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Abstract: Cloud computing provides blockchain a flexible and cost-effective service by on-demand
resource sharing, which also introduces additional security risks. Adaptive Cyber Defense (ACD)
provides a solution that continuously changes the attack surface according to the cloud environments.
The dynamic characteristics of ACDs give defenders a tactical advantage against threats. However,
when assessing the effectiveness of ACDs, the structure of traditional security evaluation methods
becomes unstable, especially when combining multiple ACD techniques. Therefore, there is still a
lack of standard methods to quantitatively evaluate the effectiveness of ACDs. In this paper, we
conducted a thorough evaluation with a hierarchical model named SPM. The proposed model is
made up of three layers integrating Stochastic Reward net (SRN), Poisson process, and Martingale
theory incorporated in the Markov chain. SPM provides two main advantages: (1) it allows explicit
quantification of the security with a straightforward computation; (2) it helps obtain the effectiveness
metrics of interest. Moreover, the hierarchical architecture of SPM allows each layer to be used
independently to evaluate the effectiveness of each adopted ACD method. The simulation results
show that SPM is efficient in evaluating various ACDs and the synergy effect of their combination,
which thus helps improve the system configuration accordingly.

Keywords: blockchain; information security; security analysis; Martingale theory; Markov chain;
Stochastic Reward Net; Adaptive Cyber Defense

1. Introduction

Blockchain technology provides cryptographically auditable, append-only ledgers
by combining data storage, cryptography, data transmission, and other technologies. The
features of distribution, smart contracts, and transaction traceability have led to the sig-
nificant adoption of blockchain. To guarantee security and reliability, blockchain-based
services should use the largest and most secure blockchain [1]. However, few companies
and projects have enough resources to build a new blockchain network or just join an
existing blockchain network such as Bitcoin. Hence, some platforms, such as Blockchain
as a Service (BaaS), emerged as solutions that embed the blockchain architecture in the
cloud computing platform, which provides the internet or big data environments with
sharing resources in an on-demand manner. The task of the same user may be executed
with multiple virtual machines (VMs) on various physical servers. Hence, developing the
blockchain on the cloud infrastructure provides a resilient architecture that supports rapid
deployment and eliminates the waste of scaling devices [2].

Nevertheless, this widely adopted virtualization technique in the cloud environment
brought security challenges to traditional defensive methods. The conventional defense
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contains security risks for presenting attackers with a static attack surface, which is de-
fined as a set of ways in which an adversary can enter the system and potentially cause
damage. If the information is static and never expires, attackers will have enough time
and resources to eventually find vulnerabilities for exploiting, developing, and launching
a successful attack. Besides, they can keep the acquired privilege for a long time without
being discovered. In brief, the static and passive defense strategy in the cloud environment
puts defenders in a disadvantaged situation. To address this problem, the Adaptive Cyber
Defense (ACD) technology “constantly changes a system to reduce or move the attack
surface available for exploitation by attackers” [3]. Such technology contains various vari-
ants, such as Moving Target Defense (MTD) [4], Cyber Mimic Defense (CMD) [5], Evolving
Defense Mechanism (EDM) [6]. The developed ACDs can be classified into three categories:
diversity, redundancy, and shuffling. Applications from different categories can be further
used in combination [7].

When deploying MTDs, as for any other security mechanism, there exists an inevitable
trade-off between the security and the overhead [8]. There is an apparent demand for
studies to find out how to evaluate the effectiveness of ACDs and protect the system at
a reasonable cost. For evaluating ACDs, a vast array of methods has been proposed in
the literature. In some offensive and defensive experimental evaluations [9–14], a specific
ACD technology (e.g., address space randomization, data randomization) was applied to a
concrete system, and then attacks were carried out. These methods are always considered
to provide high validity and high flexibility, but they are limited in the sense that they
lack a shared metric among multiple ACDs [15]. With a certain level of simplicity and
abstraction, some research based on security or mathematical models [7,16–24] formulated
the defensive process into specific security or mathematical problems and solved them
using the corresponding models. Nevertheless, compared to static networks, the dynamic
and adaptive features of ACDs lead to a more complicated scenario. As a result, multiple
traditional security evaluation methods (e.g., Attack Trees, Attack Surfaces, Cyber epidemic
dynamics) are restricted by the service condition and computational complexity [25]. In
addition, most of the current analyses focus on a specific ACD technology without con-
sidering the combined use of multiple ACDs. There is still a lack of standard methods to
quantitatively evaluate the overall cost and benefit of adopting ACDs in combination.

In this paper, the three categories of ACDs are supported by N-version programming
(NVP) [22] and virtual machine (VM) migration [23,24,26]. An adaptive cloud network
for blockchain consisting of multiple ACD nodes is taken as the application scenario.
Adversaries join the network as outsiders towards a specific target. According to the
attacking purposes, such a specific target can be either the node with the most computing
power or the node existing at a crucial location in the network.

The ACD blockchain cloud is built in two-layer with VM migration in the upper layer
and NVP in the lower layer. Then we propose a hierarchical model named SPM based on
Stochastic Reward net (SRN) [27], Poisson process [28], Martingale theory [29] and Markov
chain [28] accordingly. This three-layer model describes the different stages of an attack
spreading through the network. In the first layer, an SRN-based model is built to capture
details of a single-step attack with fine granularity, then initially evaluate the NVP approach.
In the second layer, adding a description of the time factor, the Poisson process is adopted
to quantify the defensive effectiveness of a single NVP node against repetitive attacks.
The first two layers evaluate the security of an ACD node, i.e., a blockchain node, which
lays a foundation for the following abstracted computations. Focused on VM migration,
the third layer describes adversaries’ movements along with the topology of blockchain
and calculates the attack success rate and time. Furthermore, the simulations explore the
relationship between resource consumption and security. The obtained results indicate the
effectiveness of each ACD technology and the synergy effect of combining ACDs, which
helps optimize configurations accordingly.

It should be indicated that an earlier version of this paper has been published in [30].
So, in this paper, we extend our previous investigations as follows. 1. The research objective
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is extended from improved MTD networks to more complex ACD networks integrating
multiple ACD techniques. 2. The first two layers of the early model are reconstructed to
describe the defensive process adequately. The SRN is introduced for analyzing the security
of each blockchain node and enhancing the extensibility of SPM. 3. We elaborate on the
Markov chain and Martingale theory, then we obtain the relation between system failure
rate and configuration and hence verify the result of each.

To the best of our knowledge, the proposed SPM model is the first work that evaluates
the security of a combination of ACDs that partially uses the Martingale theory. The main
contributions of this paper are three folds:

1. Hierarchical. The hierarchical structure of SPM improves the flexibility and scalabil-
ity of modeling. The three layers of SPM can be used either combined altogether to obtain
the security of the entire ACD network, or independently to evaluate the effectiveness of
each ACD method.

2. Thorough. Multiple metrics are set to describe the effectiveness of ACDs, includ-
ing each ACD node being compromised probability, the probability of the target being
compromised, mean time to attack, and mean time to repair. This thorough assessment
describes the effect of ACD technologies adopted at different network layers, improving
the evaluation scope.

3. Integrated. Incorporating the synergy of multiple ACD mechanisms in the evalua-
tion, we analyze the complete attacking process in an integrated ACD network. Further,
we compare the effectiveness of various defensive strategies to optimize the configurations.

The rest of this paper is organized as follows. Section 2 discusses some related
works. We provide background information on ACD structures in Section 3. The three-
layer security analysis model is explained in Section 4. The simulations and analysis are
presented in Section 5. Finally, conclusions and future works are drawn in Section 6.

2. Related Work

Cloud computing, as a new applied scenario, provides blockchain with flexible and
cost-effective services by on-demand resource sharing. One of the main concerns in the
new scenarios of blockchain is its security and risks of attacks. For evaluating the risks
of static defensive strategy, there are a vast array of suitable methods in the literature,
such as epistemological analysis [31], attack graph, artificial intelligence [32], entailment
relationships-based methods [33], vulnerability evaluation [34]. In view of the difficulty
with the Internet-of-Things (IoT) environment of assessing risk quantitatively due to
uncontrollable risks in complex systems, Radanliev et al. [31] proposed a set of methods
based on epistemological analysis. On the one hand, this method identifies and captures
the state of the evaluated objects in the network. It also provides a transformation roadmap
for the existing various risk assessment methods in different systems. Nhlabatsi et al. [33]
extended the entailment relationships from the field of requirements engineering in terms
of the ability to describe information security. An evaluation method is proposed, which is
based on relationships between defense strength, the exploitability of vulnerabilities, and
attack severity. This method evaluates the satisfaction degree of software requirements
on a continuous scale rather than a boolean value. These works help security managers
evaluate the system risks and devise more effective solutions.

