the
machine functioning, four different statistics over a batch of 30 s for each collected signal
are computed.

The available dataset includes data related to two different machines, M1 and M2. M1
was monitored for almost 11 months, while M2 was observed for nearly 21 months. For
each machine, two different settings were implemented. While, for M1, there was only one
change from setting 1 to setting 2, M2 worked under setting 1, setting 2, and again under
setting 1. Figure 4 shows the raw temperature signals of M1 and M2.
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Figure 4. Temperature signals collected during the two nominal conditions by M1 (on the top) and
M2 (on the bottom).

Although many data were available, this case study only considers the data for which
the operating condition can be extracted from the low-frequency data source.

4.5. Dataset 5: Sealing Group

The fourth dataset is collected from a thermoforming machine that can produce up
to 320 products per minute. In particular, a component-level analysis is conducted on the
sealing group, which is responsible for sealing the upper and bottom parts of the product.
The group is made of two tables in which the film flows continuously, allowing the sealing
at a low temperature. In each cycle, the top table goes up and closes; the cover is sealed to
the base, and the tables open before returning to the initial position. The health condition
of the sealing group is monitored through a displacement sensor that records the positions
of the two tables. Figure 5 depicts the trend of the measured signal during a sealing cycle,
which lasts 800 milliseconds, and the sampling frequency of the sensor is 1000 Hz. One
nominal condition and three unacceptable working conditions, nominal, fault 1, fault 2,
and fault 3, are available. Fault conditions do not cause the system breakdown. However,
the quality of the final product is compromised, and the improper working condition has
to be detected as soon as possible to avoid production losses.



Appl. Sci. 2022,12, 9212

10 of 24

15 T T T T T

——Nominal

10 | Fault1 | =}
Fault 2 | [ \

— Fault3 ‘ ‘

signal values
7
Y
Al
A\
z
L

0 100 200 300 400 500 600 700 800
time(ms)
Figure 5. Raw signals produced by the sealing group during the nominal condition and the three
fault conditions.

4.6. Experimental Scenario

For each case study, two main tasks are carried out: feature extraction and fault/novelty
detection. Because features have to be extracted from streaming data in real time, only
time-domain features have been considered. In particular, the peak, peak-to-peak, mean,
root mean square, crest factor, kurtosis, skewness, shape factor, and impulse factor are
computed over batches of different lengths depending on the specific case. Then, two
methods for feature selection and learning, i.e., the Pearson correlation analysis (PC) and
the principal component analysis (PCA) have been used to reduce the dimensionality of
the dataset. Finally, the AAD and ADP algorithms for anomaly and novelty detection are
applied from scratch or after a pretraining phase to detect novel faults (improper condi-
tions) or novel machinery settings. The mathematical background of feature extraction
and selection (PC and PCA) methods and the clustering-based novelty detection approach
(AAD + ADP) used in this paper are provided in Appendices A and B, respectively.

In particular, two approaches have been adopted for different case studies, i.e.,
clustering-based with pretraining and clustering-based from scratch. The schemes of
the two approaches are depicted in Figure 6.

Clustering-based with pre-training Clustering-based from scratch

Condition 1 Condition 2 Other conditions All conditions

1. Feature Extraction 1. Fault Diagnosis 1. Novelty Detection
2. Feature Selection 2. Novelty Detection
3. Cluster Initialization

Figure 6. Experimental scenario.

In the clustering-based with pretraining approach, the dataset is divided into two
sets, named training and testing sets, including 70% and 30% of observations, respectively.
The training set is first used to extract and select the relevant features revealing the health
condition of monitored components. Then, the AAD + ADP (described in Appendix B) is
applied to the selected features, and the local parameters of created clusters, i.e., the number
of observations and the clouds’ centers, are stored. Finally, the remaining observations
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are used to test the effectiveness of the algorithm to (1) assign the 30% of observations
corresponding to the conditions included in the training test to the correct clusters among
the initialized ones and (2) to detect the change towards a novel condition and create a
new cluster.

In the clustering-based from scratch approach, no cluster is initialized. The algorithm
starts from the first data creating a cluster; then, it creates a new cluster each time it
recognizes a novel condition.

Note that the testing phase of the approaches is applied to streaming data. Hence, the
algorithm reads data batches of a certain length, extracts one or more features, and creates
a label corresponding to the assigned cluster.

According to the framework proposed in [19], novelty detection is also applied at a
system level to discover novel operating conditions of the machinery. Therefore, some of
the case studies deal with the operating recognition problem.

