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Abstract: Uncertainty quantification is widely used in engineering domains to provide confidence
measures on complex systems. It often requires to accurately estimate extreme statistics on computa-
tionally intensive black-box models. In case of spatially or temporally distributed model outputs,
one valuable metric results in the estimation of extreme quantile of the output stochastic field. In
this paper, a novel active learning surrogate-based method is proposed to determine the quantile of
an unidimensional output stochastic process with a confidence measure. This allows to control the
error on the estimation of a extreme quantile measure of a stochastic process. The proposed approach
combines dimension reduction techniques, Gaussian process and an adaptive refinement strategy
to enrich the surrogate model and control the accuracy of the quantile estimation. The proposed
methodology is applied on an analytical test case and a realistic aerospace problem for which the
estimation of a flight envelop is of prime importance for launch safety reasons in the space industry.

Keywords: active learning; quantile estimation; surrogate model; uncertainty quantification;
stochastic process

1. Introduction

Uncertainty quantification is often used to provide confidence measures over results
obtained in numerical studies involving simulation modeling tools. For complex sim-
ulation codes, uncertainty quantification often requires to use uncertainty propagation
techniques on a black-box function to estimate uncertainty measures on the function out-
puts considering an input joint distribution. Therefore, Monte Carlo simulation may be
used to estimate uncertainty measures (e.g., expected value, variance, quantile) by repeated
evaluations of the black-box functions. However, when one evaluation of the black-box
model is computationally intensive, such an uncertainty propagation technique is not
affordable in a reasonable time frame. Alternative approaches relying on surrogate models
(e.g., Polynomial Chaos Expansion [1–5], Gaussian Process [6–8]) may be used instead of
the exact black-box function to reproduce the mappings between the input and output
variables. In order to control the confidence in the estimation of the uncertainty measures
of interest using the surrogate model instead of the exact model, active learning strategies
have been proposed [9–11]. The general idea of such approaches is to adaptively update
the dataset used to build the surrogate model according to an infill criterion. The infill
criterion differs depending on the uncertainty measure of the black-box function output.
For instance, active learning strategies have been proposed to estimate a probability of fail-
ure [11–14] (probability of exceeding a threshold for the output), to determine a minimum
of the function in the presence of uncertainty [15–17], or to assess an excursion set [18]. In
the present paper, the considered output of the black-box function is a high-dimensional
vector defined over a mono-dimensional domain (uni-variate random field that can be
characterized by a stochastic process). In the presence of uncertainty, the output of the
black-box model is a stochastic process. Such an output may result from computational
fluid dynamics, finite element analysis or optimal control problem in which the output is
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discretized along a mono-dimensional time or space domain (e.g., altitude as a function
of time, pressure distribution along a wing chord). In the presence of uncertainty, being
able to determine a quantile of such an high dimensional output is essential to define for
instance flight corridors for certification purposes. However, due to the computational
cost of the black-box model and the high dimension of its output, the determination of
a quantile of the considered output random field is challenging. In this paper, an active
learning strategy is proposed to determine the quantile of the output stochastic process by
combining model order reduction [19–21], Gaussian processes [6–8] and adaptive sampling
strategy to control the confidence in the estimation of the quantile via an enrichment of the
surrogate model. In a previous work [22], a surrogate model for the estimation of quantile
of launch vehicle flight corridors has been proposed but without adaptive refinement of the
surrogate model to control the error in the quantile estimation. The main contribution of
this paper is the development of an active learning strategy allowing to efficiently reduce
the uncertainty of the estimation of the time-dependent extreme quantile at an affordable
computational cost for complex simulation problems.

The rest of the paper is organized as follows. In Section 2, basics on model order
reduction based on Karhunen–Loève and Gaussian processes are recalled in the context of
uncertainty propagation. In Section 3, the proposed active learning strategy is proposed
with the dedicated surrogate model adaptive enrichment for quantile estimation of the
output stochastic process. Eventually, in Section 4, the proposed approach is applied on an
analytical test case and a launch vehicle trajectory problem representative of the challenges
raised by the determination of flight corridors for launchers.

2. Surrogate Model for Function with Mono-Dimensional Domain Random
Field Output

Let us consider a black-box model QX(·):

U ∼ φU
QX−→ X(t, U) (1)

which takes as input U an aleatory vector of dimension d defined over a probability space
(Ω,A,P) with Υ the universal set, A a σ-algebra and P the probability measure. U is
characterized by a joint probability density function (PDF) φU(·) over its definition domain
Ω. The output of QX(·) is a realization of a univariate stochastic process X : T ×Ω→ R
with T a domain (could be a temporal or spatial domain) and X(t, U) ∈ R. It is assumed
that the domain T is mono-dimensional. Without loss of generality, in the rest of the paper,
a temporal domain is considered.

Some notations may be introduced for the stochastic process X(·, ·). The aleatory
variable Xt : Ω → R corresponds to the univariate stochastic process fixed at time t ∈ T
leading to: X(t, u) = Xt(u). A particular sample of the stochastic process for a given
realization of U is noted: X(u) : T → R and it corresponds to X(u)(t) = X(t, u). For
two different times t0, t1 ∈ T 2, the autocovariance of the stochastic process is defined by
CXX(t0, t1) = cov[Xt0, Xt1] = E[(Xt0 − µt0)(Xt1 − µt1)] with µtj the mean associated to the
stochastic process µt = E[Xt].

In practice, for engineering simulation problems, the evaluation of QX(·) may be
computationally intensive as it might require running a complex solver analysis (such
as computational fluid dynamics, finite element analysis techniques or solving optimal
control problem). Therefore, due to the computational cost, uncertainty propagation can
be challenging and it might be difficult to estimate statistical moments or quantile of the
resulting output stochastic process. The η-quantile over the stochastic process X(·, ·) is
defined by:

qη(t) = inf
v∈R
{P[X(t, U) ≤ v] ≥ η} (2)

For instance, for launch vehicle design, the determination of flight envelopes on the
state variables (e.g., altitude, velocity, flight path angle) in the presence of uncertainty
(e.g., modeling uncertainty on the rocket engine efficiency, on the structural masses) is
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of prime importance to define possible flight corridors. This flight envelope may be
characterized by upper and lower quantile values over the stochastic process defining the
state variable in the presence of uncertainty.

