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Abstract: A complex cylindrical structure consisting of a group of parallel stratified circular lossy di-
electric cylinders, embedded in a dielectric circular cylindrical region and surrounded by unbounded
dielectric space, is considered in this paper. The scattering of electromagnetic (EM) plane waves by
the aforementioned configuration was studied; the EM waves impinged obliquely upon the structure
and were arbitrarily polarized. The formulation used was based on the boundary-value approach
coupled with the generalized separation of variables method. The EM field in each region of space
was expanded in cylindrical wave-functions. Furthermore, the translational addition theorem of
these functions was applied in order to match the EM field components on any cylindrical interface
and enforce the boundary conditions. The end result of the analysis is an infinite set of linear alge-
braic equations with the wave amplitudes as unknowns. The system is solved by the truncation of
series and unknowns and then matrix inversion; thus, we provide a semi-analytical solution for the
scattered far-field and, as a consequence, for the scattering cross section of the complex cylindrical
structure. The numerical results focus on calculations of the electric- and magnetic-field intensity
of the far-field as well as of the total scattering cross section of several geometric configurations
that fall within the aforementioned general structure. The effect of the geometrical and electrical
characteristics of the structure on the scattered field was investigated. Specifically, the cylinders’ size
and spacing, their conductivity and permittivity as well as the incidence direction were modified
in order to probe how these variations are imprinted on scattering. Moreover, comparisons with
previously published results, as well as convergence tests, were performed; all tests and comparisons
proved to be successful.

Keywords: arbitrary polarization; dielectric cylinders; electromagnetic scattering; layered cylindrical
structure; oblique incidence; scattering cross section; space wire; stratified cylinder

1. Introduction

Although the scattering of electromagnetic waves by cylindrical structures has been
broadly investigated for many decades, it still draws interest nowadays because of the
variety of scientific areas it is associated with, such as microwave engineering, electro-
magnetic compatibility, mobile and satellite communications, geophysical and mineral
exploration, space and military technologies, defense and the security sector. It’s ap-
plications include simulating complicated structures, analyzing modes in waveguides,
simulating communication lines and space wires, controlling the radar cross section of
various targets, communicating within tunnels and underground constructions, detecting
and monitoring pipelines and subsurface resources.

Plane-wave scattering by two stand-alone parallel circular cylinders at normal inci-
dence is one of the simplest pertinent problems and it was treated some decades ago [1–4],
whereas oblique incidence at the same structure has also been examined [5,6]. Another,
relatively simple, geometric configuration that has drawn strong interest consists of a
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circular conductive or dielectric cylinder embedded in a host cylinder either concentrically
or eccentrically [7–10]. The case of scattering by inhomogeneous cylinders has also been
studied [11], while arbitrary polarization and oblique incidence on either dielectric cylin-
ders loaded by strips [12] or dielectric semi-cylinders loaded by ground plane slots [13]
have been considered. More recently, scattering by dielectric cylinders eccentrically coated
by cylindrical metamaterial shells has been investigated [14].

The most popular method to treat such problems is the expansion of the electromag-
netic (EM) field expressions in cylindrical wavefunctions with unknown coefficients, which
are found by applying the corresponding boundary conditions and solving the consequent
infinite set of linear equations by truncation and matrix inversion [15]. However, various
analytical formulations and numerical techniques have been proposed to deal with scatter-
ing from cylindrical structures; the latter may be far more complex than the ones mentioned
in the previous paragraph. Indicative works are cited below.

The computational method of moments has been used to study electromagnetic scatter-
ing by perfect electric conductor (PEC) cylinders with arbitrary cross sections and several
dielectric layers [16,17], and an impedance boundary condition of 2nd order has been
employed to examine the effects of different dielectric coverings on PEC cylinders [18],
while fictitious filamentary sources have been used to imitate the EM field scattered from a
coated cylinder [19]. Scattering from eccentrically stratified cylinders has been addressed
by enforcing the boundary conditions directly upon cylindrical surfaces at normal [20] and
oblique incidence [21], while a new technique based on an indirect mode matching and 2nd
Green’s vector theorem has been introduced to solve problems of EM-wave scattering from
complex cylindrical structures such as eccentrically stratified cylindrical inclusions embed-
ded in a host cylinder [22,23]. The rigorous coupled wave analysis in bipolar coordinates
has been used to investigate scattering from eccentric multi-cylinder configurations [24]
and the T-matrix method has been employed to study scattering by a cylinder with eccentric
cylindrical inclusions [25]. The more complicated case of bianisotropic cylindrical inclu-
sions in a host cylinder which is embedded in a bianisotropic space, at oblique incidence,
has also been treated [26].