Table 2 summarizes the goal (fault detection or operating condition recognition), the
approach, the method, and the feature engineering method adopted for each case study.

Table 2. Description of each case study’s goals, approaches, and feature extraction methods.

Dataset Goal Approach Feature Engineering Method
Operating Condition . .
Electric motor recognition and fault Clustermg-ba§ ed with Manually selected features
. pretraining
detection
. . Pearson Correlation, Principal
Case packer Fault detection Clustering-based from scratch .
Component Analysis
Suction cups Fault detection Clustering-based from scratch Pearson Correlation
Automatic Machinery Operating C.c.)ndltlon Clustering-based from scratch Principal Component
recognition Analysis

Sealing group (displacement)

Clustering-based with

.. Pearson Correlation Analysis
pretraining

Fault detection and diagnosis

5. Results

This section summarizes the results obtained by applying the AAD + ADP method to
the five datasets described in previous sections.

In particular, results are provided in terms of the number of observations correctly
assigned to the clusters, the latency of the detection, and the number of false alarms. The
number of false alarms is the number of points recognized as anomalies that do not cause a
cluster change. In other words, false alarms are those anomalies that are not caused by the
occurrence of a failure or a modification of the setting.

5.1. Dataset 1: Electric Motor

In this case, the clustering-based with the pretraining approach is used. In particular,
70% of observations corresponding to condition 1 and condition 2 are included in the train-
ing set. The goal is twofold. First, the analysis at a system level is conducted to recognize
known and novel system operating conditions; second, the analysis at a component level is
conducted to detect the fault of the electric motor.

To achieve these aims, time-domain features are extracted from signal batches of
15 (12.8 samples). Then, the most relevant time-domain features are selected according
to the following criteria: system-level features have to be as similar as possible in the
same operating condition and as distinct as possible among different operating conditions;
component-level features have to be as constant as possible during the two nominal
conditions. The selected system-level and component-level features are shown in Figure 7.
At a component level, the mean of three different signals (sensor 2, x-axis and z-axis, and
sensor 3, y-axis) is selected, while the impulse factor of sensor 3, z-axis, is selected at a
component level.
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Figure 7. Selected system-level features (left) and component-level features (right).
Then, the ADP algorithm is applied to find the clusters’ corresponding local parame-
ters, whose results are shown in Table 3.
Table 3. Cluster local parameters obtained from the pretraining phase.
Parameter Operating Condition Recognition Fault Detection
Number of clusters 2 1
Number of points 3493 7722 11,215
Cluster center (0.0476; —0.0034; —0.0805) (0.0315; —0.0134; —0.0736) 6.1358

Then, the AAD + ADP algorithm is applied to all observations of each feature set. For
the operating condition recognition task, streaming novelty detection aims to create two
new clusters when condition 3 and the fault to the electric motor occur. The goal of the
fault detection task is to create a new cluster when the fault occurs. Results are shown in
Figure 8, and the algorithm’s performances are summarized in Table 4.

For the operating condition recognition, the points corresponding to conditions 1 and
2 are assigned to the initialized clusters correctly. The algorithm detects the change from
condition 1 to condition 2 after 15 s and to condition 3 after 10 s. However, the fourth
condition is not detected by the selected features. Concerning the fault detection task,
the algorithm creates a novel cluster 18 s after the change from condition 3 to condition 4
(yellow dots in Figure 8b); then, a second cluster is created after 175 s, which corresponds
to almost 23 min before the motor failure. Therefore, the system breakdown could have
been avoided if an alarm was triggered at the second cluster creation time. In addition,
all points assigned to cluster 2 can be labeled and used to update classification models
for diagnostics.
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Figure 8. Results of the AAD + ADP algorithm (electric motor) for (a) operating condition recognition,
and (b) fault detection.

Table 4. Performances of clustering-based with pretraining approach (electric motor).

Detected Setting N Points Assigned to the False

Condition Change (Sample) Latency (s) Corresponding Cluster Alarms
Setting 1 - 4982
Setting 2 4.984 15 11,048 168
Setting 3 16.032 10 6187
Setting 4 - - -
20,681
Motor Fault 20,682 —1536 157 488
20,839 —1379 1380

5.2. Dataset 2: Case Packer

In this case, the main goal is to detect a known fault as soon as possible, without any
training phase. Faults have been separately considered since they cannot occur in sequence.
Hence, four scenarios have been simulated, in which the dataset corresponding to one
fault is appended after the nominal behavior. In this case, two distinct feature sets are
considered: the first one, which includes the peak, the mean, the root mean square, and the
crest factor, has been obtained through the Pearson correlation analysis. The second feature
set includes the principal components (PCs) obtained through the PCA.