In order to efficiently estimate quantiles on the output of QX(·), a surrogate-based
model approach is proposed in this paper. It combines three elements: model order
reduction, Gaussian process and active learning strategy. As the output of the black-box
function QX(·) is a uni-variate field, a model order reduction technique is used to reduce
the dimension of the output. Then, a mapping between the input variables and quantities
of interest in the reduced dimension space is carried out using Gaussian process. It allows
to define a surrogate model Q̂X(·) of the exact application QX(·). In order to control the
error in the estimation of the quantile by using the surrogate model instead of the exact
computationally expensive function, an active learning strategy is proposed in this paper.

2.1. Model Order Reduction

The surrogate model Q̂X(·) is defined based on a limited size set of black-box model
evaluations QX(·) constituting a training set. For that matter, M samples are obtained by
a Monte-Carlo Simulation (MCS). The realizations of the input vector UM = [u1, . . . , uM]
are generated by sampling according to the joint PDF φU(·). For each sample uk∈[1,...,M]

of UM, the exact function QX(·) is evaluated giving a realization of the output stochastic
process X(t, uk). These M evaluations correspond to different realizations of the stochastic
process defining the set XM = {X(t, u1), . . . , X(t, uM)}. From a numerical point of view,
the stochastic process realizations are discretized over a mesh in time Tnv composed of
nv vertices [X(t1, uk), . . . , X(tnv , uk)]. In general, the number of vertices nv is large to get
precision in the behavior of the field output. The resulting discretized stochastic process is
composed of nv time-correlated random variables.

Because of the high dimension nv of the stochastic process discretization, the surrogate
model of the functionQX(·) is based on a model order reduction technique. The Karhunen–
Loève (KL) decomposition [19–21,23] allows to represent the stochastic process by a linear
combination of orthogonal functions. The orthogonal functions are the eigenfunctions
of the autocovariance function of the stochastic process. In order to determine the set of
deterministic orthogonal functions an eigenvalue problem is solved. In that purpose, the
second kind Fredholm equation associated to the autocovariance function CXX(·, ·) (noted
C(·, ·) for simplicity) is solved to estimate the eigenvalues and eigenfunctions:∫

T
C(s, t)Lk(t)dt = λkLk(s) ∀s ∈ T (3)

where (Lk)k≥1 is the sequence of eigenfunctions and (λk)k≥1 are the associated eigenvalues.
A complete orthogonal basis of L2(T ) is defined by (Lk)k≥1.

Consequently, any realization of the stochastic process may be expanded over the
estimated basis:

X(t, u) = µ(t) +
∞

∑
k=1

√
λkξk(u)Lk(t) (4)

with (ξk)(u)k≥1 the coordinates of the stochastic process sample with respect to the deter-
ministic function Lk(·). A set of orthonormal random variables (ξk)k≥1 is defined by all
the possible realization of the stochastic process. Each random variable ξk(u) involved
in the KL decomposition is defined by a linear transform (using the orthonormality of
the eigenfunctions):

ξk(u) =
1√
λk

∫
T
(X∗(t, u)− µ(t))Lk(t)dt (5)

For numerical purposes, the KL expansion is truncated to the first NKL most significant
modes. These latter correspond to the most significant eigenvalues: X(t, u) ' µ(t) +
∑NKL

k=1
√

λkξk(u)Lk(t). The optimality of the eigenfunction basis Lk(·) is obtained in the
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sense that, compared to any alternative L2(T ) basis, the mean square error integrated over
Ω given the limitation of the KL expansion to the first NKL terms is minimal.

As the stochastic process is known according to M realizations XM = (X1 = X(t, u1), . . . ,
XM = X(t, uM)), the covariance function associated to the optimal process is not explicitly
known. Based on classical statistics, for a centered stochastic process, the covariance is estimated
by C = 1

M X̃X̃T with X̃ = (X1| . . . |XM) the snapshot matrix constituted of the M realizations
of the stochastic process.

The eigenvalues and eigenfunctions involved in KL expansion may be determined
by solving the second kind Fredholm equation. A Galerkin-type technique [19,23,24] may
be used for such purpose. Considering a basis hi(·) of the Hilbert space L2(T ), each
eigenfunction Lk(·) may be expressed in this basis:

Lk(t) =
NKL

∑
i=1

dk
i hi(t) (6)

with some dk
i the unknown coefficients. According to the truncation level, the aim of the

Galerkin method is to estimate the suited approximation of Lk(t). The residual resulting
from the truncation is determined using an error function εNKL(·) along with Equation (3):

εNKL(t) =
NKL

∑
i=1

dk
i

[∫
T

C(t, t′)hi(t′)dt′ − λkhi(t)
]

(7)

To define the approximating basis, it is imposed that the residual is orthogonal to that
approximating basis, leading to:∫

T
εNKL(t)hj(t)dt = 0 ∀j = 1, . . . , NKL (8)

This residual expression may be combined with Equation (8) to give:

NKL

∑
i=1

dk
i

[∫
T

[∫
T

C(t, t′)hi(t′)dt′
]

hj(t)dt− λk

∫
T

hi(t)hj(t)dt
]
= 0 (9)

Such an equation has a matrix form corresponding to a generalized eigenvalue prob-
lem [19,23]:

CD = ΛED (10)

with:

Cij =
∫
T

∫
T

C(t, t′)hi(t)hj(t′)dtdt′ (11)

Dij = dk
i (12)

Λij = δijλi (13)

Eij =
∫
T

hi(t)hj(t)dt (14)

with δij the Kronecker symbol. This matrix form equation is solved to get the eigenvectors
D and the eigenvalues Λ. A quadrature technique is employed to estimate the integrals
that define the terms C and D. The vertices of the mesh Tnv are used as the quadrature
nodes. In addition, to ease the solving of Equation (10) a Singular Value Decomposition
approach [24] is implemented.