To protect the system from another aspect, ACD techniques have been proposed to
defend against unknown network attacks. ACD technologies, such as MTD [14], CMD [35],
Evolving Defense Mechanism [6], as well as artificial diversity and bio-inspired defense [36],
have been applied in various application domains. By replicating important components
and continuously randomizing the network configuration, ACDs significantly increase the
difficulty and cost of launching attacks [37].

Because ACDs are evolving rapidly, a wide range of research [38–48] focus on how
to build ACD structures. Jafarian et al. [38] proposed the random host address mutation
as a comprehensive MTD address randomization technique. They aimed at maximizing
unpredictability and mutation rate in adversary scanning. The adversarial behaviors were
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analyzed and characterized with a two-level mutation scheme in this work. Varadhara-
jan et al. [49] developed a dynamic security policy-based approach for SDN to protect
end-to-end services and guarantee flow-based security enforcement. These techniques
guaranteed the network’s security while paying a certain defensive cost. Levitin et al. [22]
proposed a threshold-voting-based N-version Programming service component, then built
a model of its reliability and vulnerability under co-resident attack. The NVP service com-
ponents were advanced by evaluating and optimizing the voting threshold and dynamic
decision time. In this way, the service reliability was maximized while satisfying service
vulnerability constraints.

The evolved ACD technologies have been verified with various evaluation methods.
In this regard, existing previous research can be divided into two categories: (1) experiment-
based models and (2) analytical models.

Experiment-based models are always written based on the information of discrete-
event in reality with fine granularity, thus producing results with high accuracy. Without
being bound by conditions of using mathematical models and tools, experiment-based
models have advantages for small-scale scenarios. This is due to the ability to simulate
various parameters and conditions by modifying the code. In [50], Zhuang et al. came
up with an exploratory MTD system, then compared the effectiveness between a simple
MTD system and an intelligent MTD system by estimating the successful attack rate. This
was a preliminary analysis of the security of MTDs with more focus on the effectiveness of
intervals for random adaptation. Supported by software-defined networking and network
function virtualization techniques, Aydeger et al. [51] proposed an MTD route mutation
method that dynamically changes the routes for packets. The verification process of the
proposed MTD system for these works was achieved using the “Mininet” emulator. To
sum up, for experiment-based models, most existing literature results and verification were
based on a variety of simulation methods that are challenging in terms of the requirements
for a long period of time to achieve a steady state. Also, these methods do not provide
portability and reuse characteristics. In other words, if an experiment-based assessment is
designed for a specific ACD system, it becomes difficult to reuse it or migrate it to another
ACD system due to the lack of explicit expression.

Another recognized analytical method is assessing the effectiveness of ACD through
theoretical models, such as the security models, stochastic processes, and Petri nets. Com-
pared with experiment-based methods limited by the number of samples and complex
application scenarios, analytical models explicitly describe the ACDs’ effectiveness. They
always provide generalized expressions with various metrics such as attack success proba-
bility, attack utility, mean time to failure, and defense utility [3]. Such metrics make different
ACDs comparable.

As a mathematical model describing parallel systems, Petri nets are widely used
with many variants [18,52,53], such as Colored Petri nets, Generalized stochastic Petri nets
(GSPN), and Stochastic Reward Net (SRN). Mitchell et al. [18] classified system failures into
three types, including attrition, pervasion, and exfiltration. The failures and transferring
relation were described with SPN to optimize the system configuration, including intrusion
detection interval and the redundancy level. However, the costs of defenders were not
considered. Moody et al. [53] modeled the MTD using SPN with distributed and parallel
applications. They derived a qualitative conclusion that more frequent group transitions
lead to a safer system. Torquato et al. [24] focused on VM migration scheduling and
proposed an SRN for the probability of attack success and availability evaluation of an MTD.
The presented results cover VM migration scheduling, VM migration failure probability,
and attack success rate. Chang et al. [23] also researched in an environment with a migration-
based dynamic platform technique. Concerned with job completion time, they proposed the
SRN-based model to describe tradeoffs between performance and security. Chen et al. [54]
also presented an SRN for performance evaluation of MTD, but they focused on the
dynamic platform technique. They described the performance with job finish time and job
fail times.
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The Markov-based model is one of the most commonly used mathematical models
for finding the optimal defending strategy [55–57] and analyzing security. Related re-
searches also inspire our work. Focusing on the effect of MTD on an enterprise network,
Zhuang et al. [58] built a Markov chain. The probability of a successful intrusion for each
node was preliminarily computed in different attack paths. Nevertheless, disturbed by
the modeling problems as the increasing network size, they ignored the situations where
attackers can be pushed back to any previous node, leading to reduce modeling reliability.
Maleki et al. [19] introduced a Markov-based method to analyze the relationship between
the probability of a successful attack and the cost spent by the adversary in the MTD system.
They defined the concept of security capacity as a measurement to analyze the effectiveness
of single-target hiding and multiple-target hiding. However, the lack of simulation led
to a decrease in modeling reliability. Connell et al. [17] presented a quantitative model
for assessing the resource availability and performance of MTDs. They defined a stability
metric and devised a method to determine the maximum reconfiguration rate that meets
stability constraints. Their work provided further analysis of the reconfiguration-related
performance of MTD but lacked discussion about the security of MTD.

As mentioned in Section 4.1, ACD techniques are always described with categories:
Shuffle, Diversity, and Redundancy. When evaluating their effectiveness, most literature fo-
cuses on one or two categories. As another comprehensive assessment work, Hong et al. [7]
proposed a hierarchical attack representation model to assess the effectiveness of MTD.
Such a model contains an attack graph in the upper layer and attack trees in the lower
layer. Besides, the model’s scalability was improved with “importance measure”. However,
they assess the effectiveness of Shuffle, Diversity, and Redundancy one by one, rather than
adopting them in combinations.

Existing studies have contributed to the optimization of ACDs in different aspects, but
there is still a lack of comprehensive analysis of an integrated system combining various
ACD technologies.

3. System and Model Description

A virtualized blockchain network on a cloud computing platform depicted in Figure 1
is used as an example to illustrate the ACD framework with N-version programming
(NVP) [22] in the lower layer and VM migration [23,24,26] in the upper layer. In this section,
we describe the defensive process, the attacking process, and assumptions.

Normal User

RMS

Adversary

RMS

RMS

Target

Online SCV 2

Online SCV 1

Online SCV 3

Standby SCV

Standby SCV

Online SCV 1

Online SCV 3

Standby SCV

Online SCV 2

Online SCV 2
Online SCV 1

Online SCV 3

Standby SCV

Standby SCV

Online SCV 2

Online SCV 1

Online SCV 3

Standby SCV

Standby SCV

Request AttacksManagement Potential attacks 

RMS

RMS

…… 

Top 

Layer

Bottom 

Layer

RMS

RMS

RMS

…… 

…… 

…… 

…… 

…… 

Figure 1. An ACD Framework of the blockchain cloud.

For the convenience in description, we use blockchain node and ACD node inter-
changeably in the following. Each blockchain node consists of a resource management
system (RMS) and multiple heterogeneous service component versions (SCVs). An RMS
communicates with other RMSs from distinct nodes, and it also manages multiple SCVs
that belong to the same node. Hence, the network is described in two layers. The upper net-
work layer indicates the connections between RMSs, and the lower network layer indicates
connections between the RMS and VMs within each node.
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N-version programming technology is adopted at each blockchain node in the lower
layer, allocating the received tasks to multiple diversified versions. VM migration is
adopted in the upper layer, which reshuffles some nodes periodically.

3.1. System Model

NVP is one of the core redundant techniques to enhance the reliability of critical
software or services [22,59]. The requirements and tasks are performed in parallel by
functionally-equivalent variants, so-called SCVs. Then, their outputs will be voted to
determine an ultimate result provided to users according to the predetermined voting rules,
such as majority voting, Byzantine voting, threshold voting, and plurality voting. Similar
to [22], in this paper, we adopt a threshold voting, and the outputting threshold is denoted
as M.

When receiving a request, the RMS assigns it to N online SCVs denoted as SCV1, SCV2,
. . . , SCVN . After a while, each online SCV has one chance to send output vectors as
responses. The RMS waits until receiving enough result vectors. The identical vector
counted more than or equal to M is regarded as the correct one and is outputted to the
users. Standby SCVs will replace other SCVs that sent different vectors in the next round to
prevent the attack pervasion among multiple blockchain nodes. When all SCVs complete
their tasks, if the number of identical results is less than M times, the RMS will return an
error message prompting subsequent processing. To avoid more than one result reaching
this threshold simultaneously, we defined M > N/2.

