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Abstract: Improving the microwave absorption performance of Co-MOF-derived Co@N-C composite
by constructing the morphology and spatial structure is a known challenge. In this work, under
the action of the binder polyvinylpyrrolidone, 3D-graphene particles can be well decorated on the
surface of the Co@N-C composite after high-temperature pyrolysis. In addition, due to the structural
characteristics of MOFs, Co particles can be well covered by a carbon layer, which effectively solves
the problem that magnetic metal particles are prone to corrosion and oxidation. The microwave
absorption performances of the composite can be well adjusted by changing the average dotted
density of the 3D-graphene on the Co@N-C composite. It is worth noting that the maximum
reflection loss can reach−58.72 dB at the thickness of 1.64 mm, and the maximum effective absorption
bandwidth can achieve 5.74 GHz at the 1.79 mm thickness, which almost covers the whole Ku
band. Importantly, these results demonstrate that 3D-graphene@C/Co@N-C composites have great
potential as high-efficiency microwave absorption materials.

Keywords: 3D-graphene@C/Co@N-C; microwave absorption; double-loss mechanism; impedance
matching

1. Introduction

With the large-scale application of electronic devices, electromagnetic interference and
electromagnetic pollution have become a major problem [1]. Nowadays, some researchers
have developed the mixture of microwave absorption materials and paraffin to absorb
microwaves in specific frequencies, and the research in this field is developing towards a
low filling rate, ultra-thin, broadband, and strong absorption [2–4].

Metal-organic frameworks (MOFs) are skeletal crystalline materials composed of
metal ions and organic ligands. Under the action of high-temperature pyrolysis, the
carbon in the organic ligands is converted to elemental carbon, and the metal ions are
reduced to metal elements or metal oxides [5]. Some studies found that MOFs derived
composites with a double-loss mechanism have great application prospects in the field of
microwave absorption, for example, Co/Ni-MOFs-derived porous and hollow CoNi@C
microspheres [6], Co-MOF@Zn-MOF-derived Co-C@C hollow composites [7], acidified
bimetallic MOFs constructed Co/N codoped low-dimensional hybrid carbon networks [8].
However, due to the limitation of the type of organic ligand, the electrical loss of some
MOF-derived composites is relatively poor, which will affect their microwave absorp-
tion performances. It is worth noting that some researchers have found that the inher-
ent defects of MOFs can be overcome by combining MOFs with carbon material and
reasonably designing the morphology and spatial structure of the composite, for exam-
ple, the multicavity-structured MOF derivative/porous graphene hybrid [9], the in situ-
derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from
MOF/melamine [10], and the Co/ZnO/C@MWCNTs based on carbon nanotube-coated
MOFs [11].
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Inspired by the above research, and in order to improve the microwave absorption
performance of Co-MOF-derived Co@N-C composites, 3D-graphene@C/Co@N-C com-
posites were prepared by high-temperature pyrolysis. Compared with other graphene
composites, the synthesis method of the 3D-graphene@C/Co@N-C composite is relatively
convenient, which provides a reference for large-scale preparation [12–15]. By constantly
adjusting the ratio of raw materials, the composite obtained excellent microwave absorption
performances in the Ku band. Importantly, the research results of this work can be applied
to a wide range of scenarios. For example, the mixture of composite and paraffin can act
not only as the sandwich material for a wave-permeable device to block the transmission
of the Ku band microwave, but also as the coating material of the wall of the room where
precision instruments are stored to absorb Ku-band clutter in the room.

2. Experimental Section
2.1. Materials

The 2-methylimidazole (C4H6N2) and ethanol were purchased from Sinopharm Chem-
ical Reagent Co., Ltd. (Shanghai, China). Cobalt nitrate hexahydrate (Co(NO3)2·6H2O) was
purchased from Chengdu Cologne Chemical Co., Ltd. (Chengdu, China). Polyvinylpyrroli-
done (PVP-K30) was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin,
China). The 3D-graphene prepared by chemical vapor deposition was purchased from
Changzhou Carbon Glory New Material Co., Ltd. (Changzhou, China). Deionized water
was prepared by pure water machine.