The resulting KL decomposition of the output stochastic process allows to separate
the random dependency expressed through ξk(·) and the time dependency expressed
through Lk(·). This decomposition ease the construction of a surrogate model of QX(·),
by replacing ξk(·) by Gaussian processes which are particularly interesting for uncertainty
quantification analyses.
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2.2. Gaussian Process

The definition of a surrogate model of QX(·) that maps the input uncertain variable
vector U to the stochastic process X(t, U) with KL expansion, it is necessary to build the
relation: ξk : u→ ξk(u). In the previous model reduction, as the mapping is known only
for the snapshots (i.e., limited number of samples UM) it is necessary to define a regression
model to model ξk for all the values that can be taken by u. In the following, it is proposed
to use Gaussian process as it is particularly adequate for uncertainty quantification [25].

Gaussian process (GP) [6–8] may be used as a stochastic process surrogate model in
order to approximate any unknown function ξk(·). The general idea is to consider that
ξk(·) is a sample path of a Gaussian process. In this section, to simplify the notations in the
description of Gaussian process, the subscript k is removed. A GP encodes a distribution
over a set of functions. A GP may be seen as a collection of an infinite number of random
variables and any finite subset of this collection has a joint Gaussian distribution. A GP is
fully determined by its mean and covariance functions. To build a GP ξ̂(·), it is necessary
to solve a supervised learning problem. Starting from an input training set of size M,
UM = {u1, . . . , uM}, the corresponding unknown function responses are obtained with
Equation (5) and noted YM = {y1 = ξ(u1), . . . , yM = ξ(uM)}. In a regression context, a
GP prior is assumed on the mean function m(·) and on the covariance function kΘ(u, u′).
This covariance function depends on some hyper-parameters Θ.

There exist different typical covariance functions (also called kernels) such as
the p-exponential:

kΘ(u, u′) = Θσ exp

(
−

d

∑
i=0

Θθi |u
(i) − u′(i)|Θpi

)
. (15)

The proposed strategy is adapted to any kernels.
Regarding the mean function, as the tendency of the exact function is unknown, a

constant function m is often assumed as GP prior, resulting in ordinary Kriging. Depending
on available a priori knowledge, other types of mean function may be assumed such as
quadratic or general basis functions. If a constant mean function is assumed, the GP is
defined such that ξ̂(·) ∼ N

(
m, kΘ(·, ·)

)
. Considering the Design Of Experiment (DoE)

ΞM, the GP has a multivariate Gaussian distribution ΞM|UM ∼ N
(
m, KΘ

MM
)

where KΘ
MM

is the parameterized covariance function kΘ(·) evaluated on UM. The dependence on Θ

is dropped to simplify the notations. The prior assumption on the covariance function
has an important influence on the type of modeled function by the GP. In the presence of
experimental or numerical noisy data, the relationship between the latent function values
ξ(UM) and the observed responses YM is given by: p(y|ΞM) = N

(
y|ΞM, σ2I

)
with σ2 an

assumed Gaussian noise variance.
Then, from this input and output training sets and the prior on the GP, it is possible to

train it using the marginal likelihood. It is obtained by integrating out the latent function
giving p(y|UM, Θ) = N

(
y|m, KMM + σ2I

)
. To simplify the notations, we define K̂MM =

KMM + σ2I. The GP training requires to maximize the log marginal likelihood with respect
to the hyperparameters Θ, m and σ. The negative log marginal likelihood is given by:

L(Θ|UM,YM) = log(p(y|UM,YM, Θ)) ∝ log
(
|K̂MM|

)
− yTK̂−1

MMy (16)

where all the kernel matrices implicitly depend on the hyperparameters Θ.
Any gradient-based or gradient-free approaches optimization algorithms may be used to

solve such minimization problem to determine the optimal hyperparameter values of the GP. In
addition, a closed form of the constant mean function may be sometimes be found [6–8,26,27].
Once the GP has been trained, the prediction at a new unknown location u∗ ∈ Rd is done by
using the conditional properties of a multivariate normal distribution (Figure 1):

p(y∗|u∗,UM,YM, Θ) = N
(

y∗|ξ̂∗, ŝ∗2
)

(17)
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where ξ̂
∗
, ŝ∗2 are the mean prediction and the associated variance. These terms are defined by:

ξ̂
∗

= ξ̂(u∗) = m + kT
u∗
(

KMM + σ2I
)−1

(y− 1m) (18)

ŝ∗2 = ŝ2(u∗) = ku∗ ,u∗ − kT
u∗
(

KMM + σ2I
)−1

ku∗ (19)

where ku∗ ,u∗ = k(u∗, u∗) and ku∗ =
[
k
(

u(i), u∗
)]

i=1,...,M

0 1 2 3 4 5
Input space

1

0

1

2

3

Fu
nc

tio
n 

va
lu

e

Posterior mean
Exact function
GP realizations
Training Data
Confidence interval

Figure 1. Example of Gaussian process prediction and associated confidence interval.

An example of a 1D function and a GP built based on a dataset of M = 4 data is
represented in Figure 1. The confidence region for the prediction results from the associated
GP standard deviation (±3ŝ). At the observation locations the variance of the prediction
is null if the data are not assumed noisy. The variance of the prediction grows as the
distance from an existing data sample increases. GP surrogate model is appealing because
it provides both the prediction of the model and its estimated uncertainty. This will be
intensively used in the following of the paper to define an active learning strategy.