VM migration is prevalent among ACD technologies for securing cloud computing.
The targets to be protected are moved across diverse platforms randomly. Various tech-
niques are available for container migration [23,40,60] and VM migration [23,24,26] between
heterogeneous physical hosts.

In the ACD network, each node randomly migrates with probability ω in each fixed
migration period T. The corresponding RMS migrates to a new physical host, and the
old VMs are taken off. Then the current state of the application, along with the associated
service, is migrated to the new VMs [14]. VM migration invalidates sniffed information
and inserted back doors, so time is an essential constraint for attackers. In this way, the
diffusion of attacks in the network is disrupted.

3.2. Attacking Model

We use the attacking model combining scenarios from [7,14,22]. In Figure 1, the
system hardware is assumed to be trusted, and only vulnerabilities of SCVs are taken
into consideration as in [7]. We also assume that online SCVs are attacked independently,
and the attacker is located outside the virtualized system. Based on the severity of the
damage, the attacks can be (a) passive attacks or (b) active attacks [61,62]. In the former
case, attackers are interested in eavesdropping on the communication between users to
reconnoiter some information without meddling in the database, such as traffic analysis
and wiretapping. In these scenarios, attackers achieve their goal without compromising
all SCVs. Interested in disrupting, intercepting, or modifying network communications,
the latter case always generates false data and tampers with clean data, such as tampering,
forgery, and Denial of Service (DoS). In these scenarios, attackers need to compromise a
certain number of executors. The first scenario can be seen as a particular case of the second
one when M = 1. Hence, in this paper, we concentrate on the second case, which is more
intricate whereas the proposed model can be adjusted to suit the first case.

To launch a 51% attack that threatens the system security, attackers only need 25%
of the computing power [63]. Hence, nodes with more computing power are easier to
be targeted by attackers. For instance, for an active attack scenario, an outsider attacker
intrudes into the ACD network from the internet through a blockchain node (entrance)
towards another target node. As in [14,22], the RMS manages the locations of nodes it needs
to communicate with and defines communication patterns between them. As a result, even
if a node is compromised, the attacker must follow the exact communication pattern to
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hide and keep their privileges. So, for this attacker, a legitimate path of nodes between an
entrance and the target makes up an attack chain. We assume that attacks outside the attack
chain will be identified and captured by the defender, so only attacks inside the chain will
be analyzed. On the way to approach the target, the attacker needs to compromise each
node one by one throughout the attack chain. For every movement forward, the attacker
must compromise connective SCVs to detect the following location to attack before the
node is migrated. When attacking each node, the attacker tends to compromise a certain
amount of SCVs with a specific wrong output out of expectation for the defenders and
obtain sensitive information about the subsequent nodes.

An example. Before we present the three-layer analytical model, we introduce an
example to illustrate the attacking process, as shown in Figure 2. As Figure 1 shows, the
attacker has crushed two nodes and is attacking the third node (i.e., the online SCVs of the
first two nodes are all compromised drawn in red cold, and part of the SCVs of the third
node is drawn in red).

Select node 3 

as the  target 

Single-step 

attack

N

Node 2 is 

migrated

Select node 2 

as the  target 

Single-step 

attack
Successful 

attack

Y: (Moving to 

the next node) 

N: (Repetitive

 attacks)Y: (Moving back to the last node)

…
Y

Single-step 
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N

Y
…
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as the  target 

Y: (Moving to 

the next node) Successful 

attack

Node 2 is 

migrated

N: (Repetitive 

attacks)

Corresponding to the first layer of SPM

Corresponding to the second layer of SPM

Corresponding to the third layer of SPM

At present, the attacker 

stay at the node 2, and he 

is attacking the 3.

Figure 2. The Attacking Process.

The attacking process can be divided into three layers. The whole attacking process
contains many migration periods according to the adopted defensive mechanism. Each
migration period consists of many repetitive attacks on a single node. Repetitive attacks
involve many single-step attacks. Firstly, to compromise an ACD node, the attacker sends
requests with malware to the node’s RMS after obtaining the host information. RMS is
unable to distinguish a malicious request from the arriving requests. So, all requests are
allocated to the VMs together. By co-residing with VMs, attackers can obtain and tamper
with sensitive information. When the attacker compromises at least M VMs, corresponding
to the threshold required to pass in the N-version verification, it successfully corrupts the
ACD node. At this time, the attacker can obtain all sensitive information related to traffic
between nodes and the necessary privileges to advance towards the destination nodes,
such as the locations of the following hosts and the communication pattern between them.
This attacking process on an ACD node is called a single-step attack, taken as an atomic
process. Secondly, to improve the successful attacking probability, single-step attacks can
be launched repeatedly until a successful attack or a service migration occurs. Due to
the replacement of suspicious SCVs after the voting process, the experience gained from
performing repetitive attacks on the same node cannot be accumulated indicating that
in this context, the attacks are memoryless, and they can be modeled that way. Finally,
depending on the offensive and defensive results obtained over each migration period,
the attacker moves along the attack chain and changes its target. The movements among
different migration periods correspond to the upper layers of Figure 1, and we focus on
analyzing the movements of the attacking locations in the third part of the analysis. The
timeline of attacking is shown as Figure 3.
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Figure 3. Attack Timeline.

Therefore, the attacking processes in the blockchain cloud can be analyzed from the
three layers as shown in Figure 4, including single-step attacks, repetitive attacks against
one node over a migration period, and attacker movements among different migration
periods. According to the characteristics of the defensive process in each layer, we propose
a three-layer model named SPM to analyze the effectiveness of an ACD network. SPM
is a hybrid model combining multiple theoretical methods, including Stochastic Petri
nets, Poisson process, Markov chain, and Martingale theory. Similar to most theoretical
models [64], we do not aim at evaluating the system parameters into an absolute security
value but in relative terms to the set under evaluation.

Single step attack (SRN)

Chain attacks (Markov+Martingale)

Repetitive attacks (Poisson Process)

N

M

ri

pA
pW

r
T

L

ω

μ
L

MTTA Security of 

the upper

network 

Security of 

the lower 

network (i.e., 

each node) 

MTTR

Figure 4. SPM model framework.

Several assumptions are adopted from [7,19,23] to simplify the analysis:

1. The attacker compromises one blockchain node at most in each migration period.
2. Node information is wholly changed after migration, so the attacking difficulty will

be the same when attacking the same node again.
3. The probability of compromising each node is independent and identically distributed.
4. In the third part of the SPM model, only the node under attack and the node from

which attacks originated are considered in the migration process, which results in
attack failure, and the attacker is repelled.

5. All time intervals are assumed to be exponentially distributed.

4. Security Analysis

We summarize the main notations as in Table 1. Figure 4 describes the framework of
the SPM model. Generally, the proposed model is made up of three interconnected layers.
On the bottom layer, we built an SRN model for evaluating the security of each node that is
guaranteed by NVP technology, whereas a Markov model that analyzes the effectiveness
of VM migration was presented at the top layer. Both layers are connected through the
Poisson-based model (middle layer).

It should be mentioned that although the bottom layer’s SRN is a Markovian formal-
ism, it has no direct relevance to the Markov-based evaluation computations performed
on the top layer. While the steady-state of the SRN model describes the possible result
of attacking an ACD node once, the steady-state of the Markov model describes the total
number of the compromised nodes within the attack chain (i.e., the attacker location). Each
layer focuses on an attacking phase in a way that the output of each layer is used as an
input to the upper layer. Each evaluation method, be it SRN, Poisson process, or Markov
and Martingale, was selected based on the features of the corresponding defensive process
(NVP and VM migration). The reasons for selecting each of these methods for each layer
are given below.

First, for the single-step attacking process against a node, we focus on the internal
structure of an ACD node by adopting NVP. Such a defensive process by nature includes
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many detailed behaviors and interactions between the attacker and the defender. This
makes it complicated to be described by Markov or the probabilistic method. We use SRN
for its ability to model a system in a form that is closer to the system designer’s intuition
about what a model should look like [23]. Consequently, for the bottom layer, we suggest an
SRN-based model to evaluate the single-step attacking process with graphical expression.
The defensive capability is quantitatively measured by the success rate of each one-step
attack as in [18,53,65]. The details are shown in Section 4.1.

Table 1. Summary of Notations.