The scattering of electromagnetic waves by structures that involve several parallel
cylindrical rods has been considered by many researchers; a common geometric configu-
ration comprises cylinders with a circular [27] or arbitrary cross section [28,29] at normal
incidence, while obliquely incident plane waves have been also examined [30]. More
complicated problems/geometries include scattering from multiple dielectric and metal-
lic objects studied by using the T-matrix method [31], oblique incidence at multilayered
crossed arrays of circular cylinders [32], an S-matrix solution to scattering from periodic
arrays of metallic cylinders with an arbitrary cross section [33], an iterative scattering
procedure applied to parallel anisotropic chiral cylinders [34] and scattering from various
periodic arrays of cylinders [35–37].

Over the last few years, interest in problems of scattering by cylindrical structures
remains vivid, albeit the geometries/problems treated become even more sophisticated [38].
A series solution based on continuity has been presented for scattering from multilayer
cylinders of arbitrary shapes [39,40], a Voltera integral equation formulation has been
proposed for scattering by radially inhomogeneous cylinders in the case of oblique inci-
dence [41], the spectral integral method (SIM) has been employed in the case of scattering
by multilayer magnetodielectric cylinders [42], a hybrid integral equation method has
been investigated in the case of scattering from doubly connected cylinders at oblique inci-
dence [43] and a generalized vector cylinder harmonics (VCH) expansion has been applied
for the scattering of an inhomogeneous plane wave by various cylindrical structures, such
as a multilayer cylinder and an ensemble of stratified cylinders [44–46]. Recently, multilay-
ered cylindrical geometries have been adopted to simulate photonic crystals [47,48]. The
absorption and reflection of EM-waves by such crystals has been examined by using the
transfer matrix method [47], while a multiphysics sensor consisting of magnetized plasma
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and isotropic dielectric layers with a periodic cylindrical structure has been proposed by
Zhang et al. [48].

In this paper, we extend the method applied in [26] as a means to address and ef-
ficiently solve the problem of electromagnetic scattering of plane waves with arbitrary
polarization, as they are obliquely incident upon a complex cylindrical structure of infi-
nite length consisting of a group of parallel stratified circular lossy dielectric cylinders,
embedded in a dielectric circular cylindrical housing surrounded by dielectric space. To
the best of our knowledge, except [49] where scattering from a similar configuration is
addressed as an engineering electromagnetics exercise from an educational point of view,
this cylindrical structure is one of the most complicated configurations considered so far
at oblique incidence. Admittedly, even more complex geometries may be found in the
literature [23,24]; however, the EM wave is assumed to impinge normally on these struc-
tures. Thus, the main contribution of this paper is a solution to EM-wave scattering by
combining a rather complicated cylindrical configuration with EM waves at obliquely
incidence, which, in addition, are arbitrarily polarized. Furthermore, a semi-analytical
method is used to address the problem, the only approximation being the truncation of the
infinite series and the (numerical) matrix inversion.

The composite cylindrical wire considered in this work offers great flexibility in
complex cylindrical object modeling because the analysis does not impose any restrictions
on the physical properties (its multitude, size, position) and the electrical characteristics of
the multi-layered cylindrical rods enclosed in the outer cylinder, provided that they are not
overlapped. The multiple core model presented herein may be used for the simulation of
space wires with applications in EM compatibility problems.

This paper is organized as follows. A description of the geometric configuration is
given in Section 2. Additionally, the semi-analytical solution is developed in the same
section. The end-result of the analysis is the calculation of the scattered electric and
magnetic field intensity as well as the total scattering cross section of the structure. The
indicative results are included in Section 3; the convergence of the solution is also examined
therein. A discussion of the results is provided in Section 4, together with comparisons
with previously published works. Finally, our conclusions are presented in Section 5.