Results of the AAD + ADP algorithm applied to the two sets of features, i.e., features
selected through the Pearson correlation analysis and the features extracted through the
PCA, are shown in Figure 9a and Figure 9b, respectively. This figure depicts the points
assigned to different clusters in different colors and anomalies with red crosses. As can
be seen in Figure 9b, the extracted PCs are not able to reveal the health condition of the
component. In contrast, the performances of the algorithm applied to the features selected
through the Pearson correlation analysis are summarized in Table 5. In all cases, a false
positive (red cross) is detected during the nominal behavior. Fault 1, Fault 2, and Fault
3 are detected after five cycles (0.75 s) of their occurrence, and a novel cluster is created
when the anomaly corresponding to the fault is detected. Instead, when Fault 4 occurs, an
anomaly is detected. However, the following points continue to be assigned to the cluster
corresponding to the nominal behavior.
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Figure 9. Results of the AAD + ADP algorithm applied to (a) features selected through the Pearson
correlation analysis and (b) features extracted through the PCA (case packer).

Table 5. Performances of the clustering-based from scratch approach (case packer).

Cycle of N Created

Fault Detection Latency (s) Clusters

N Points False Alarms

Fault 1 105 0.75 2 Cluster 1 =104 9

Cluster 2 =96
Cluster 1 =104

Fault 2 105 0.75 2 Cluster 2 =96 %
Cluster 1 =104

Fault 3 105 0.75 2 Cluster 2 =96 4l

Fault 4 - 1 Clusterl = 147 54

5.3. Dataset 3: Suction Cups

The goal of this case study is to detect the occurrence of a failure as soon as possible.
Unlike the case packer case study, in which the available fault conditions could not occur
in sequence, in this case, the two available fault conditions correspond to two different
severities of the same fault mode. Hence, the AAD + ADP algorithm is applied from
scratch to signals corresponding to all conditions. The peak, the peak-to-peak, the mean,
and the RMS are selected through the Pearson correlation analysis used as the input of the
streaming algorithm. Results are shown in Figure 10 and summarized in Table 6. The first
behavior change is detected after five cycles, equal to 0.67 s, while the second change is
detected as it occurs, with zero latency. For each condition, a cluster is created and points
are correctly assigned to the clusters. In addition, 55 false alarms have been avoided.

Table 6. Performances of the clustering-based from scratch approach (suction cups).

Cycle of N Created .
Fault Detection Latency (s) Clusters N Points False Alarms
Fault s1 124 0.67 1 88

Fault s2 212 0 1 21 55
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Figure 10. Results of the AAD + ADP algorithm (suction cups).

5.4. Dataset 4: Automatic Machinery

In this case, the AAD + ADP approach is applied from scratch to the extracted PCs.
As summarized in Table 7, in both cases, the algorithm recognizes the change from setting
1 to setting 2 after nine data samples. In addition, the algorithm identifies the switch from
setting 2 to setting 1 for M2, as data points are assigned to the existing cluster corresponding
to the first operating condition. Results are also shown in Figures 11 and 12, where the
black dots correspond to the first condition, the grey dots to the second condition, and the
red crosses represent the moment in which a changing behavior is detected.

Table 7. Performances of the clustering-based from scratch approach (extruder).

Unit Setting Change (Detected) Setting Change (Actual)
M1 114 105
M2 4257 4248
5674 4904
10 T T T T T T T T

PCs

1
0 200 400 600 800 1000 1200 1400 1600 1800
Samples

-10 1 1 1 1 1 1 1

Figure 11. Results of the AAD + ADP algorithm (extruder-M1).
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Figure 12. Results of the AAD + ADP algorithm (extruder-M2).

Note that, in both cases, there are several data points considered anomalous. However,
none of them creates a new cluster. These points correspond to true anomalies in the data,
such as measurement errors or anomalous peaks, which are evident in the raw signals.

5.5. Dataset 5: Sealing Group

In this case study, the AAD + ADP with pretraining has been used. Similar to the case
study shown in Section 5.2, the three fault conditions correspond to three distinct improper
working conditions. Hence, the algorithm is applied separately for each condition. The
pretraining consists of selecting the most relevant features using 70% of the observations
corresponding to the nominal condition and the condition fault 1. These data are also
used to initialize the local parameters of the clusters with the ADP algorithm. Then, the
remaining observations are used to demonstrate that the algorithm assigns the points
belonging to the nominal condition and the condition fault 1 to the corresponding existing
clusters and creates new clusters for faults 2 and 3.