Variable Description

SRN model

N A positive integer denoting the number of online SCVs

M A positive integer indicating the output threshold, M ∈ [dN/2e, N]

ri The being compromised probability of SCVi

pA The probability of compromising one node by an attack

pW The working probability of a node

Poisson model
r Attack rate

µ The probability of compromising one node over each migration period

Markov Martingale

T Migration period

ω The probability for each node to be migrated in every migration period

L The length of attack chain

πi The probability of ith node being compromised

MTTA Mean Time to Attack: the expected time until the attacker compromises his
target (ω < µ/(µ + 1))

MTTR Mean Time to Repair: the expected time until the attacker is being returned
back to the entrance (ω > µ/(µ + 1))

Then, because the repetitive attacks during a migration period are memoryless, we
adopt the Poisson distribution for describing the number of attacks in each migration
period similar to [23,60]. The Poisson distribution is most appropriate for modeling the
times of occurrence of critical memoryless events. We demonstrate how the success rate of
repetitive one-step attacks over each migration is obtained, as shown in Section 4.2.

The position of an attacker on an attacking chain is identified by the corresponding
attacked node’s position. Compared with the last migration period, the attacker moves
along the attack chain in three possible directions: going to attack the next node, going back
to the previous node, or staying at the same node. Regardless of how an attacker reaches
his current position on the attack chain, his next position depends solely on his current
position. Therefore, in the third layer, a homogeneous discrete-time Markov chain (DTMC)
is built to describe this process and calculate the steady-state probability of compromising
the target. This analysis forms the foundation for Martingale theory whereby we further
develop a Martingale model for calculating the time of compromising the whole network.
The details are shown in Section 4.3.

4.1. Single-Step Attacks

SRN improves on Stochastic Petri Nets (SPN) in terms of the ability to specify output
measures as reward-based functions. It is a mathematical modeling language for a detailed
description of current systems such as concurrency, synchronization, sequencing, and
multiple resource possession.

This section presents the proposed SRN model, consisting of two sub-models: Task
Sub-model and Arbitrating Sub-model. The example in Figure 5 presents one of the
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configurations N = 3 and M = 2. In such an example, the RMS of an ACD node is
mapped to three SCVs, and the output threshold is two.

t1aw

P0

P1 P2 P3

P1W P1A P1E P2W P2A P2E P3W P3A P3E

PWW PEWPAW

td

t1w t1a t1e

t1ww t1ew

t2w t2a t2e

t2ww t2aw t2ew

t3w t3a t3e

t3ww t3aw t3ew

[done] [done] [done]

PV[flash_e]

PVW

PAPW PE

PD

[attack] [error][work]

[flash_a]

twv tav tev

twd tad ted

tf-a

tf-e

tw ta
te

a) Task Sub-Model b) Arbitrating Sub-Models

3

1

Figure 5. SRN model.

The proposed SRN model describes the execution process of a task by N SCVs. It has
several possible results: either (1) the task is completed with a correct vector, (2) the task
is tampered with by a compromised vector, or (3) the SCVs mistakenly return erroneous
vectors even if they are not attacked. In the third case, it is challenging for these SCVs
to generate an identical error. Similar to [22], we assume a negligible probability that
an unexpected mistake and the compromised output designed by the attacker coincide.
Additionally, we distinguish them with Error and Attacked states and assume that the
corresponding error results and compromised results never match each other.

Depending on the number of correct, compromised, and error results, the states of an
ACD node are classified into three types.

Working (W). SCVs finish with at least M correct results. In this state, the RMS takes
the correct result as the output.

Attacked (A). An attacker compromises at least M SCVs with a compromised result.
RMS receives these consistent wrong results and votes them as the legal ones to output.
The node is in a compromised state.

Error (E). In N results from SCVs, there is no legal output received more than M times.
In Figure 5, the Task sub-model represents a task executed in online SCVs, and

Arbitrating Sub-model describes that the RMS votes on the received vectors. The notations,
settings of transitions, and guard functions are defined in Tables 2–4 respectively. In these
three tables, the index i represents the number identifying the selected SCV where i ∈ [1, 3].
The element x indicates different status and x ∈ w, a, e for transitions and x ∈W, A, E for
places. Using these graphs, the SRN model describes the intricate defensive processes in a
more comprehensible way.

In Figure 5, the “place” circles denote the system status. Filled rectangles denote
immediate transitions, while open rectangles denote timed transitions. Both transitions
describe “behaviors” during the defensive process. Immediate transitions are controlled
with transferring probabilities and guard functions. Timed transitions are measured with
firing rate, whereas their firing time is an exponentially distributed random variable.

Places P0 and PVW initially have a token, respectively, representing that the ACD
node receives the task. The executing process contains two steps: (1) task execution, and
(2) arbitration.

Task execution. If the place P0 holds a token, the task is allocated to each SCV. This is
described by transition td. After the place Pi receives the token, the corresponding SCVi
executes the task in working, attacked, or error status and outputs a corresponding result.
As shown in Table 3, tokens go in such three statuses with different firing probabilities.
Such firing probabilities would be assigned based on the parameters measured in reality
and current scores of vulnerabilities in each SCV [50]. These details are shown in Section 5.
The place PWW , PAW , and PEW receive tokens when SCVs return results. When all SCVs
finish their task, they wait for RMS arbitration.
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Arbitration. The arbitration process is mainly controlled by guard functions, which
are listed in Table 4. Guard functions are Boolean expressions evaluated based on the
net current marking. They disable the associated transition when the boolean expression
returns false [26].

Table 2. Notation in the SRN.

Notation Description

P0 The ACD node receives a task

td/Pi SCVi starts proceeding the task

tiw/PiW SCVi executes the task in working status

tia/PiA SCVi is attacked

tie/PiE There are some errors in SCVi

tiww/PWW SCVi returns a correct result to the RMS and waits for arbitrating

tiaw/PAW SCVi returns a compromised result to the RMS and waits for arbitrating

tiew/PEW SCVi returns another error result to the RMS and waits for voting

tx/PV RMS finishes the vote

PVW RMS is waiting for voting

txv/PX The x vector is arbitrated as the right one. The ACD node is in an x state

txd/PD The arbitration is done

t f−a/t f−e Flash and the next round

Table 3. Firing probabilities of transitions in the SRN.

Transition Firing Probability

tia λ(tia) = ri

tie λ(tie)

tiw λ(tiw) = 1− λ(tia)− λ(tie)

Table 4. Guard functions of the SRN.

Guard Function Definition

done if(#PD == 1) return (1); else return (0);

work if((#PWW == 2&&#PAW + #PEW == 1) || #PWW == 3) return (1); else
return (0);

attack if((#PAW == 2&&#PWW + #PEW == 1) || #PAW == 3) return (1); else
return (0);

error if((#PEW == 2&&#PWW + #PAW == 1) || #PEW == 3 ||
(#PWW == 1&&#PAW == 1&&#PEW == 1)) return (1); else return (0);

f lasha if(#PV == 1) return (1); else return (0);

f lashe if(#PVW == 1) return (1); else return (0);

When all SCVs finish their task, tokens represented correct, compromised, error results
are intercepted at places PWW , PAW , and PEW respectively due to the function done. Ac-
cording to the voting rule and the number of tokens in such PxW places, RMS will pick
one vector as the “correct” output. The picked vector reflects the state of this node. Hence
one of the three functions work, attack, and error will return 1, and the other two will
return 0. The detailed definition of guard functions is listed in Table 4. Then the token in
arbitrating sub-model goes to the corresponding place PX . After a while, the token moves
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to the place PD, indicating the end of arbitration. By this time, the function done of the task
sub-model returns 1, and all tokens move to place PV . Places PV and PD collect tokens in
the proposed sub-models. Functions f lasha and f lashd are utilized to guarantee that tokens
in two sub-models are transferred to the initial places P0 and PVM simultaneously.

It is worth noting that the number of the arbitrating sub-model is always 1, but in
the task sub-model, the token number increases to 3 after the transition td and it should
be reinitialized to 1 when the token is set back to the initial place. The re-initialization is
supported by setting the arc weights between PV and t f−e as 3. After that, PV collects 3
tokens and returns 1 token to P0.

The average number of tokens in place PA, PW and PE in steady-state expresses
working probability (pW), being compromised probability (pA), and error probability (pE)
respectively.

4.2. Repetitive Attacks Against a Node before Migration

As mentioned in the previous section, to improve the successful attacking probability,
single-step attacks can be launched repeatedly until a successful attack or an effective
migration occurs. Similar to [7], we assume an attacker without memory. In this case,
the repetitive attacks are independent of each other. Following [18,60,66], we describe the
number of attacks on a node as a Poisson distribution. The average number of arrivals per
interval is denoted as ϕ. According to the previous section, a single-step attack follows
a Binomial distribution with pA successful probability. Then, in a migration period, the
number of successful attacks follows a Compound Poisson distribution [28].