2.3. Quantile Estimation

The resulting surrogate model Q̂X(·) allows to define the output stochastic process as:

X̂(t, U) = µ̂(t) +
NKL

∑
k=1

√
λ̂k ξ̂k(u)L̂k(t) (20)

combining KL decomposition and Gaussian processes. It is possible to use this surrogate
model to carry out uncertainty quantification studies instead of the exact computationally
intensive function QX(·). For instance, it is possible to estimate an η-quantile over the
stochastic process surrogate model X̂(·, ·) defined by:

q̂η(t) = inf
v∈R

{
P
[
X̂(t, U) ≤ v

]
≥ η

}
(21)

For that, a Mont-Carlo simulation technique may be used by sampling according to
φU(·) as the computational cost is affordable using the surrogate model. Therefore, the
quantile is estimated following these steps:

1. Simulate Nq samples u1, . . . , uNq according to φU(·)
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2. Compute the empirical distribution function:

Φ̂X̂(t,U)(u) =
1

Nq

Nq

∑
i=1

IX̂(t,ui)≤X̂(t,u)

3. Estimate the quantile q̂η(t) by

q̂η(t) = Φ̂−1
X̂(t,U)

(η)

However, due to the limited size of the training dataset used to build the surrogate
model, the estimation of the quantile q̂η(·) may present a large degree of uncertainty. In
order to control the accuracy in the estimation of the quantile of X(·, ·) using the surrogate
model instead of the exact function, an active learning strategy is proposed in the following
sections. It allows to follow an adaptive sampling strategy by adding relevant samples into
the dataset in order to improve the accuracy of the estimation of the quantile while limiting
the number of evaluations of the exact costly function QX(·).

3. Active Learning for Surrogate-Based Stochastic Process Quantile Estimation

In this section, an active learning strategy is proposed to improve the estimation
of the quantile of a stochastic process defined over a mono-dimensional mesh domain.
The active learning strategy consists of an adaptive sampling approach in order to add
relevant samples into the input and output datasets for the quantile estimation. Firstly,
considering the current dataset, an infill criterion is defined to quantify the possibility
of improvement to reduce the uncertainty over the quantile estimation by reducing the
uncertainty on the Gaussian processes involved in the prediction of the random variables of
Karhunen–Loève (KL) decomposition. Secondly, the infill criterion is optimized through an
auxiliary optimization problem to select the most interesting samples. These two elements
are presented in the next sections.

3.1. Infill Criterion

The infill criterion for active learning is used to quantify the possibility of improvement
of the quantile estimation given by a candidate sample to be added to the current dataset.
The proposed infill criterion determines the confidence area associated to a quantile qη(·)
accounting for the uncertainty in the Gaussian processes involved in the KL decomposition.
The proposed infill criterion calculation is summarized in Algorithm 1.

Let consider a potential candidate ũ to be added to the current dataset UM. For each GP
ξ̂k(·) involved in the KL decomposition, the mean GP prediction ξ̂k(ũ) is used to virtually
extend the current dataset for the GPs. Therefore, the new input virtual dataset is ŨM+1 =
{u1, . . . , uM, ũ} and the GP output dataset is Ỹ kM+1 = {y1 = ξk(u1), . . . , yM = ξk(uM),

yM+1 = ξ̂k(ũ)
}

. Then, based on this dataset, the new “virtual” GPs ξ̂∗k (·) are trained to
update the hyperparameters Θ, m and σ. Therefore, it is possible to define the resulting
surrogate model for the stochastic process:

X̂(t, u) = µ̂(t) +
NKL

∑
k=1

√
λ̂k ξ̂∗k (u)L̂k(t) (22)

To estimate the influence of the virtual addition of the candidate sample ũ into the dataset,
NGP Gaussian process trajectories are generated

{
ξ̂
∗(1)
k (·), . . . , ξ̂

∗(s)
k (·), . . . , ξ̂

∗(NGP)
k (·)

}
for

each GP present in the KL decomposition. Then, NGP quantiles of X̂(t, U) are estimated using:

X̂(s)(t, U) = µ̂(t) +
NKL

∑
k=1

√
λ̂k ξ̂
∗(s)
k (u)L̂k(t) (23)
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and with a Monte-Carlo sampling (as explained in the previous section):

q̂(s)η (t) = Φ̂−1
X̂(s)(t,U)

(η) (24)

for s ∈ {1, . . . , NGP}. It results NGP estimates of the quantile QNGP =
{

q̂(1)η (t), . . . , q̂(s)η (t),

. . . , q̂(NGP)
η (t)

}
which may be used to define a confidence area associated to the quantile:

A(ũ) =
∫ (

q̂η(t)− q̂
η
(t)
)

dt (25)

where q̂η(t) and q̂
η
(t) are upper and lower bounds on the quantile estimates in the set QNGP ,

for instance defined by a quantile of level β and 1− β. The confidence area is computed over
the mono-dimensional mesh domain Tnv (Figure 2). This confidence area A(ũ) translates
the uncertainty in the quantile estimate due to the uncertainty in the Gaussian process
given by the virtual current dataset which includes the candidate sample ũ. It requires
to evaluate Nq × NGP times the surrogate model X̂(t, U) corresponding to the number of
samples in the Monte-Carlo simulation for empirical quantile estimate times the number of
GP trajectories sampled.

In order to improve the accuracy of the quantile estimate, a relevant candidate sample
ũ to be added to the current dataset is a sample that will reduce the uncertainty in the
quantile estimate therefore that will reduce the confidence interval A(·).

(a) (b)

(c) (d)
Figure 2. (a) output stochastic process realizations and 99% quantile prediction, (b) the GPs involved
in the surrogate model of the output stochastic process present uncertainty in the prediction and
different GP realizations may be sampled (red curves), (c) for each GP realization, a quantile of
the output stochastic process may be estimated (black dot lines), (d) based on the set of quantile
estimations an confidence interval on the exact quantile may be estimated.
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Algorithm 1: Confidence interval area calculation for quantile estimation based
on GP trajectories for a candidate sample ũ

Inputs : UM,YM, ũ, X̂(t, U)
Initialization: η, β, Nq, NGP
(1) Define new input and output “virtual” extended datasets
ŨM+1 = {u1, . . . , uM, ũ} and
Ỹ kM+1 =

{
y1 = ξk(u1), . . . , yM = ξk(uM), yM+1 = ξ̂k(ũ)

}
(2) Train the new “virtual” GPs ξ̂∗k (·) based on ŨM+1 and Ỹ kM+1
(3) Generate NGP Gaussian process trajectories for the NKL GPs in KL{

ξ̂
∗(1)
k (·), . . . , ξ̂

∗(s)
k (·), . . . ξ̂

∗(NGP)
k (·)

}
(4) for s = 1 : NGP do

(a) Define a new “virtual” surrogate model:

X̂(s)(t, U) = µ̂(t) + ∑NKL
k=1

√
λ̂k ξ̂
∗(s)
k (u)L̂k(t)

(b) Carry out quantile estimation with Monte Carlo sampling:
q̂(s)η (t) = Φ̂−1

X̂(s)(t,U)
(η)

end

(5) Define the set QNGP =
{

q̂(1)η (t), . . . , q̂(s)η (t), . . . , q̂(NGP)
η (t)

}
of NGP quantiles

(6) Determine q̂η(t) and q̂
η
(t) as quantiles with β and 1− β levels over the set

QNGP .