2. Materials and Methods

A geometric configuration of our problem is depicted in Figure 1; Figure 1a displays
the cross section of the general structure, while Figure 1b offers a 3D view of a simpler
configuration that may serve as an example. The general configuration consists of a circular
dielectric cylinder (affiliated to region 1) which is placed within the boundless free space
(affiliated to region 0) and comprises L − 1 parallel circular stratified cylinders (each with two
lossy dielectric layers, affiliated to regions 2, 3, 4, 5, . . . , 2L− 2, 2L− 1). Each cylindrical
region of space is identified by the index, i (i = 0, 1, 2, 3, 4, 5, . . . , 2L− 2, 2L− 1), and is
characterized by its dielectric permittivity, εi, magnetic permeability, µi, electric conductivity,
σi, and radius, αi. All L cylinders (the external as well as the embedded ones) are parallel to
each other, with their axis-to-axis distances symbolized by Dpq (p, q = 1, 2, . . . , L). We define
L − 1 local cylindrical coordinate systems, Op(ρp, ϕp, z), with p = 1, 2, . . . , L and each one
attached to the axis of the corresponding p-th cylinder, while the O1 (ρ1, ϕ1, z) system devoted
to the outer cylinder’s axis is used as reference.

The primary excitation is provided by an EM plane wave with arbitrary polariza-
tion, impinging on the configuration of Figure 1a from the external region (0), where it
propagates. The vector wavenumber of the aforementioned EM wave is given by

k
inc

(θ′,ϕ′) = kρ
_
k

inc

ρ + β
_
z = k0 sin θ′ (cosϕ′

_
x + sinϕ′

_
y ) + k0 cos θ′

_
z , (1)

where θ′ and ϕ′ are the angles of plane wave oblique incidence shown in Figure 2,
β = k cos θ′ is the propagation constant, kρ = k0 sin θ′ and k0 = ω

√
ε0µ0 is the wavenum-

ber of free space when ω implies the circular frequency. Henceforth, the EM field
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[Einc
(ρ), Hinc

(ρ)] e−Jβz = [
_
z Einc

z (ρ) + Einc
t (ρ),

_
z Hinc

z (ρ) + Hinc
t (ρ) ] e−jβz with arbi-

trary polarization, which is excited at ρ ∈ (0) of the cylindrical structure, is referred to as
the incident field. The harmonic exp[j(ωt− βz)] dependence on time and z is suppressed
throughout the analysis for brevity.
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Figure 1. (a) Cross-section (normal to the complex cylindrical structure’s axes) of the general configu-
ration under consideration, consisting of L − 1 parallel stratified circular dielectric cylinders (2, 3, . . . ,
L), embedded in a dielectric circular cylindrical housing (1) surrounded by unbounded empty space
(0). (b) A specific example of the configuration, consisting of a host cylinder with three cylindrical
inclusions (3D view).
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Using the coordinate system (O1) of the outer cylinder, the longitudinal components
of the incident electromagnetic field may be written [50] as follows:[

Einc
z (ρ)

Hinc
z (ρ)

]
=

[
E0
H0

]
exp(−j k

inc
ρ · ρ) =

[
E0
H0

] ∞

∑
n=−∞

Jn(kc0ρ1) jn ejn(ϕ1−ϕ′). (2)

E0 and H0, in Equation (2), are the magnitudes of the incident electric and magnetic fields,

whereas ρ1 and ϕ1 are the polar coordinates of ρ in (O1), kc0 =
√

k2
0 − β2 and Jn(x) stands

for the Bessel function of order n and argument x [51]. The ϕ-components of the incident
field can be expressed as[

Einc
ϕ (ρ)

Hinc
ϕ (ρ)

]
=

[
E0
H0

] ∞

∑
n=−∞

nGJ
0(ρ1) jn ejn(ϕ1−ϕ′), (3)

where nGJ
i(ρ) is the abbreviation for

nGJ
i(ρ) =

 βn
k2

ci ρ
Jn(kci ρ)

jωµi
kci

J′n(kci ρ)

− jωεi+σi
kci

J′n(kci ρ)
βn

k2
ci ρ

Jn(kci ρ)

, (4)

and J′n(x) is the first derivative of the Bessel function of order n with respect to its argu-
ment, x.