2.2. Synthesis of Co-MOF

The Co-MOF was prepared by a simple chemical reaction. First, 0.096 mol C4H6N2 was
dissolved in 100 mL deionized water and named solution A. Then, 0.02 mol Co(NO3)2·6H2O
was dissolved in 50 mL deionized water and named solution B. After that, solution B was
slowly added to solution A and stirred continuously at room temperature for 2 h. Finally,
the collected products were washed with deionized water to remove the excess ions, and
dried at 80 degrees Celsius for 2 h in an electric blast drying oven to obtain Co-MOF.

2.3. Synthesis of 3D-Graphene@C/Co@N-C Composites

The 3D-graphene@C/Co@N-C composites were prepared by high-temperature pyrol-
ysis. First, 0.40 g Co-MOF and 0.30 g PVP-K30 were added to 30 mL ethanol and stirred at
room temperature for 30 min, and named solution C. Then, 3D-graphene (0.10 g, 0.20 g,
0.30 g) was added to solution C and stirred continuously at 80 degrees Celsius until the
ethanol evaporated. Finally, the collected mixtures were ground into powder and placed
in a tubular furnace and calcined at 600 degrees Celsius for 2 h at the heating rate of
5 degrees Celsius/min, and the whole process was protected by argon. The three groups of
composites were successively labeled as CNCG-1, CNCG-2, and CNCG-3. As a control, a
Co@N-C composite was prepared by the same method and labeled as CNC.

2.4. Characterizations

The morphology and structure were characterized by scanning electron microscope
(SEM, S-4800) and transmission electron microscope (TEM, JEM-2100). An X-ray diffraction
(XRD, D8 Advance) was used for the phase structure analysis, and the test range was
10–80◦ with a sampling step of 0.02◦. Raman spectrum (Raman, DXRxi) was used for
graphization degree analysis, and the laser wavelength was 532 nm, the grating was
1800 L/mm, and the line resolution was 1.6 nm/mm. The X-ray photoelectron spectra
(XPS, AXIS SUPRA) were used for the chemical composition and functional group binding
analysis. Magnetic properties were measured by the vibrating sample magnetometer (VSM,
Model 7400 series), and the magnetic field strength was 2 T. To evaluate the microwave
absorption performances of the composite, the mixture containing 15% composite and 85%
paraffin was pressed into a coaxial ting with inner diameter of 3.04 mm and outer diameter
of 7.00 mm in a mold, and its electromagnetic parameters in the 2–18 GHz range were
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measured using the vector network analyzer (VNA, N5224A). According to transmission
line theory, the reflection loss (RL) can be calculated by the following equations [16]:

Zin = Z0(µr/εr)
1/2 tan h

[
j2π f d/c(µrεr)

1/2
]

(1)

RL = 20lg|(Zin − Z0)/(Zin + Z0)| (2)

where Z0 is the impedance of free space and Zin is the normalized input impedance,
respectively, εr and µr are, respectively, the complex permittivity and permeability, f is the
frequency of the incident wave, d is the thickness of the sample, and c is the speed of light
in free space.

3. Results and Discussion

Figure 1 shows the SEM images of all composites. The Co-MOF-derived CNC has
the sheet structure in general (Figure 1a). As shown in Figure 1b–d, under the action of
the binder PVP-K30, the 3D-graphene particles can be well dotted on the surface of the
CNC after the high-temperature pyrolysis. In addition, it can be observed that the average
dotted density of the 3D-graphene on the CNC was positively correlated with the additive
amount of the 3D-graphene. Compared with the CNCG-1 and CNCG-3, CNCG-2 has the
best morphology and spatial structure. Figure 2 shows the HR-TEM image of the CNC. The
lattice fringe with the spacing of 0.21 nm corresponds with the (111) plane of the Co crystal,
and the lattice fringe with the spacing of 0.35 nm corresponds with the graphite carbon.
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Figure 2. The HR-TEM image of CNC.