(7) Compute A(ũ) =
∫ (

q̂η(t)− q̂
η
(t)
)

dt over the time mesh Tnv return A(ũ)

3.2. Auxiliary Optimization Problem and Active Learning Process

In order to find the most relevant candidate sample ũ to be added to the current
dataset, an auxiliary optimization problem can be formulated:

min
ũ

A(ũ) (26)

where the objective function to be minimized corresponds to the confidence interval area cal-
culation for quantile estimation as defined previously. The auxiliary optimization problem
can be solved using an evolutionary algorithm (Covariance Matrix Adaptation—Evolution
Strategy [28,29]). In cases of high-dimensional problems, gradient-based algorithms may
be used (with analytical calculation thanks to the availability of the gradient of Gaussian-
process) which scale better with the dimension [30].

Once the optimal solution u∗ has been found, the exact black-box model QX(u∗)
is evaluated. The input and output datasets are updated with the resulting stochas-
tic process trajectory X(t, u∗) giving UM+1 = {u1, . . . , uM, uM+1 = u∗} and XM+1 =
{X(t, u1), . . . , X(t, uM), X(t, uM+1 = u∗)}. Then, based on these new input and output
datasets a Karhunen–Loève decomposition is carried out and for each KL mode, a GP is
built. The procedure of adding a new sample into the datasets is performed until a stopping
criterion is met. The stopping criterion can be based either on the value of the confidence
interval area or on a maximal number of exact black-box model evaluations. The proposed
active learning strategy for quantile estimation refinement is summarized in Figure 3. In
the following sections, the proposed active learning approach is applied on an analytical
problem and a launch vehicle design problem.
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Limited size
Monte Carlo simulation

Exact function Q  (.,.)
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Karhunen-Loève (KL) expansion
of the stochastic processes

X(t,U)
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Gaussian process for
the random variables involved

in the KL expansion

Active learning process

Add new point to data base
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Confidence interval aera
 calculation for quantile

Step 4

Step 5

Step 6

Converged ?

yes

no

X

Exact function Q  (.,.)
X

Figure 3. Proposed active learning strategy for quantile estimation refinement for stochastic process
defined over a mono-dimensional mesh domain.

4. Applications
4.1. Analytical Test Case
4.1.1. Test Case Description

To illustrate the proposed active learning approach, first an analytical test case is
defined as follows (with X(·, ·) a non-dimensional output):

U ∼ φU
QX−→ X(t, U) =

√
U0 + 5.+(U1× cos(U0/10.)− 39.24)× (1− exp(−t/4.0)) (27)

where U = [U0, U1]
T and t ∈ [0., 12.]. Moreover, U ∼ φU with φU = N (µU, ΣU) and

µU = [100., 100.]T , ΣU =

[
20. 0
0 10.

]
.

The objective is to estimate the 95% quantile q95 of the output stochastic process X(t, U)
with the proposed active learning approach. The initial input UM and output datasets XM
are defined by a Monte-Carlo simulation with M = 4. For each realization of the input
uncertain variables, the exact mapping QX is evaluated to determine the output stochastic
process realization X(t, ui), i = 1, . . . , M. Then, 10 active learning iterations are carried
out to enrich the input and output datasets in order to improve the estimation of the 95%
quantile q95 with the surrogate model.

An illustration of 200 output stochastic process realizations and the exact 95% quan-
tile q95 are given in Figure 4. Figure 5 presents the scaled KL modes for the output
stochastic process.

To evaluate the uncertainty on the 95% quantile estimation, NGP = 150 GP trajectories
are sampled and β = 0.025 is used to define the upper and lower bounds on the quantile
estimates in the set QNGP .

To assess the adequate Karhunen–Loève decomposition, 1000 input variable samples
are generated and the corresponding output stochastic process samples are estimated by
running the model QX(·). These samples are used as validation samples X∗v(t, u).
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Figure 4. Realizations of output stochastic process samples and exact q95 quantile.
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Figure 5. 13 scaled KL modes for the output stochastic process.

The truncation level in Karhunen–Loève decomposition is a trade-off between the
number of terms in the truncation and the accuracy of the resulting decomposition. The
predictivity factor Q2 may be used to evaluate the accuracy of the KL expansion :

Q2 = 1− ∑Mv
i=1

(
X̂(t, ui)− Xv(t, ui)

)2

V[Xv(t, u)]
(28)

where Mv is the number of validation samples, Xv(t, ui) the exact validation sample
and X̂(t, ui) the KL expansion. The Q2 factor allows to evaluate the adequacy between
the KL expansion prediction and the some validation samples resulting from the exact
function evaluations. In the following, different number of KL modes are considered in
the decomposition to analyze the influence of the truncation. For each level of truncation,
the residual samples are determined by evaluating the difference between the validation
samples and the KL predictions using Equation (4). The residual samples are illustrated in
red in Figure 6 along with the validation samples (in blue). It can be seen in Figure 6, that
by considering only 1 mode in the KL expansion, the residual samples are non negligible.
However, as the number of modes increases, the residual samples become negligible and
the KL expansion provides an accurate prediction.
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(a) (b)

(c) (d)

Figure 6. Karhunen–Loève validation with respect to the number of modes: 1 (a), 2 (b), 4 (c), 6 (d).

Table 1 gives the Q2 factor according to the number of KL modes in the expansion. As
expected from the Figure 6, with only 1 KL mode, the predictivity factor illustrates the poor
accuracy of the KL decomposition. The predictivity factor converges to 1.0 as the number
of KL modes increases. The level of truncation is a compromise between the KL expansion
accuracy and the number of KL modes (and therefore the number of Gaussian processes to
use in the overall surrogate model). For the current test case, 4 KL modes are considered as
it is a reasonable trade-off between the number of KL modes and the Q2 factor value.