The EM field [Esc
(ρ), Hsc

(ρ)] e−jβz = [
_
z Esc

z (ρ) + Esc
t (ρ) ,

_
z Hsc

z (ρ) + Hsc
t (ρ) ] e−jβz

excited at any observation point ρ of the cylindrical region (i), with i = 0, 1, 2, 3, . . . , 2L− 1,
is referred to as the scattered field due to the existence of the L dielectric stratified cylinders
of Figure 1. It should be noted that regions (i) with i = 2, 4, . . . , 2(s− 1), . . . , 2(L− 1) and
i = 3, 5, . . . , 2(s− 1) + 1, . . . , 2(L− 1) + 1 designate the cladding and the core regions for
the s-th cylinder (s = 2, 3, . . . , L), respectively. Regarding the local coordinate system of
the q-th cylinder (Oq), the longitudinal components Esc

z and Hsc
z of the scattered field may be

written in compact form as[
Esc

z (ρ)
Hsc

z (ρ)

]
=

∞
∑

n=−∞

{
(1− δi,0) Jn(kci ρq) ejnϕq

[
ai

n
bi

n

]
+ δi,2(q−1)H

(2)
n (kci ρq) ejnϕq

[
ci+1

n
di+1

n

]
+δi,1

L
∑

s=2
H(2)

n (kc1 ρs) ejnϕs

[
c2(s−1)

n

d2(s−1)
n

]
+ δi,0 H(2)

n (kc0 ρ1) ejnϕ1

[
c1

n
d1

n

]} , (5)

where i indicates the cylindrical region of the corresponding q cylinder, ρq and ϕq signify
the polar coordinates of the observation point ρ regarding the cylindrical coordinate system
(Oq), ai

n, ci
n and bi

n, di
n denote the unknown coefficients of the series expansions for the elec-

tric and magnetic field intensity, respectively, kci =
√

k2
i − β2, ki =

√
εi µi ω

2 − jω µi σi,

δi,` stands for the Kronecker delta piecewise function of i and ` and H(2)
n (x) is the Hankel

function of the 2nd kind, order n and argument x [51].
The infinite sum at the right-hand side of Equation (5) represents the scattered EM

field in every region of space according to the values of the Kronecker delta functions,
as explained below. The scattered wave in the unbounded external empty space (region
0) is expressed in terms of H(2)

n (kc0ρ1), as indicated by the fourth term in the sum of
Equation (5), since this term exists only for i = 0; the aforementioned Hankel function of
the second kind acquires the form of a diverging cylindrical wave far from the axis of the
structure (i.e., for kc0ρ1 � 1). The EM field inside the host cylinder (region 1) comprises
the contribution of each internal (stratified) cylinder in the form of a diverging cylindrical
wave; the latter is expressed in terms of H(2)

n (kc1ρs), as denoted by the third term in the
sum of Equation (5), which exists only for i = 1. An additional term, regular at ρ1 → 0
(since it contains Bessel functions of the first kind), is included in the modal expansion
of the EM field in region 1 to account for the contribution of the outer boundary of the
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cladding; this term is actually the first term in the sum of Equation (5) for i = 1. The EM
field inside the core of each cylindrical inclusion is represented by the first term in the
sum of Equation (5) for i = 3, 5, . . . , 2(L− 1) + 1; the modal expansion contains only
Bessel functions of the first kind since the EM field should be regular at the local origin
Oq (i.e., for ρq → 0). The expansion of the EM field inside the cylindrical layer of each
inclusion should comprise both Bessel and Hankel functions since the (local) origin is not
included in these regions. The Bessel functions of the first kind appear in the first term
at the right-hand side of Equation (5), for i = 2, 4, . . . , 2(L− 1), whereas the third term
represents the expansion in Hankel functions of the second kind.

By applying the Bessel and Hankel functions translational addition theorems, one may
prove that [26,51]

Jn(kc1 ρ1) ejnϕ1 =
∞

∑
m=−∞

Jn−m
(
kc1D1q

)
ej(n−m)ϕ1q Jm

(
kc1ρq

)
ejmϕq , (6a)

H(2)
n (kc1 ρs) ejnϕs =

∞

∑
m=−∞

H(2)
n−m

(
kc1 ρ

>
q,s

)
ej(n−m)ϕ>

q,s Jm

(
kc1 ρ

<
q,s

)
ejmϕ<

q,s , (6b)

where
ρ>q,s = max

{
ρq, Dsq

}
, ρ<q,s = min

{
ρq, Dsq

}
,

ϕ<
q,s =

{
ϕq, if ρ<q,s = ρq
ϕsq, if ρ<q,s = Dsq

, ϕ>
q,s =

{
ϕq, if ρ>q,s = ρq
ϕsq, if ρ>q,s = Dsq

,
(6c)

and (Os) and (Oq) are the coordinate systems attached to the axis of the s-th and q-th
cylinder, respectively.