Let Y(t) be a discrete random variable for the number of attacks before time t. Y(0)
indicates that attacks of this node start at time 0. According to Poisson distribution, the
probability of a node being attacked i times can be obtained as

P{Y(t)−Y(0) = i} = e−ϕt · (ϕt)i

i!
. (1)

Let F(t) be a discrete random variable for successful attacks before time t. Considering
the Binomial distribution, the probability of the node being compromised k times is

P{F(t)− F(0) = k} =
∞

∑
i=k

(ϕt)i

i!
· e−ϕt ·

(
i
k

)
· pk

A · (1− pA)
i−k

= e−ϕ · (pA · ϕ)k

k!
·

∞

∑
j=0

[ϕ(1− pA)]
j

j!
= e−ϕ · (pA · ϕ)k

k!
· eϕ(1−pA)

=
(pA · ϕ · t)k

k!
· e−pA ·ϕ·t.

(2)

Thus, the number of successful attacks on a node also follows a Poisson distribution
with ϕ′ = ϕ · pA. If attack rate for the system is represented as r, ϕ = r and ϕ′ = rpA.

Then we have the probability of no successful single-step attack in the first period is

P{F(T)− F(0) = 0} = e−TrpA . (3)

Computationally, it is possible to successfully attack a single node repeatedly within
one migration period. But in reality, the attacker only needs to succeed in attacking this
node once. The probability of compromising one node over each migration period is

µ = 1− e−TrpA . (4)

4.3. The Attacking Process after ACD Migration

In this section, we focus on the effectiveness of adopting migration at the upper
network. Discrete-time Markov chain and Martingale theory are performed for analyzing
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the migration process. The movement of an attacker is described as a stochastic walk
along the attack chain. Markov chain is used to calculate the steady-state probability of an
attacker staying at each node. Further, a Martingale sequence is constructed based on the
Markov chain. Using the Martingale stopping-time theorem, we quantitatively obtain the
expected time of an attacker moving to the next or previous Lth node.

4.3.1. Stochastic Walk

In the previous subsection, we obtained the probability of compromising a single node
over a migration period denoted as µ. Defenders randomly reconfigure the allocation of
each node with probability ω in each migration period to prevent attacks. An attacker’s
movement is described as stochastic walks along an attack chain. The corresponding
Markov chain is built as Figure 6. The Markov chain has L + 1 states where L indicates the
length of the attack chain. The state i denotes that i nodes have been compromised after
the last migration, and the attacker is currently attacking (i + 1)th node. The successful
state of attacks is represented by state L (i.e., node G shown in Figure 1). As mentioned in
Section 3.2, we concentrate on the active attack. In this scenario, while the attacker aims to
shut down the functionalities of nodes, the defender attempts to resume functions using
VM migration.

Similar to [18,19], we slightly modify the game by giving the adversary an extra
advantage. The defender can only migrate the nodes from where the attack occurred. For
this defenders’ restriction game, only if the attacker has compromised ith node then the
attacker and defender are allowed to play at jth node (j ≥ i).

0 1 i i+1 L

(1-ω)μ (1-ω)μ (1-ω)μ (1-ω)μ

ω ωωω

1-μ(1-ω)

(1-μ)(1-ω) (1-μ)(1-ω) (1-μ)(1-ω)

(1-ω)

…

…

…

…

Figure 6. Markov chain of the stochastic walk.

We describe the stochastic walk with a transition matrix G(L+1)×(L+1), where L + 1
columns (and rows) denote the L + 1 states. The cell Gi,j denotes the transition probability
from the ith node to the jth node. Compared with the last period, the attack will move
in three possible directions: going to the next node, going back to the previous node, or
staying at the same node. The transition probabilities are shown as follows:

(1). Gi,i−1 = ω. Once the node from which the attacks originated (i.e., node i) migrates,
attacks cannot be carried on. The attacker must return to the previous node and attack
node i again.

(2). Gi,i+1 = (1− ω)µ. No effective migration occurred before the node i + 1 was
compromised, so the attacker moves to the next node. The probability is Gi,i+1 = (1−ω)µ,
with probability µ attacking node i + 1 successfully and probability (1− ω) means that
node i does not migrate.

(3). Gi,i = (1− ω)(1− µ). No successful attack or effective migration has occurred,
which are expressed with probabilities (1− µ) and (1−ω) respectively.

4.3.2. The Steady-State Probability of Each Node

Let X0, X1, . . . , Xn be random variables, where Xi ∈ [0, L] denotes the attacking loca-
tion at the beginning of ith migration period. At X0 = 0, the attacker is at the initial position
which is the attacking entrance.

When a Markov chain is irreducible aperiodic, it has only one stationary distribution
{πj, j ∈ [0, L]} [28]. First, for each pair of nodes in the built Markov chain, a path exists from
node i to node j, so this makes it an irreducible Markov chain. Then, as for periodicity, the
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Markov chain can return to its state with a period greater than 1. For a positive recurrent
state i, its period d can be calculated as

d = gcd|{n > 0 : p(Xn = i|X0 = i) > 0}, (5)

where gcd|{·} denotes the greatest common divisor of the set elements. The period of this
Markov chain is 1. Thus, it is an aperiodic Markov chain.

Then the steady-state probability πi (i = 0, 1, . . . , L) that the attacker has compromised
i nodes satisfies,

(1−ω)µπ0 = ωπ1, (6)

. . .

(1−ω)µπk−1 + ωπk+1 = (1−ω)µπk + ωπk, (7)

. . .

(1−ω)µπL−1 = ωπL, (8)

where k = 3, . . . , L− 2.
If ω = (1−ω)µ, πi follows a uniform distribution, then

πk =
1

L + 1
for k ∈ [0, L]. (9)

Otherwise, ω 6= (1−ω)µ, according these relations, πi can be given by formulas by tagging
π0. Then, since the sum of all probabilities is equal to 1, π0 can be computed. Through the
finite number of computing steps according to the relation between πi and π0, we get the
values of πk. For ease of presentation, we denote that D = (1−ω)µ.

πk =
ω− D

ω− (D/ω)LD

(
D
ω

)k
, (10)

where k ∈ [0, L]. It can be proved that 0 < πk < 1 and ω− (D/ω)LD 6= 0, if ω 6= D.
Hence, the steady-state probability of the target node being compromised can be

expressed as

πL =


ω− (1−ω)µ

ω−
[
(1−ω)µ

ω

]L

(1−ω)µ

[
(1−ω)µ

ω

]L

ω 6= (1−ω)µ,

1
L + 1

ω = (1−ω)µ.

(11)

4.3.3. The Expected Time about Attacking

In this subsection, the attacking process is analyzed on a longer and extended attack
chain that has no closure on both ends to study the relative mobility of attacks, as shown
in Figure 7. We also assume that the attacker has compromised k nodes. The martingale
theory is adopted to calculate the expected time for the attacker to move to the next L node
(i.e., node k + Lth) or be returned to the previous L node (i.e., node k− Lth). Martingale [29]
is formally defined as:

Definition 1. A stochastic process {Zn, n ≥ 1} is said to be a martingale process if, for all n,
E[|Zn|] < ∞ and E[Zn+1|Z1, Z2, . . . , Zn] = Zn.
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Figure 7. The extension Markov chain.

We elaborate on the Markov chain, which structures a foundation for introducing the
Martingale theory. When the attacker stays at the node k at the beginning of nth migration
period, the probabilities of the following states are expressed as follows:

P{Xn+1 = k + 1|Xn = k} = (1−ω)µ, (12)

P{Xn+1 = k|Xn = k} = (1−ω)(1− µ), (13)

P{Xn+1 = k− 1|Xn = k} = ω. (14)

Hence,
E[Xn+1|Xn = k] = k + (1−ω)µ−ω = Xn + (1−ω)µ−ω. (15)

Then we build a martingale sequence.

Theorem 1. Let M0, M1, . . . , Mn be independent random variables, where Mi = Xi − [(1−
ω)µ−ω] · i, then the sequence Mn is a Martingale with respect to X0, X1, . . . , Xn.

Proof. It can be seen that E[|Mn|] < ∞. As mentioned in Section 4.3.2, the random walk
starts at the attacking entrance, i.e., X0 = 0. Then

E[Mn+1|X0, X1, X2, . . . , Xn] = E[Mn+1|Xn]

= E[Xn+1 − [(1−ω)µ−ω] · (n + 1)|Xn]

= E[Xn+1|Xn]− [(1−ω)µ−ω] · (n + 1)

= Xn + (1−ω)µ−ω− [(1−ω)µ−ω] · (n + 1)

= Xn − [(1−ω)µ−ω] · n
= Mn.