Table 1. Predictivity factor Q2 as a function of the number of KL modes.

Number of KL Modes 1 2 4 6

Q2 −489.28 0.9998 1.0000 1.0000

4.1.2. Test Case Results

The proposed approach is repeated 10 times with different initial datasets UM and
XM to evaluate the robustness of the proposed method to the initial datasets. For one
representative repetition, the initial samples of the design experiment and the added
samples by the active learning strategy are represented in Figure 7. As the infill process
starts with a limited number of samples, the refinement strategy adds samples in the dataset
to improve the 95% quantile estimation. It can be seen that several (5 over 10) are added in
the vicinity of the exact 95% quantile.



Appl. Sci. 2022, 12, 10027 13 of 24

0 2 4 6 8 10 12
t (s)

50

25

0

25

50

75

100

125

150

X
(-

)

Initial samples

Added samples

exact q95

Figure 7. Initial and added output stochastic process samples in the dataset.

Moreover, in Figure 8, the evolution of the estimated 95% quantile with the surrogate
model along with the iteration of the active learning process are presented. It can be
seen that the first estimations of the quantile are far away from the exact q95 and as the
refinement strategy updates the surrogate model, the estimate quantile converges to the
exact quantile thanks to a limited number of exact mapping QX evaluations. Therefore, the
active learning process allows to estimate the 95% quantile of the output stochastic process
X(t, U) at an affordable computational cost.

Figure 8. Evolution of the estimated q95 along the 10 active-learning iterations.

In addition, in Figure 9, the evolution of the quantile estimation and the confidence
area are displayed before the refinement (left) and after the 10 active learning iterations
(right). At the end of the refinement process, the estimated quantile converges to the exact
quantile and the confidence area is tighten around the exact quantile.
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Figure 9. Estimation of the quantile and its confidence area before refinement (a) and after
10 active-learning iterations (b).

Figure 10 presents the boxplots over the 10 repetitions corresponding to the evolution
of the estimated quantile confidence area (left) and the root mean square error (RMSE)
on the right with respect to the exact quantile. Both the confidence area and the RMSE
decrease as the refinement strategy adds new relevant samples into the input and output
datasets. The RMSE between the estimated quantile and the exact quantile converges to
0. Moreover, it can be noted that the proposed approach is robust to the different initial
datasets. Therefore, with only 14 evaluations of the exact model QX(·) (4 initial samples
and 10 added with the refinement strategy) it is possible to accurately estimate the 95%
quantile while controlling the confidence in its estimation.
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Figure 10. Boxplots for 10 repetitions of the estimation of the quantile confidence area (a) and root
mean square error (b) along the 10 active-learning iterations.

In order to illustrate the interest of the surrogate model-based approach for the estima-
tion of the 95% quantile, a Monte-Carlo simulation of the same number of samples (14 in
the present case) may be performed to estimate the quantile. It is possible to determine the
confidence area for the Monte-Carlo simulation as presented in Figure 11. For the same
number of exact model evaluations QX(·), the estimated 95% quantile is more accurate
with the active learning approach compared to a Monte-Carlo estimation. It highlights
the interest of surrogate-based estimation with a refinement strategy to estimate stochastic
process quantile.

4.2. Launch Vehicle Design Problem
4.2.1. Test Case Description

This test case is derived from a launch vehicle design problem to estimate flight
envelops considering modeling uncertainty. In the early design phase, in order to explore
the design space at an affordable computational cost, low and medium fidelity models are
used resulting in uncertainty in the estimated system performances. To evaluate the impact
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of the modeling uncertainty on the launch vehicle, uncertainty propagation is carried out.
One objective is to estimate the launch vehicle flights envelopes that describe the possible
trajectories considering the modeling uncertainty. The flight envelops are defined based on
quantile estimation of the trajectory state variables such as altitude, velocity, flight path
angle, etc.

Figure 11. Confidence area based on the surrogate model estimation and based on Monte Carlo (MC)
with 14 evaluations of QX(·).

In the current test case, the considered mission is to inject a payload of 10 tons into a
400 km circular equatorial orbit using a Two-Stage-To-Orbit (TSTO) vehicle. The launch
vehicle has two stages: a first stage with nine rocket engines and a second stage with one
rocket engine. All the engines use a combination of liquid oxydizer and rocket propellant
(RP-1). The launch pad is located at the European spaceport at Kourou in French Guiana.

For one realization of the input uncertain modeling variables, the multidisciplinary
analysis used to assess the vehicle performances consists in determining the optimal launch
vehicle trajectory (optimal state variables) involving the solving of an optimal control
problem. Therefore, uncertainty propagation is a challenge even in early design phases as
it combines the computational cost of multidisciplinary analysis, uncertainty propagation
and trajectory optimization.

In this test case, the surrogate-based model approach presented in the previous sections
is carried out. It is assumed that the architecture of the launch vehicle is defined from a
baseline and the objective is to assess the launch vehicle robustness to modeling uncertainty
through the determination of flight envelops (extreme quantiles).

The input modeling uncertainties considered in this problem are gathered into an
input uncertainty vector U ∈ R7. These variables and their probability distributions are
summarized in Table 2. These distributions have been assessed using expert knowledge.
Four uncertainties are considered on the modeling of the propulsive performance: the
specific impulse (UIsp) of the first and second stages and the mass flow rate (Uq). In addition,
an uncertainty on dry masses is assumed using Um1 and Um2 to account for structural dry
mass misknowledge in the early design phase. Eventually, for the aerodynamics model, it
is assumed that the drag coefficient suffers from some uncertainty UCD.
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Table 2. Probability distribution of the input uncertain random vector.