Substituting (5) in (4), the compact general expressions of Equation (7) for the excitation
electromagnetic field in any region (i) are obtained:[

Esc
z (ρ)

Hsc
z (ρ)

]
=

∞
∑

n=−∞

{
(1− δi,0)(1− δi,1) Jn(kci ρq) ejnϕq

[
ai

n
bi

n

]
+ δi,2(q−1) H(2)

n (kci ρq) ejnϕq

[
ci+1

n
di+1

n

]
+δi,0 H(2)

n (kc0 ρ1) ejnϕ1

[
c1

n
d1

n

]
+ δi,1

[
∞
∑

m=−∞
Jn−m

(
kc1D1q

)
ej(n−m)ϕ1q Jm

(
kc1 ρq

)
ejmϕq

[
a1

n
b1

n

]
+

L
∑

s=2

∞
∑

m=−∞
H(2)

n−m

(
kc1 ρ

>
q,s

)
ej(n−m)ϕ>

q,s Jm

(
kc1 ρ

<
q,s

)
ejmϕ<

q,s

[
c2(s−1)

n

d2(s−1)
n

]]} . (7)

By expressing the ϕq-components of the scattered field at ρ ∈ (i), the analysis yields[
Esc
ϕ(ρ)

Hsc
ϕ(ρ)

]
=

∞
∑

n=−∞

{
(1− δi,0)(1− δi,1)

nG
J
i(ρq) ejnϕq

[
ai

n
bi

n

]
+ δi,2(q−1)

nGH
i (ρq) ejnϕq

[
ci+1

n
di+1

n

]
+δi,0

nGH
0 (ρ1) ejnϕ1

[
c1

n
d1

n

]
+ δi,1

∞
∑

m=−∞

mGJ
1(ρq) ejmϕq Jn−m

(
kc1D1q

)
ej(n−m)ϕ1q

[
a1

n
b1

n

]
+δi,1

[
L
∑

s=2

∞
∑

m=−∞

[
δ′qs

n−mGH
1 (ρq) ej(n−m)ϕq Jm

(
kc1Dsq

)
ejmϕsq

+(1− δ′qs) H(2)
n−m

(
kc1Dsq

)
ej(n−m)ϕsq mGJ

1(ρq) ejmϕq
] [ c2(s−1)

n

d2(s−1)
n

]]}
, (8)

where δ′qs = 1 ( if ρ>q,s = ρq), or 0 (if ρ<q,s = ρq), nGH
i (ρ) stands for the abbreviation

nGH
i (ρ) =

 βn
k2

ci ρ
H(2)

n (kci ρ)
jωµi

kci
H′(2)n (kci ρ)

− jωεi+σi
kci

H′(2)n (kci ρ)
βn

k2
ci ρ

H(2)
n (kci ρ)

, (9)

and H′(2)n (x) is the Hankel function’s first derivative with respect to its argument, x.
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The total EM field [Etot
(ρ), Htot

(ρ)] e−jβz at ρ ∈ (i) may be expressed, by using
Equations (2), (3), (7) and (8), as follows:[

Etot
z (ρ)

Htot
z (ρ)

]
=

[
Esc

z (ρ)
Hsc

z (ρ)

]
+ δi,0

[
Einc

z (ρ)

Hinc
z (ρ)

]
,

[
Etot
ϕ (ρ)

Htot
ϕ (ρ)

]
=

[
Esc
ϕ(ρ)

Hsc
ϕ(ρ)

]
+ δi,0

[
Einc
ϕ (ρ)

Hinc
ϕ (ρ)

]
. (10)

Subsequently, we apply the appropriate boundary conditions, imposing the continuity
of the total EM field’s components Etot

z , Htot
z , Etot

ϕ and Htot
ϕ over each cylindrical boundary

(ρ1 = α1, ρp = α2(p−1) and ρp = α2(p−1)+1; p = 2, . . . , L) of the complex configuration.
Then, we multiply both sides of each of the resulting equations by exp(−jMϕp) and inte-
grate from ϕp = 0 to ϕp = 2π. Thus, we obtain an infinite set of linear, algebraic equations
for the unknown expansion coefficients, which is written in the following compact form:[