Features selected through the Pearson correlation analysis are shown in Figure 13,
while the local parameters of the clusters obtained during the training phase are summa-

rized in Table 8.
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Figure 13. Selected features (sealing group).
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Table 8. Cluster local parameter obtained from the pretraining phase (sealing group).

Parameter Nominal-Fault 1
Number of clusters 2
Number of points 493 297
(—7.6941 x 108; 4.9795; (—5.9629 x 108;5.4121;

Cluster center 11.5270; 1.4761; 6.993) 15.2841; 1.5666; 8.4756)

Finally, the algorithm is applied to all observations of each condition. The perfor-
mances of the algorithm applied to the features selected through the Pearson correlation
analysis are summarized in Table 9. In the first case, when the nominal condition and fault
1 are considered, fault 1 has been detected with a latency of 10 cycles (8 s). In addition, no
cluster is created, and the points are correctly assigned to cluster 1 and cluster 2. Similarly,
fault 2 is detected after 8 s, and the points corresponding to the nominal condition are
correctly assigned to cluster 1. Furthermore, a new cluster is created when fault 2 occurs.
Finally, fault 3 is not detected by the algorithm. Figure 14 shows the results of the AAD +
ADP algorithm for each condition

Table 9. Performances of AAD + ADP (sealing group).

- Cycle of Latency N Created . False
Conditions Detection (Sample) Clusters N Points Alarms
. Cluster 1 =705
Nominal-Fault 1 706 10 0 Cluster 2 = 324 16
. Cluster 1 =705
Nominal-Fault 2 706 10 1 Cluster 2 = 191 13
Nominal-Fault 3 - - 0 Cluster 1 = 886 10
, x10 : 10° | X10
0 0 e
. g . » » ) v » p. " . o~ R »
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Figure 14. Results of the AAD + ADP algorithm (sealing group).

6. Discussion and Conclusions

In this paper, a method for data reduction, collection, and labeling is validated on five
datasets collected from the industrial field. The main considerations will be described at
two levels: the data analysis method and the data and information collection framework.

At the analysis level, two primary considerations can be drawn. First, the features
extracted in the time domain and selected through the Pearson correlation analysis, which
reduces the redundancy of information included in the features by selecting only the less
correlated ones, are able to reveal all health and fault conditions, except for one fault
condition of the case packer and one fault condition of the sealing group. Therefore, these
methods can properly extract and select relevant information from raw data, even if few
data are available for each condition. In contrast, if a fault condition is not included in the
training set, it may happen that the selected features cannot distinguish it from the nominal
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behavior. However, in a previous paper [58], the authors demonstrated that the fault
condition of the sealing group not detected by the AAD + ADP approach is not recognized
by a classification-based approach either. Therefore, the issue is related to the collected
signal, which cannot provide information about that improper condition.

The second consideration at the analysis level concerns the application of the stream-
ing AAD + ADP algorithm. This approach effectively recognizes known and novel be-
haviors with low latency in all case studies. In addition, it is fast and requires little
computation effort.

At the framework level, the description of the datasets provided by industries and the
application of the streaming clustering-based approach for fault and novelty detection led
to two main considerations.

The first consideration concerns the characteristics of the available datasets. As can be
seen in Table 1, the datasets are significantly unbalanced. In particular, when the electric
motor failed, the system broke down and only 25.8 min of fault signals could be collected.
In contrast, 344.4 min of signals are collected during the nominal operating conditions.
Similarly, the detachment of the second section cups in one of the monitored automatic
machinery led to an acceptable working condition; therefore, only 3.52 s of signals were
collected. In the case study introduced in Section 5.4, aimed at recognizing the operating
condition of the system, it seems that no faulty data are available at all. However, the data
cover a long period (from 1 to 2 years), and several improper working conditions occurred
during those periods. The data collection problems, in this case, concern the lack of a label
and the quantity of data. Because the machine generates many gigabytes of data, it cannot
be monitored continuously. Therefore, only some batches of data per day are collected,
which are unlabeled and without any contextual information. This consideration implies a
huge effort for the data analysts and makes the data-driven approach less effective.