The crystal structures of all composites were studied by XRD patterns (Figure 3a).
There is an obvious characteristic peak around 26◦, which is derived from the response
of the (002) plane of carbon (JCPDS no. 41-1487). In addition, the three diffraction peaks
at 44.16◦, 51.40◦, and 75.84◦ correspond to the (111), (200), and (220) crystal planes of Co
(JCPDS: 15-0806), indicating that Co2+ was successfully reduced to Co under the action
of carbon. The states of carbon in all composites were studied by Raman spectroscopy
(Figure 3b). The two characteristic bands at 1350 and 1580 cm−1 correspond to the D band
and G band, which are attributed to the lattice defects of the carbon atom and the in-plane
vibration of the sp2 carbon atom, respectively. The intensity ratios of the D band to G band
(ID/IG) can be used to judge the graphitization degree of the carbon-containing composites.
The ID/IG of all composites are 0.850, 0.905, 1.075, and 1.107, respectively. The magnetic
properties of all composites were studied by VSM (Figure 4). The saturation magnetization
(Ms) of all composites was 33.63, 18.99, 15.97, and 13.81 emu/g, respectively, all of which
show the ferromagnetic behavior. In addition, it is obvious that the CNC has the highest
Ms, mainly because the carbon content of the CNC is relatively low.
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Figure 4. The room-temperature hysteresis loops of all composites.

The surface chemical composition and states of the CNCG-2 were studied by XPS.
The XPS spectrum of CNCG-2 demonstrates the existence of Co, C, O, and N elements
(Figure 5a). The fitting peak of Co 2p at 778.47 eV indicates that the existence of Co atom
(Figure 5b). The two fitting peaks of C 1s at the binding energies of 284.74 and 285.42 eV
are related to C-C/C=C and C-O groups (Figure 5c), respectively. The two fitting peaks of
N 1s at binding energies of 398.99 and 400.77 eV are directly related to pyridine nitrogen
and pyrrole nitrogen (Figure 5d). Oxygen-containing functional groups, pyridine nitrogen,
and pyrrole nitrogen can act as polarization centers to enhance the intensity of dipole
polarization [10].
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Figure 5. The Raman spectra of CNCG-2. (a) The XPS spectrum of CNCG-2; (b) The Co 2p spectrum
of CNCG-2; (c) The C 1s spectrum of CNCG-2; (d) The N 1s spectrum of CNCG-2.

The microwave absorption capacity of the material is determined by its electromag-
netic parameters, including complex permittivity (εr = ε′ − jε′′ ) and complex permeability
(µr = µ′ − jµ′′ ). Generally speaking, the ε′ and µ′ represent the storage capacity of the
electrical energy and the magnetic energy, while the ε′′ and µ′′ represent the loss capacity
of the electrical energy and the magnetic energy. In addition, the dielectric loss tangent
(tan δε = ε′′/ε′) and the magnetic loss tangent ( tan δµ = µ′′/µ′ ) can be used to describe the
dielectric loss capacity and the magnetic loss capacity [17]. Compared with the CNC, the
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values of εr of CNCG significantly enhance in the frequency range of 2–18 GHz (Figure 6a,b).
Due to the introduction of appropriate amount of the 3D-graphene, the values of εr of
CNCG-2 are obviously better than that of the other composites. As the frequency changes
from 2 to 18 GHz, the values of µr of all composites have the same variation trend, and
obvious resonance phenomena can be observed (Figure 6c,d). In addition, it can be obvi-
ously observed that the values of µr are less affected by the change of the raw material
content. It is worth noting that the values of µ′′ appear negative in the high-frequency
region, which indicates that, when the incident wave enters the composite, the electrons
in the composite will generate eddy currents under the action of the Lorentz force, thus
generating an additional induced magnetic field and radiating electromagnetic energy
outward at the high frequency [18]. In addition, it can be observed that the values of tan δε