(16)

After building a Martingale sequence, we now need to calculate the attacking time by
first addressing the stochastic stopping time.

Definition 2. The positive inter-valued, possibly infinite, random variable N is said to be a random
time for the process {Zn, n ≥ 1} if the event {N = n} is determined by the random variables
Z1, · · · , Zn. That is, Z1, · · · , Zn determines whether or not N = n. If P{N < ∞} = 1, then the
random time N is said to be a stopping time.

The overall movement direction of the attacker on the attack chain can be affected by
the different relative strengths between defending and attacking abilities. For example,
in case the attacking ability ((1− ω)µ) is bigger than the defensive ability (ω), then the
attacker is getting closer to his target and vice versa. This means that the arrival time to
the next Lth node tends to be positive, when E[Xn+1|Xn] > Xn, i.e., ω < µ/(µ + 1). On
the contrary, When E[Xn+1|Xn] < Xn, i.e., ω > µ/(µ + 1), the probability of moving to
the next node is smaller than this of returning to the previous node. Migrations exile the
attacker who eventually loses all the obtained illegal privileges and hence the arrival time
to the next Lth node tends to be “negative”.

However, the metric of “time” must be positive. So, we analyze the first arrival time
to a specific node in different scenarios according to different relations between ω and
µ/(µ + 1).
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A. ω < µ/(µ + 1)
In this case, the position at which an attack starts is denoted as the initial position, i.e.,

X0 = 0.

Definition 3. The stopping time S of the Martingale is the minimum value of i making

E[Xi] = L, (17)

when ω < µ/(µ + 1).

To calculate the expected number of steps to the next Lth node, we adopt the Martingale
stopping-time theorem, which is proved in [28].

Lemma 1. When S is a stopping time of a martingale process {Zn, n ≥ 1}, and satisfy either:
A. The stopped process Zn are uniformly bounded, or
B. S is bounded, or
C. E[S] < ∞, and there is an M < ∞ such that

E[|Zn+1 − Zn||Z1, . . . , Zn] < M, (18)

then
E[ZS] = E[Z0]. (19)

Theorem 2. For an ACD game with µ as a probability of compromising a single node and ω as the
probability for each node to be migrated in every period T, the expected number of migration periods
until the attacker arrives at the next Lth node is

E[S] =
L

(1−ω)µ−ω
, ω < µ/(µ + 1). (20)

Proof. When (1−ω)µ > ω, the condition of stopping time S is XS = L. The arrival time
of the next Lth node tends to be positive. The last n rounds can determine whether n and
S are equal. So, the time S is the stopping time of Martingale. To show that Lemma 1 is
applicable, we verify the third condition.

E[|Mn+1 −Mn||M0, . . . , Mn]

= E[Xn+1 − Xn||M0, . . . , Mn]

= E[Xn+1 − Xn|]
≤ 2E[|Xn|].

(21)

Then, the number of steps required to reach the node L can be calculated based on the
Lemma 1: E[MS] = E[M0] = E[X0] = 0.

E[MS] = E[XS − [(1−ω)µ−ω] · S]
= E[XS]− [(1−ω)µ−ω] · E[S]
= 0,

(22)

and because
E[XS] = L, (23)

thus
L− [(1−ω)µ−ω] · E[S] = 0, (24)

E[S] =
L

[(1−ω)µ−ω]
. (25)
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B. ω = µ/(µ + 1)
Similar to the Markov model analysis, the states follow the uniform distribution when

ω = µ/(µ + 1) and so, the attacker tends to stay at the same position. His arrival time to
any other node goes to infinity because of E[Xn+1|Xn] = Xn.

C. ω > µ/(µ + 1)
When ω > µ/(µ + 1), the expected arrival time to the next ith node is “negative”,

which has no practical significance. Nevertheless, in this case, the time to exile the at-
tacker can be calculated, which reflects the network’s ability to repair itself from its worst
condition.

When (1−ω)µ < ω, we assume that the attack has been successful initially, denoted
as X′0 = L. X′i represents the identical distribution with Xi, but it indicates that the attacker
starts at a different position than X0 = 0. The node being attacked at the beginning of the ith

migration period is represented by the random variable X′i . We analyze the expected time
for migration to exile an attacker to the previous Lth node (the newly assumed entrance).

Definition 4. The stopping time S′ of the Martingale is the minimum value of i making

E[X′i ] = 0, (26)

when ω > µ/(µ + 1).

The condition of stopping time is X′S′ = 0. The corresponding sequence M′i =
X′i − [(1− ω)µ− ω] · i is still a Martingale with respect to X′0, X′1, . . . , X′n. The different
beginning times and relations between (1−ω)µ and ω affect the selection of stopping time,
but they do not affect the sequence Xn and Mn. X′i and M′i can be viewed as the sequence
Xi and Mi starting from other nodes.

Theorem 3. For an ACD game with µ as the probability of compromising a single node and ω as
the probability for each node to be migrated in every period T, when the attacker currently stays at
the Lth node, the expected number of migration periods until the attacker is being returned back to
the entrance is

E[S′] =
L

ω− (1−ω)µ
, ω > µ/(µ + 1). (27)

Proof. Similar to the proof when ω < µ/(µ + 1), the time S′ is the stopping time of
Martingale, and the Lemma. 1 is applicable.

According to the Lemma. 1, the number of steps to repair the network satisfies
E[M′S′ ] = E[M′0] = E[X′0] = L.

Then the number of steps required to reach node L can be calculated according to the
Lemma 1 and E[XS′ ] = 0:

E[M′S′ ] = E[X′S′ ]− [(1−ω)µ−ω] · E[S′] = L, (28)

thus
E[S′] =

L
ω− (1−ω)µ

. (29)

Corollary 1. For an ACD game with µ as the probability of compromising a single node and ω as
the probability for each node to be migrated in every period T, the expected time until the attacker
moves to the next or previous Lth node is

E[TA] =


LT

ω−(1−ω)µ
ω > µ/(µ + 1),

∞ ω = µ/(µ + 1),
LT

(1−ω)µ−ω
ω < µ/(µ + 1).

(30)
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4.4. Conclusions

The Mean Time to Attack (MTTA) and Mean Time to Repair (MTTR) are used to
distinguish different scenarios. For a given system with parameters: L, ω, T, r, M, N and ri,
we distinguish the time MTTA from MTTR as

MTTA =
LT

(1−ω)(1− e−TrpA)−ω
, ω <

1− e−TrpA

2− e−TrpA
, (31)

MTTR =
LT

ω− (1−ω)(1− e−TrpA)
, ω >

1− e−TrpA

2− e−TrpA
. (32)

5. Simulation and Analysis

The simulation is carried out in three steps. In the first step, we focus on the security
of each NVP node in various configurations, including the number of SCVs (i.e., N) and
the output threshold (i.e., M). The defensive ability against repetitive attacks with time (t)
is further analyzed. These simulations correspond to the analysis in Sections 4.1 and 4.2.
Then, considering Section 4.3, we demonstrate the defensive ability of migration from two
aspects: the steady-state probability and the time of compromising the target. Thus, in
the second step, we explore the influences of single-node compromising rate (i.e., µ) and
migration range (i.e., ω). In the third step, by combining the previous analysis altogether,
we explore the security of the whole network (i.e., MTTA and MTTR), when adopting
NVP and VM migration together.

The network setup is initialized by giving some default settings. The attack chain
consists of 30 nodes. For each node, 10 SCVs are prepared as standby SCVs. For each
SCV, the probability of being compromised is listed in Table 5. BS indicates the Base score
obtained according to the Common Vulnerability Scoring System when the proposed model
is adopted in a real-world system. Other default values used in the proposed SRN model
are listed in Table 6. Besides, the single-step attack rate is set to r = 0.05 per hour for
repetitive attacks. This simulation scenario with the given parameters was adopted from
distinct recent papers [18,24,60,67] and adjusted according to our application systems.

Table 5. 10 SCVs and Their Base Score.

SCVi 1 2 3 4 5 6 7 8 9 10

BS 5.8 6.0 7.5 5.0 9.3 6.8 5.0 7.5 10 4.3

Table 6. Parameters used in the SRN.