The second consideration concerns the possibility of solving the above issues by
applying a streaming approach at the edge of the machinery to reduce the quantity of data
to transfer, store, and automatically label the collected data. Indeed, raw signals can be
processed at the edge to extract relevant features. All case studies show that a set of features
selected by considering only some health conditions can also reveal other conditions.
Therefore, it is not necessary to permanently store all raw signals. On the contrary, only
features can be stored, which can be used to construct more complex models. In this way,
the data quantity is notably reduced, and machinery can be monitored continuously. In
addition, real-time clustering allows for labeling the data during the collection. Because
the algorithm is incremental, the data corresponding to a novel condition are assigned to
the same cluster and will have the same label. From the industrial point of view, obtaining
the label in real time allows for detection of faults or anomalous behaviors as they occur,
and, therefore, it is possible to intervene before more severe faults occur and the system
breaks down.

In conclusion, using the proposed approach, it is possible to implement an edge-cloud
infrastructure to deal with data availability, completeness, and quantity issues. In particular,
feature extraction can be extracted in real time to reduce the quantity of data to analyze.
In addition, fault and novelty detection approaches should be applied to streaming data
to obtain information on the setting, which corresponds to the operating condition of the
system, and the event, which corresponds to the occurrence of a particular event, such as a
fault, a novel behavior, or a change in the system setting. This information is provided in
real time to have feedback on the health condition of the machinery; at the same time, it is
included in the dataset so that the extracted file can be directly used as input for diagnostics
models without any preprocessing phase.
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A.R. and M.B. All authors have read and agreed to the published version of the manuscript.
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Appendix A

The formulas of the time-domain features typically extracted from condition monitor-
ing data and also used in this paper are provided in Table A1l.

Table Al. Extracted time features from raw signals. x;, is the signal (observation) at the time
i, i=1...Sy, Sy is the length of the signal segments, X is the mean value of x;, i = 1...Sy, and o3
o* are third and the fourth moment of x;, i = 1... Sy, respectively.

Feature Name Formula
Peak fPegk = Xmax = max|xi|
Peak-to-peak fpeakzpeak = [max(x;) —min(x;)|
Mean fMean = % Z,I'\i1 Xj
Root Maen Square (RMS) fRMS = \/m
Crest Factor (CF) fcrestF = fpeak/ fRMS .
Kurtosis frurt = 5 LN, (xf;fi)q
Skewness Fskew = 5 YN, 7(";;“)
Shape Factor fshaper = frms/ fMean
Impulse Factor frmpuiser = fpeak/ fMean

Pearson correlation analysis is a filter-based method that considers variables with a
high linear relationship containing redundant information [59]. The level of correlation
between two features is usually provided by a fixed threshold, which has been set equal to
the absolute value of 0.9 in this paper. Then, the Pearson correlation coefficient is computed
among all features through Equation (A1) to build the correlation matrix.

_ Cov(X,Y) (A1)

X = V/ Var(X)Var(Y)

where X and Y are two random variables, Cov(X, Y) is the covariance of the two variables,
and Var(X) and Var(Y) are the variance of the variable X and Y, respectively. The Pearson
correlation coefficient, rxy, is always included in the range [—1, 1], where —1 indicates that
the two variables are negatively correlated, 1 indicates that the variables are positively cor-
related, and 0 that the variables do not correlate. After the correlation matrix construction,
an iterative process for feature elimination is conducted. Hence, for each column, and for
each row, if ryy < —0.9 or rxy > 0.9, the column is eliminated.

The principal component analysis (PCA) [60] is a feature learning method. It is
a statistical analysis approach to mapping multiple characteristic parameters to a few
comprehensive features. These PCA-based comprehensive features are not related to
each other and can represent original fault features effectively [61]. Given a dataset X, of
dimension m, PCA aims to find a set of orthonormal basis vectors of dimension p < m,
which are called principal components (PCs), that maximize the variance over the dataset
when it is projected onto the subspace spanned by these PCs. Basically, if we have data
points in a two-dimensional space and we want to project them in one-dimensional space,
what PCA does is to find the direction of the vector and the position of the points on that
vector, which is expressed by coefficients, such that the reconstruction or projection error
is minimized. To this aim, the covariance matrix of the dataset is first computed, and the
eigenvalues and eigenvectors are extracted. The eigenvectors correspond to the PCs, while
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the corresponding eigenvalues represent the variance associated with that PC. The PCs
are selected so that the cumulative variance described by them is higher than a certain
percentage (usually from 90 to 99%).