Name Notation Model (Mean, Standard Deviation)

Specific impulse stage 1 UIsp1 N (0, 1) (additive, s)
Specific impulse stage 2 UIsp2 N (0, 1)( additive, s)
Residual mass stage 1 Um1 U (−750, 750) (additive, kg)
Residual mass stage 2 Um2 U (−250, 250) (additive, kg)
Mass flow rate stage 1 Uq1 N (0, 5) (additive, kg/s)
Mass flow rate stage 2 Uq2 N (0, 5) (additive, kg/s)
Drag coefficient UCD U (−0.05, 0.05) (additive, −)

The launch vehicle performances are simulated through a multidisciplinary process
that couples different disciplines: the structure, the aerodynamics, the propulsion and
the trajectory (see Figure 12). All these disciplines are integrated into a Multidisciplinary
Design Optimization process. The consistency between the coupling variables is ensured
by a multidisciplinary analysis [31]. The implementation of the multidisciplinary process is
done with the openMDAO framework [32]. The four disciplines are briefly introduced in
the following paragraphs.

Trajectory 
simulation

Trajectory optimization

MultiDisciplinary Analysis

Uncertainty propagation

Propulsion

Structure

Aerodynamics

Optimal trajectory
samples

Input uncertain variable
vector samples

Figure 12. Uncertainty propagation for launch vehicle design test case using multidisciplinary simulation.

Propulsion

The propulsion module is in charge of computing the rocket performances for the first
and second stages. The propulsion module is based on the Chemical Equilibrium with
Applications (CEA) model [33]. This code determines the rocket engine performances such
as specific impulse and thrust based on different input characteristics (chamber pressure,
oxydizer to fuel ratio, etc.). The model involves a thermochemical analysis of complex
mixtures of propellants. For a rocket engine, it involves the combustion of injected gas in
the combustion chamber and the hot gas expansion in the nozzle. CEA is suited for rocket
engine calculations at the conceptual and preliminary design phases. It provides coupling
variables (specific impulse, mass flow rate) that are transferred to the mass and sizing and
the trajectory disciplines. To account for the modeling uncertainty, the nominal value of the
estimated parameters by CEA is perturbed as presented in Table 2.
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Structures

The structure discipline is in charge of estimating the dry mass of the two stages
accounting for the coupling variables coming from the propulsion and trajectory disciplines.
Mass Estimation Relationships (MERs) determined based on existing expandable launch
vehicles are used [34] to estimate the masses of the different subsystems. All the different
components of the launch vehicle (tanks, rocket engines, nozzle, avionics, electrical systems,
thrust frame, interstage, etc.) are modeled. Their corresponding masses are estimated based
on analytical relationships defined by the MERs. This discipline provides a fast estimation
of the launch vehicle dry mass. To account for the fidelity level of the model, the dry mass
of the first and second stages are assumed to be uncertain as presented in Table 2.

Aerodynamics

In order to evaluate the influence of the atmosphere during the launch vehicle flight,
it is necessary to determine the aerodynamic loads that act on the launcher. The estima-
tion of the aerodynamic forces for such a type of vehicles is difficult as it flows through
very different phases (subsonic, transonic, supersonic and hypersonic). For early design
phases, the aerodynamics model used in the multidisciplinary process is based on MISSILE
datcom [35]. It is a semi-empirical code allowing to estimate the drag and lift coefficients
as a function of the angle of attack and the Mach number, and the vehicle geometry. In
the trajectory simulation, using an U.S. Standard Atmosphere models [36] and the aerody-
namic coefficients, the discipline provides the aerodynamic loads given the current flight
conditions. Uncertainty related to the estimation of the drag coefficient is assumed for this
module as introduced in Table 2.

Trajectory

The trajectory discipline is in charge of optimizing the trajectory path in order to mini-
mize the consumption of propellant during the flight. To simulate the flight of the launch
vehicle, it is necessary to numerically integrate a system of ordinary differential equations
that corresponds to the equations of motion according to the time. Different approaches
exist to simulate and optimize the launch vehicle flight and in the multidisciplinary process,
a pseudo-spectral method [37] is used in order to find the optimal control law. The control
law consists of a parameterized pitch profile as a function of time. These parameters are
optimized based on a Legendre–Gauss–Lobatto collocation technique [37] and DYMOS
library [38].

The equations of motion that are considered involve five state variables:

fode :



ṙ = v sin (φ)

λ̇ = v cos (φ)
r

v̇ = −D+T cos (θ−φ)
m +

(
−g + ω2r

)
sin (φ)

φ̇ = L
mv + T sin (θ−φ)

mv + (ω2r−g) cos (φ)
v + 2ω + v cos (φ)

r
ṁ = −q

(29)

with ω the angular velocity of the Earth, λ the longitude of the launch vehicle, φ the flight
path angle, r the position vector from the center of the Earth to the geometric center of the
launch vehicle, α the angle of attack, m the current launcher mass, q the mass flow rate, g
the acceleration of gravity, L the lift force, D the drag force, θ the pitch angle, T the thrust
force and v the velocity vector.

The trajectory is decomposed into five phases with appropriate guidance laws: lift-off,
pitch-over maneuver, exponential decay, gravity turn and bi-linear tangent phase. More-
over, to represent the dynamics of the vehicle, the jettisoning of the first stage and payload
fairing for the TSTO vehicle are included in the simulation. A Hohmann transfer ascent is
implemented for the transfer before injection the payload on the circular target orbit.
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4.2.2. Test Case Settings

The initial input UM and output datasets XM are defined by a Monte Carlo simulation
with M = 200 (see Figure 13). For each realization of the input uncertain variables, a
multidisciplinary analysis is carried out with optimal control problem solving to determine
the output stochastic process realization X(t, ui), i = 1, . . . , M. The altitude as a function of
time is considered as the quantity of interest resulting from the multidisciplinary analysis.
In order to account for different trajectory durations depending on the input uncertain
variables, the discretization is carried out with respect to a percent of flight from 0% to
100%. The objective of this test case is the determination of the 99% quantile on the altitude
as a function of percent of flight. For that purpose, considering the computational cost of
one multidisciplinary analysis, 10 new samples are added into the database with the active
learning algorithm to improve the estimation of the quantile over the stochastic process.

Figure 13. Visualization of the launch vehicle ascent trajectories in 3D due to the uncertain input vector.