Name Description Parameter

λ(tie) The error probability of a SCV 0.1

λ(tia) The compromising probability of a SCV BS(SCVi)/20

r The single-step attack rate 0.05/h

L The length of attack chain 30

5.1. Anti-Attack Ability Brought by NVP

We take N = 4, 5, 6, 7, 8 and M ∈ [dN/2e, N] correspondingly. For the 10 SCVs in
Table 5, the 2nd, 4th, 6th, and 8th SCVs are selected as the online SCVs for N = 4, which
is denoted as OE4={#2, #4, #6, #8}. Analogously, the set of online SCVs with different N
value are built as follows: OE5={#1, #3, #5, #7, #9}, OE6={#1, #3, #5, #7, #9, #10}, OE7={#2,
#3, #4, #6, #7, #8, #9}, as well as OE8={#1, #2, #3, A#4, #6, #7, #8, #10}.
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5.1.1. Single-Step Attack

The SRN model is formulated with the Stochastic Petri Net Package (SPNP) [68]
whereby we obtained the probabilities of a node being compromised and working under
single-step attacking. Table 7 compares the effectiveness of various redundant systems,
where baseline values BLs describe the corresponding standard system without NVP. The
relevant compromising probability of BLj is calculated as the average λ(tia) as

pA j =
∑ λ(tia)

j
. (33)

For the same N value, when M approaches N, a strict criterion is indicated. With M
approaching N, Table 7 exhibits both the rapid decrease in the probability of a single node
being compromised and normally working. That is, while the probability of “error” is
increasing, the attack success and system availability rates decrease. Although it is difficult
for the attacker to tamper with the final result, the system function can be disabled by
tampering with several outputs from online SCVs. Therefore, an extremely high output
threshold is not recommended.

Moreover, to compare the effectiveness of various N, we observe the values where
M = dN/2e. We found that all compromising probabilities are lower than the correspond-
ing BLs which demonstrates the effectiveness of NVP. However, compared with M, the
differences among different N were insignificant. The decrease in the probability of a node
being compromised is related to the statistical properties of the original OEj set. In other
words, there exist a proportional relation between OEj and this probability, in a way that
the safer the OEj is, the more significant safety gain will be brought by NVP. According
to the values where M = N indicates the reachable minimum pE for a certain N value,
with the increase in N, pE value decreases and therefore makes the system’s dependability
higher.

Table 7. Probabilities of a node being compromised and working.

(N, M) BL3 (3,2) - (3,3) BL4 (4,3) - (4,4)

pW 0.6483 0.7164 - 0.2716 0.5838 0.4467 - 0.1147

pA 0.2517 0.1574 - 0.0156 0.3162 0.0951 - 0.0096

(N, M) BL5 (5,3) (5,4) (5,5) BL6 (6,4) (6,5) (6,6)

pW 0.524 0.5458 0.2130 0.0362 0.5508 0.4410 0.1573 0.0248

pA 0.376 0.2727 0.0649 0.0063 0.3492 0.1096 0.0190 0.0014

(N, M) BL7 (7,4) (7,5) (7,7) BL8 (8,5) (8,6) (8,8)

pW 0.5586 0.6282 0.3306 0.0157 0.6006 0.5960 0.3151 0.0163

pA 0.3414 0.1822 0.0473 4.48 ∗ 10−4 0.2994 0.0559 0.0106 5.59 ∗ 10−5

5.1.2. Repetitive Attacks

The repetitive attacks on an ACD node are simulated to describe the anti-attack ability
of a single node for a long time. According to the above simulation, we choose the data
with N = 8 due to the relatively small “error” probability. Figure 8 shows the reduction
of attack success probabilities to describe the difference between ACD nodes and other
standard nodes without ACD (BLi) in terms of their defensive ability. The reduction of
repetitive attack success probability for N = j can be represented as

reductionj = e−T∗r∗pA j − e−T∗r∗pAj , (34)

where pA j indicates the average pA of BLj in Table 7.



Appl. Sci. 2022, 12, 9230 20 of 28

0 200 400 600 800 1000
Time(hours)

0

0.2

0.4

0.6

0.8

1
N=7 M=4
N=8 M=5
N=8 M=6
N=8 M=7
N=8 M=8

Figure 8. Reduction of repetitive attack success probability.

Figure 8 shows the reductions over time. There is an optimal defensive time for each
(N, M) pair, where the ACD provides the most effective defense. The optimal T value is
related to the OEj set and the threshold M. Given the OEj and M, the optimal defensive
duration Toj is obtained as Equation (34).

Toj =
ln(pAj/pAj)

r ∗ (pA j − pAj)
. (35)

Results in Figure 8 help network designers find an appropriate value for the migration
period T based on the optimal defensive duration. A small T indicates a high defensive cost,
so based on designers’ standpoint long migration periods implicate both lower defensive
cost and acceptable security.

5.2. The Defensive Ability Brought by VM Migration

Ignoring the security gain brought by NVP technology, we evaluate the defensive
ability of the top layer brought by the random migration in this subsection. Figure 9 shows
the security gain, which is measured by the steady-state probability of compromising the
target node.

Figure 9. Steady-state probability of compromising target node πL(µ, ω).

There is a clear boundary in Figure 9. The steady-state probability on the right of the
boundary has a significantly lower value than that on the left. Hence Figure 9 is analyzed
in different regions as follows.
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5.2.1. Boundary

Observing the Equation (10), the boundary is ω = D = (1− ω)µ. The probability
of an attacker moving to the next node equals moving one step back to the previous one.
Hence, when the system tends to the steady state, the probability of the attacker staying at
each node is uniformly distributed, i.e., πk = 1/(L + 1).

5.2.2. Left of the Boundary (Ordinary Scenario)

In this part of Figure 9, ω ∈ (0, µ/(µ + 1)). When ω− (1−ω)µ < 0, πk > π0 which
means, the probability of returning to the previous node is smaller than moving to the next
node. Attacks will go forward along the attack chain and approach the target as time passes.
So, when the system tends to be in a steady state, the probability of compromising k nodes
increases with increasing k. The small ω value performs worse than a great migrating
range. Overall, the left of the boundary shows less security than the right.

5.2.3. Right of the Boundary (Worse-Case Scenario)

According to the above analysis, in this part of Figure 9, ω ∈ (µ/(µ + 1), 1)). Com-
pared with the left of the boundary, the πL value seems to be 0 which is not the case. To
make the curves more obvious, Figure 10 shows the corresponding logarithm curves. When
ω− (1−ω)µ > 0, the probability of an attacker staying on the target node is lower than
staying at the entrance because the large migration range keeps the attacker away from the
target. So, it is difficult for an attacker to approach the target node in this case. Similar to
the values on the left, a larger migration probability brings a higher security level.

Figure 10. Steady-state probability of compromising target node πL(µ, ω), where ω ∈ (µ/(µ+ 1), 1)).

Whether it is on the left or right side of the boundary, the security of ACDs changes
sharply while µ and ω approach the boundary. A significant change in security is brought
with minor changes in defensive costs. Therefore, if we only consider reshuffling technology,
values approaching the boundary are preferred. In daily dealt with scenarios, we can
select the ω values from the left side of the boundary and approach the boundary, which
guarantees that the attack probability is less successful. When attacks are detected, i.e.,
in worse-case scenarios, we can choose an ω value from the right region to provide more
powerful defenses.

5.3. The Defensive Ability of an ACD Network

Based on the result of the first part, for the Equation (31) and (32), we take three
kinds of ACD nodes picked from Table 7 as the examples, including BL8, (N = 4, M = 3),
and (N = 8, M = 6). The corresponding probability of each node being compromised is
pA8 = 0.2994, PA(4,3) = 0.0951, and PA(8,6) = 0.0106, as shown in Table 7. BL8 is taken
as the Baseline (BL) value. In the BL scenario, only VM migration is adopted, and pA8
indicates the original defensive ability of the SCVs. In the other two scenarios, NVP and
VM migration are adopted in combination. We do not discuss the cases where only NVP
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technology is deployed and where no ACD technology is deployed, because the defensive
abilities of these two cases have been shown in Table 7.

There are two ways to prevent the spread of attacks within the network: First, in-
creasing the frequency of migrations (i.e., decreasing T) and second expanding the range
of migrations (i.e., increasing ω). However, if we use each of these ways independently
(alone), it may result in consuming more network and defensive resources. For this reason,
it should be better to adopt both ways together. Therefore, to guarantee security at a lower
cost, the configuration is optimized by balancing the parameter pair (T, ω).

As analyzed in Section 4.3, depending on the relative strength of the attacker and
defender, the attacker may move closer to the target or be removed from the system over
time. Hence, we discuss two typical scenarios defined in the last subsection according
to the relationship between the defensive strength (T, ω) and the attacking strength µ.
(1) Ordinary scenario: the attacker can get close to the target, then the attack time is de-
scribed as MTTA. (2) Worst-case scenario: migrations will exile the attacker who eventually
loses all the obtained illegal privileges by improving the cost, then the time to exile the
attacker is MTTR. Figure 11 compares MTTA for several parameter pairs (T, ω), when
ω < µ/(µ + 1). Figure 12 compares MTTR under ω > µ/(µ + 1). Baseline represents the
system that only adopts the VM migration without NVP. Contour lines represent the con-
tour of the upper corresponding MTTA or MTTR curves. The same contour line represents
the parameter pairs (T, ω) that bring the same MTTA or MTTR value.