Appendix B

Angelov, Ramezani, & Zhou [62] introduced the concept of recursive density esti-
mation (RDE) in the context of detection and object tracking in video streams. Aiming
to decide whether a pixel belongs to the background or the foreground in real time, the
introduced approach substitutes the standard Gaussian kernel adopted for modeling the
pixel probability density function (pdf) with the Cauchy function, which allows the recur-
sive estimation of pixel pdf as a new image frame occurs. In Costa et al. (2015), concepts
of RDE theory are adopted in the context of online fault detection in order to discover
anomalous behaviors. The parameters involved are the global density, the mean value, and
the scalar product, which can be recursively computed by Equation (A2), Equation (A3),
and Equation (A4), respectively.

1
D(x;) = (A2)
1+ [l — el + e — [l
k—1 1
e = — Mk + K (A3)
k—1 1
S = T+ ull® (Ad)

where x; € R" is the feature vector at the time stamp .
At the first iteration k = 1, the parameters are initialized as D(x1) = 1, 1 = x31,
%1 = ||lx1]|*. Then, for each k > 1, the parameters are updated, and the condition expressed
in Equation (A5) is checked to decide whether the current point represents an anomaly
or not:
IF D(x¢) < up fork=ty,...,k—1,k THEN xy is an anomaly (A5)

where:

ks —1 1
o = (S + D60 ) (1 40) + Dl (A6

is the mean value of the local density computed recursively, Ap = |D(xy) — D(xx_1)] is the
absolute value of the difference between the global density computed at two consecutive
time stamps, and ks is the number of data samples from the last status change. Indeed, if
the condition is satisfied, then the status of the system switches from normal to anomalous,
and ks is set to 0. The condition expressed in Equation (A5) means that, if the global density
is lower than the mean density for a certain number of time stamps (or seconds), the status
becomes anomalous. Indeed, when a new data point arrives, if it is close to the previous
point, then py is close to the xi, D(xy) stays close to 1, and pp stays close to the actual
mean of the data points, as (1 — Ap) is very close to 1, which gives more importance to
the first term of Equation (A6). However, when the new point is far from the previous
ones, D(xy) slightly decreases, while yp becomes closer to D(xy), as the term Ap gives
more importance to the second term of Equation (A6). As new points are closer to the
previous point, then D(x;) continues to decrease until the condition in Equation (A5) is
satisfied. Note that, when the status changes from normal to anomalous, ks is set to 0,
leading yp to notably decrease. When the mean density is lower than the global density
for a certain number of points, or seconds, the status returns to the normal condition. Thus,
the condition expressed by Equation (A7) applies:

IF D(x¢) > up fork=ty,...,k—1,k THEN x; is normal (A7)

Note that both #1 in Equation (A5) and ¢, in Equation (A7) are set by the user and may
represent either the data samples or seconds.
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Based on the concepts of RDE, a clustering algorithm has also been introduced in [54],
in both offline and online versions. Here, the online version will be briefly described. At
the first iteration (k = 1) the local parameters of each cluster are initialized as follows:

Co=1put=x; S =1 (A8)

where Cj is the cluster at the time stamp k =1, pt,l is the focal point of cluster 1 at the time
stamp k = 1, and S} is the number of data points belonging to cluster 1 at the time stamp
k = 1. In addition, the parameters expressed by Equations (A3) and (A4) are also initialized.
Then, for each k > 1.

The mean value p and the scalar product 2 are updated by means of Equation (A3)
and Equation (A4), respectively.

The condition expressed by Equation (A9) is checked to decide whether the current
point has to be assigned to an existing cluster or should be a new focal point itself:

IF D(x;) > i:’??.y,ccka (ul) OR D(xy) < i:qapz:'r,zCka(y;() (A9)
THEN xy becomes a new focal point
The condition expressed in Equation (A9) means that, if the global density is higher
than or lower than the densities computed at each of the existing focal points (the density
of each cluster), then the current point creates a new cluster.
If Equation (A9) is satisfied, then a new cluster is created whose parameters are
initialized by means of Equation (A10):

Ci = Corns " = x5 S =1 (A10)

Otherwise, the distance between the current feature vector x; and the focal point
of each existing cluster is computed in order to decide whether the current point can be
assigned to the closest cluster, using Equation (A11):

IF [|x = | < /S = el (A11)

THEN xy is assigned to py

The condition expressed by Equation (A11) means that, if the distance between the
current point and the nearest focal point y; is lower than the distance among all points
arrived until the current timestamp, the current point is assigned to the nearest cluster.

If Equation (A11) is satisfied, then the parameters of the closest cluster C} are updated

through Equation (A12):
n
i = St o sy =81 (A12
k k
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