are significantly greater than that of tan δµ at the same frequency (Figure 6e,f), which
indicates that dielectric loss plays a leading role in the loss process of incident wave.
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According to the transmission line theory, the values of RL in the frequency range
of 2–18 GHz were calculated, and then the microwave absorption performances of all
composites were evaluated. Generally speaking, when the values of RL are lower than
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−10 dB, it means that the incident wave can be effectively absorbed by the composite, and
the corresponding frequency range is called the effective absorption bandwidth (EAB). The
CNC shows weak microwave absorption performances, and the maximum RL (RLmax)
is only −5.87 dB (Figure 7a). For CNCG-1, the RLmax is −11.70 dB at 12.60 GHz when
the thickness is 2.50 mm (Figure 7b). The microwave absorption performances of CNCG-
2 are better than that of CNCG-1. The RLmax can reach −58.72 dB at the thickness of
1.64 mm. In addition, the RLmax can reach−46.79 dB, and the maximum EAB (EABmax) can
achieve 5.74 GHz (12.26–18.00 GHz) at the 1.79 mm thickness (Figure 7c). The microwave
absorption performances of CNCG-3 are obviously weaker than that of CNCG-2. The
RLmax can reach −15.96 dB and the EABmax can achieve 5.64 GHz (12.36–18.00 GHz) at
the 1.64 mm thickness (Figure 7d). Through the comprehensive analysis of above results,
adding appropriate amount of 3D-graphene into the raw materials can effectively improve
the microwave absorption performances of the composite.
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The mechanism of dielectric loss can be explained by the Debye theory. The relation-
ship between ε′ and ε′′ satisfies the following Formula [19]:(

ε′ − (εs + ε∞)/2
)2

+ (ε′′ )2 = ((εs − ε∞)/2)2 (3)

where εs is the static permittivity in the high frequency limit and ε∞ is the relative permit-
tivity. The ε′ − ε′′ curves of all composites have some semicircles, indicating that there are
multiple relaxation processes under the action of incident wave (Figure 8). In addition, it
can be clearly seen that, compared with the CNC, the ε′ − ε′′ curves of the CNCG present
a relatively orderly state. For the CNCG, these relaxation processes are mainly caused
by the synergy of interface polarization and dipole polarization [20]. On the one hand,
Co particles, the Co-MOF-derived carbon layer, the PVP-K30-derived carbon layer, the
3D-graphene, and the paraffin wax have multiple interfaces with each other, and the charge
accumulation at these interfaces causes strong interfacial polarization. On the other hand,
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under the action of incident wave, oxygen-containing functional groups, doped nitrogen,
and other defects in the composite act as polarization centers to induce a large number of
dipoles, which will cause strong dipole polarization. It is noteworthy that straight lines
appear at the end of each ε′ − ε′′ curve (Figure 8b–d), indicating that conduction loss also
plays an important role in the attenuation of incident wave, which is closely related to the
properties of carbon in composite [21].
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Magnetic loss is another important mechanism of microwave absorption. In general,
magnetic loss is mainly caused by natural resonance, exchange resonance, and eddy current
loss. If the eddy current loss is the dominant factor in the magnetic loss over a certain
frequency range, the values of C0 (C0 = µ′′ (µ′)−2 f−1) remain essentially constant over that
frequency range. Conversely, the main factors of magnetic loss are natural resonance and
exchange resonance [22]. It can be seen from Figure 9 that the values of C0 are constantly
changing in the frequency range of 2–18 GHz, which indicates that the main factors of
magnetic loss of all composites are natural resonance and exchange resonance.
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Microwave attenuation performance is directly determined by two factors: one is
the reflection of microwaves on the surface of the material, the other is the absorption of
microwaves inside the material. Generally speaking, the former is related to impedance
matching (|Zin/Z0|), while the latter is related to attenuation constant (α) [23]. In order to
explore the relationship between the microwave absorption performance of the material
and α and |Zin/Z0|, the α and |Zin/Z0| of the CNCG were analyzed in detail. The α can be
calculated by the following Formula [24]:

α = (ε′′µ′′ − ε′µ′ + (
(
µ′′ ε′′ − µ′ε′

)2
+
(
µ′ε′′ + µ′′ ε′

)2
)1/2)1/2

√
2π f /c (4)

As can be seen from Figure 10a, when the frequency is in the range of 2–18 GHz, the
values of α of the CNCG show an increasing trend, and generally follow the order of α
(CNCG-3) > α (CNCG-2) > α (CNCG-1). It is worth noting that, although the values of the α

of the CNCG-3 are always greater than that of other composites, its microwave absorption
performances are relatively weak compared with that of the CNCG-2, mainly due to the
limitation of |Zin/Z0|. Good |Zin/Z0| can ensure that the incident wave enters the material
to the maximum extent. When the value of |Zin/Z0| is equal to 1, it means that the incident
wave at this frequency point can completely enter the material [25]. Figure 10b compares
the values of |Zin/Z0| of CNCG at the 1.79 mm thickness. The values of |Zin/Z0| of the
CNCG-2 perform best overall and are significantly better than that of the CNCG-1 and
CNCG-3 in the range of 12.00–18.00 GHz, which means that more incident waves can enter
the interior of the CNCG-2. Therefore, the excellent microwave absorption performance of
the CNCG-2 is the result of the combination of α and |Zin/Z0|.
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In order to further evaluate the microwave absorption performances of 3D-graphene@C/Co@N-
C composite, the microwave absorption performances of other composites are given in
Table 1. Through systematic comparison, the 3D-graphene@C/Co@N-C composite has
a lower filling rate, a stronger RLmax, a wider EABmax, and a thinner thickness, which
indicates that the construction of the morphology and spatial structure is a promising
strategy to obtain a high-performance microwave absorption composite.
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Table 1. Microwave absorption performances of other composites in the previous references.

Materials Filling Rate
(wt%)

RLmax
(dB)

EABmax
(GHz)

Thickness
(mm) Refs.

Fe3O4/NiFe2O4/Ni 60 −58.40 4.90 2.10 [26]
Fe3O4@PPy 50 −31.50 5.20 2.50 [27]

CoNi@C 30 −37.50 3.80 2.40 [6]
Co-C@C 25 −58.10 4.56 2.50 [7]

Fe3O4@SiO2@RGO 20 −26.60 4.40 3.00 [28]
3D-graphene@C/Co@N-C 15 −58.72 4.10 1.64 This work
3D-graphene@C/Co@N-C 15 −46.80 5.74 1.79 This work

4. Conclusions

In summary, the 3D-graphene@C/Co@N-C composites were prepared by high-temperature
pyrolysis. Under the action of the binder PVP-K30, the 3D-graphene particles can be well
decorated on the surface of the CNC after high-temperature pyrolysis. In addition, due
to the structural characteristics of the MOFs, the Co particles can be well covered by a
carbon layer, which effectively solves the problem of magnetic metal particles being prone
to corrosion and oxidation. The microwave absorption performances of all composites
can be well adjusted by changing the average dotted density of the 3D-graphene on the
CNC. It is worth noting that the RLmax can reach −58.72 dB at the thickness of 1.64 mm
and the EABmax can achieve 5.74 GHz at the 1.79 mm thickness, which almost covers
the whole Ku band. Importantly, the excellent microwave absorption performances can
make the 3D-graphene@C/Co@N-C composite become a highly competitive candidate for
high-efficiency microwave absorption materials.
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