To evaluate the uncertainty on the 99% quantile estimation, NGP = 150 GP trajectories
are sampled and β = 0.025 is used to define the upper and lower bounds on the quantile
estimates in the set QNGP . Figure 14 presents the scaled KL models for the centered altitude.
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Figure 14. Scaled KL models for the centered altitude.
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The KL expansion validation is carried out using additional 800 validation samples.
In that purpose, the exact multidisciplinary process is executed for the different input
uncertain parameter values as defined in Table 2. The output samples X∗v(t, u) are used for
the validation.

Using the validation samples, it is possible to determine the residual samples as
illustrated in red in Figure 15. The centered altitude samples are represented in blue. From
Figure 15, it seems that with 2 modes in KL expansion, the obtained residual samples
are non negligible meaning that the KL decomposition is not accurate enough. However,
the increase of the number of modes leads to residual samples that becomes negligible
validating the KL expansion accuracy.
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Figure 15. Karhunen–Loève validation with respect to the number of modes: 2 (a), 5 (b), 10 (c), 20 (d)
and 40 (e).

Table 3 gives the Q2 factor depending on the number of KL modes in the expansion.
As expected from the Figure 15, by considering only 2 KL modes, the decomposition does
not provide accurate results. As the number of modes in KL expansion increases, the
prediction accuracy converges to 1.0. The level of truncation is a compromise between the
number of nodes and the KL expansion accuracy. For the altitude variable, a number of
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20 modes is a good trade-off between the number of GPs involves in the overall surrogate
model and the Q2 factor.

Table 3. Predictivity factor Q2 as a function of the number of KL modes.

Number of KL Modes 2 5 10 20 40

Q2 −42.9737 0.7874 0.9900 0.9999 1.0000

4.2.3. Results Analysis and Discussion

The proposed approach is repeated 10 times with different initial dataset UM and
XM to evaluate the robustness of the proposed method to the initial dataset. For one
representative repetition, Figure 16 presents the initial (upper left) and final (lower left)
output stochastic process samples corresponding to the launch vehicle altitude as a function
of percent of flight. Moreover, the centered altitude process samples are illustrated on the
figures of the right. It can be seen that the added samples (in dashed red) are in the higher
region of the samples in order to refine the 99% quantile of the altitude. Therefore, the
refinement strategy selected appropriate new samples to improve the estimation of the
99% quantile.
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Figure 16. Initial and final output stochastic process samples for the altitude (a,c) and the centered
altitude (b,d).

For one representative repetition, Figure 17 presents the pairplot associated with the
initial and added samples for the input uncertain variables in dimension 7. The added
samples by the refinement strategy are selected in specific regions of the input uncertain
variable domain. For instance, trajectories with higher altitude result from the uncertainty
on the specific impulse of the 2nd stage that are above 1.5 s offering higher rocket engine
efficiency. Similarly, the negative uncertainty on the residual mass of the structures of stages
1 and 2 allows trajectories with higher altitude. Therefore, the active-learning strategy
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appropriately selects input uncertain variable realizations to be added to the surrogate
model dataset to improve the 99% quantile estimation.

Figure 17. Pairplot of the initial and added samples for the input uncertain variables.

For one representative repetition, the estimated 99% quantile before and after re-
finement are presented in Figure 18. It can be seen that the uncertainty on the quantile
estimation is reduced after the enrichment of the dataset and that the estimated quantile
converged to the validation quantiles.

0 20 40 60 80 100
% of flight

0

50

100

150

he
ig

ht
 (k

m
)

validation q0.99
estimated q0.99
95% CI area - A (km): 1.509 

(a)

0 20 40 60 80 100
% of flight

0

50

100

150

he
ig

ht
 (k

m
)

validation q0.99
estimated q0.99
95% CI area - A (km): 0.468 

(b)

0 20 40 60 80 100
% of flight

5

0

5

10

15

20

ce
nt

er
ed

 h
ei

gh
t (

km
) validation q0.99

estimated q0.99
95% CI area - A (km): 1.509 

(c)

0 20 40 60 80 100
% of flight

5

0

5

10

15

20

ce
nt

er
ed

 h
ei

gh
t (

km
) validation q0.99

estimated q0.99
95% CI area - A (km): 0.468 

(d)
Figure 18. Quantile estimation and confidence area with initial dataset (a,c) and after 10 active-
learning-based enriched samples (b,d).

In Figure 19, boxplots of the 10 repetitions of the active-learning process are presented
for the uncertainty on the quantile estimation (left) and the root mean square error (RMSE)
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of the obtained quantile compared to the validation quantile (right). The uncertainty on the
quantile estimation is reduced along the addition of new sample in the dataset. Similarly,
the RMSE compared to the validation quantile is also reduced as the number of selected
samples by active-learning increase. These boxplots illustrate the efficiency of the proposed
approach and its robustness with respect to the initial dataset.
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Figure 19. Estimation of the quantile confidence area (a) and root mean square error (b) along the
10 active-learning iterations for 10 repetitions.

5. Conclusions

A methodology for uncertainty propagation though a computationally intensive black-
box model with the output vector resulting in a discretization of a stochastic process has
been proposed in this paper. The surrogate model approach combines Karhunen–Loève
decomposition to carry out dimensionality reduction of the output stochastic process and
Gaussian process to map the input uncertain variable realizations to the resulting output
stochastic process samples. In order to control the accuracy of the quantile estimation, an
active-learning strategy has been defined to carry out adaptive surrogate model refinement
by evaluating the exact black-box model on relevant realizations of the input uncertain
variable space. This strategy allows to estimate time-dependent extreme quantile in a
limited number of computationally expensive code evaluations. In the involved examples.
On the aerospace use case, only 10 enrichment iterations are needed to reduce the confidence
area of the time-dependent extreme quantile to lower than 500 m. Furthermore, with the
proposed approach, the Root Mean Square Error on the 99% quantile of the optimal altitude
of the launcher decreases from 650 m before the infill down to 220 m after the addition of
10 new samples selected with the refinement strategy. In future works, an extension of the
proposed approach for stochastic process defined over a multi-dimensional domain could
be done by defining a new measure (integrated over the multi-dimensional domain) for
the confidence associated to the quantile estimation.
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