Figure 11. Attack time MTTA(T, ω), where ω < µ/(µ + 1).

Figure 12. Repair time MTTR(T, ω), where ω > µ/(µ + 1).

Observing Equation (31), starting from LT/µ, the theoretical attack time increases as
ω increases. When ω approaches µ/(µ + 1), the time tends to infinity, which indicates the
extreme hardness for attackers to approach the target. Compared with the Baseline, the
NVP node achieves the same security level with a smaller ω or a larger T, providing a
lower cost. In addition, comparing NVP nodes (8,6) and (4,3), providing the same level of
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security, a smaller ω or a larger T can be used in the (8,6) node. In other words, if each NVP
node has a stronger defensive ability, the VM migration technology will have less pressure,
then it will spend less defensive cost on the upper network layer.

When ω exceeds µ/(µ + 1), Figure 12 describes the time for the network to reach a
self-repair after having L compromised nodes. The time decreases from infinity to LT with
increasing ω. Similar to the last scenario depicted by Figure 11, the NVP node needs a
smaller ω or a larger T than the Baseline to exile the attacker simultaneously.

Observing contours of the ACD systems and the baseline system, the (T, ω) value
needs to be adjusted to guarantee the same defensive ability for different value pairs of
(N, M). When the security gain brought by NVP is weaker, we should pay more cost on VM
migration and vice versa. Hence when these two technologies are adopted in combination
appropriately, they can protect the system with better defensive efficiency. To make the
conclusion more obvious, we simulate the resource consumption of different systems when
they are used to guarantee the same level of security. The attack time (i.e., MTTA or MTTR)
is taken as the metric of security in this simulation.

As mentioned above, the parametric configuration is simulated in two typical scenar-
ios: ordinary and worse-case scenarios. In general, ordinary defenses guarantee a certain
level of security with low consumption of resources (i.e., ω < µ/(µ + 1)). In worst-case
scenarios, defenders pay more cost (i.e., ω > µ/(µ + 1)) for anti-attacking in exchange for
stronger security due to the detected attacks. We calculate the number of reshuffled SCVs
Nreshu f f led in each TP time period as the metric of the defensive cost.

Nreshu f f led = ω× L× N × TP
T

. (36)

Nreshu f f led is related to three values: the migrating period T, migrating range ω, and
the number N of online SCVs in each node. The T value can be selected according to the
system requirement. For example, we set T as 12 h representing that VM migration is
executed each half day. According to Equations (31) and (32), the migrating range ω is
obtained.

ω =


1− e−TrpA − LT/E[TA]

2− e−TrpA
E[TA] = MTTA > L ∗ T/µ,

1− e−TrpA + LT/E[TA]

2− e−TrpA
E[TA] = MTTR > L ∗ T.

(37)

where E[TA] is the expected time until the attacker moves to the next or previous Lth

node. In the ordinary scenario, E[TA] represents the value of MTTA, and in the worst-case
scenario, E[TA] represents the value of MTTR.

After obtaining the analysis formula, upon their design requirements E[TA], the system
can flexibly adjust the ω value indicating the different number of reshuffled SCVs. For
example, in an ordinary scenario, the aim of attack time is set as 2 ∗ 105 h; and in the
worst-case scenario, the aim of driving the attacker back to the previous Lth node is set as
4 ∗ 104 h. We select 6 systems as examples from Table 7, including Baseline4(BL), (N = 4,
M = 3), (N = 8, M = 5), (N = 8, M = 6), (N = 8, M = 7), and (N = 8, M = 8). Then,
according to the value from Table 7, Nreshu f f leds of different ACD system are obtained, as
shown in Table 8 (TP = 100 h, T = 12 h).

Table 8. The number of reshuffled SCVs in each 100 h.

BL (4,3) (8,5) (8,6) (8,7) (8,8)

Nreshu f f led
MTTA = 2 ∗ 105 36.45 50.84 60.38 9.02 0 0

MTTR = 4 ∗ 104 38.76 61.08 81.29 30.49 19.37 18.07
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In Table 8, BL represents the system which only adopts VM migration, which can be
described as (N = 1, M = 1). When MTTA = 2 ∗ 105, the reshuffle number of SCVs in
(8,7) and (8,8) systems are 0. Because, in such two scenarios, each ACD node presents a
strong defensive ability. Even though only one SCV is migrated in each migration period,
the whole ACD network guarantees enough security (i.e., a MTTA value much larger
than 2 ∗ 105). Comparing (4,3) and BL, (4,3) guarantees the same security level with a
higher cost than BL, although its ACD node is more secure. In the (4,3) scenario, the
redundancy overhead brought by NVP technology is more evident than the security gain,
so the defensive efficiency of the whole network is lower than the BL system that only
adopts VM migration. However, as for (8,6), (8,7), and (8,8) systems, there is an apparent
discount of overhead compared with the BL system. Through the combination of NVP and
VM migration, the whole system presents a better defensive efficiency due to the apparent
security gain in each ACD node, although there are 8 SCVs need to be reshuffled for each
migration. In addition, the combined system provides higher robustness and stability than
only VM migration, and the bandwidth consumption brought by frequent migration is
reduced.

In summary, by using ACD technologies, the system’s security can be significantly im-
proved. Further, compared with a node that only adopts one of the N-variant and reshuffle
technologies, the nodes deploying multiple ACD technologies can guarantee the same level
of security with lower defensive costs embodied by a long migration period and/or small
migration probability. The defenders can choose the value approaching To, then flexibly
adjust values of MTTA or MTTR and ω to improve the defensive effectiveness.

6. Conclusions and Future Work

Blockchain cloud provides users with a cost-effective service through on-demand
resource sharing, but the widely adopted virtualization technique in the cloud also intro-
duces additional security risks for blockchain. ACDs emerge as a solution that constantly
changes the attack surface exploitable for attackers. However, there is still a lack of stan-
dard methods to quantitatively evaluate the overall cost and benefit of adopting ACDs in
combination.

In this work, we address the effectiveness of ACDs in solving the security problem
brought by resource sharing in the blockchain cloud. This paper proposes SPM, a layered
model to evaluate the effectiveness of an ACD network adopting technologies such as
NVP on each node and VM migration. To the best of our knowledge, this work is the first
to analyze the security of a network that combines multiple ACDs using a hierarchical
combination of methods involving Martingale theory along with SRN, Poisson process,
and Markov chain.

We distinguish three kinds of attacks aiming at a specific target within three layers,
namely single-step attacks (on the bottom layer), repetitive attacks against a node before
the migration (middle layer), and attacks after the migration (on the top layer). First, the
SRN-based model captures the attack’s fine-grained information, the output of which is
used later as an input to the second layer of analysis. Then, the Poisson process is used to
describe the process of repetitive attacks on a single node. These two layers evaluate the
defensive ability of each ACD node. Over different migration periods, the random walk
of an attacker along the attack chain is described by a Markov chain, which is set up to
calculate the steady-state probability of compromising the target. Moreover, the Markov
chain is studied to build a Martingale sequence to calculate the time of compromising the
target and the time of repairing the network after it being entirely compromised. Finally,
based on the simulations, we discuss how to choose applicable and optimum configurations
from the network designers’ standpoint. On the other hand, the synergy of combining
multiple ACD mechanisms is demonstrated.

The findings in this paper include (1) a hierarchical structure loosely coupled with
three-layer models, which improves the flexibility and scalability; (2) the thorough assess-
ment included various metrics describing the effectiveness of ACDs adopted at different
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network layers, which improves the evaluation scope; (3) an integrated evaluation analyzed
the complete attacking process in an ACD network integrated various ACD technology.

For our future works, we plan to further research the defensive process to revise
our assumptions that can help generalize our approach. In addition, we will adopt the
proposed evaluation method in a more elaborate and practical case study, such as defensive
experiments in a real cloud environment. By doing so, we aim at verifying the proposed
model with extensive evaluations through real-world experiments rather than theoretical
simulations. Besides, we then plan to evaluate and compare different ACD technologies,
such as MTD and CMD and summarize the main positive and negative aspects of each
approach. We believe that this combination of evaluation methods gives expectations
toward building stronger defensive mechanisms in the actual systems.
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