δq,2(p−1)

[
JM(kcqαq)I −H(2)

M (kc1αq) I
MGJ

q(αq) −MGH
1 (αq)

]

+
(
δq,1 + δq,2(p−1)+1

) [JM(kcqαq)I −H(2)
M (kc(q−1)αq) I

MGJ
q(αq) −MGH

(q−1)(αq)

]] 
(

aq
M

bq
M

)
(

cq
M

dq
M

)


+δq,2(p−1)

[
H(2)

M (kcqαq) I
MGH

q (αq)

] (
cq+1

M
dq+1

M

)
− δq,2(p−1)+1

[
JM(kc(q−1)αq)I

MGJ
(q−1)(αq)

] (
aq−1

M
bq−1

M

)

−δq,2(p−1)
∞
∑

n=−∞

[
Jn−M(kc1D1p) ej(n−M)ϕ1p

[
JM(kc1αq) I

MGJ
1(αq)

] (
a1

n
b1

n

)

+
L
∑

s = 2
s 6= p

H(2)
n−M(kc1Dsp) ej(n−M)ϕsp

[
JM(kc1αq) I

MGJ
1(αq)

] (
c2(s−1)

n

d2(s−1)
n

)
+δq,1

∞
∑

n=−∞

L
∑

s=2
Jn−M(kc1Ds1) ej(n−M)ϕs1

[
H(2)

M (kc1α1) I
MGH

1 (α1)

] (
c2(s−1)

n

d2(s−1)
n

)

= δq,1 jM e−jMϕ′
[

JM(kc0α1) I
MGJ

0(α1)

] [
E0
H0

]
.

(11)

Equation (11) represents an infinite number of linear, algebraic equations since the
index M may take the values M = 0, ±1, ±2, . . . , ±∞. Moreover, in Equation (11),
p = 1, . . . , L; q = 1, 2, 3, 4, . . . , 2(L− 1), 2(L− 1) + 1; s = 2, 3, . . . , L, I is the identity
matrix of order 2× 2, Dsp denotes the axis-to-axis distance separating the (Os) and (Op)
cylindrical coordinate systems, ϕsp stands for the location angle of the (Op) cylindrical
coordinate system with reference to the (Os) one, while α2(p−1)+1 and α2(p−1) are the radii
of the core and the cladding regions of the p-th cylinder.

The multitude of the unknown expansion coefficients in the equation set of (11)
may be considerably reduced by truncating the summations over n as well as the values
of M; the truncation number is denoted as Nr. Thus, Equation (11) result in a set of
20 (2Nr + 1)× 20 (2Nr + 1) linear, algebraic equations. It is worth mentioning that the
matrix elements and the constant terms consist mainly of sole-term Bessel and Hankel
functions and are given by simple analytical expressions; thus, they may be considered
in closed form. The square coefficient matrix is non-singular, its determinant is non-zero
and its inverse can be calculated straightforwardly. For this purpose, a custom computer
code was developed in Fortran 90. Addressing the equation set of (11) results in the
fast, accurate and efficient evaluation of the field expansion coefficients ai

n, ci
n, bi

n and di
n

(i = 0, 1, 2, . . . , 2L− 1) that appear in Equations (7) and (8).
The scattered far-field may be obtained from Equation (5) by letting ρ(ρ1, ϕ1) ∈ (0)

and ρ1 → ∞ . Through the large argument asymptotic approximation of the H(2)
n (kc0ρ1)
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Hankel function [51], the z- and ϕ-components of the electromagnetic far-field are given by
the analytical expressions of Equation (12)[

Esc
z (ρ)

Hsc
z (ρ)

]
= e−j (kc0 ρ1−π/4)

√
2

πkc0ρ1

∞

∑
n=−∞

ejn(ϕ1+π/2)
[

c1
n

d1
n

]
(12a)

[
Esc
ϕ(ρ)

Hsc
ϕ(ρ)

]
=

[
0 Z0(sin θ′)−1

−(Z0 sin θ′)−1 0

] [
Esc

z (ρ)
Hsc

z (ρ)

]
, (12b)

where kc0 =
√

k2
0 − β2 = k0 sin θ′ and Z0 =

√
µ0/ε0.

The radial component of the Poynting vector is given by:

Ssc
ρ (ρ) =

1
2Z0 sin θ′

[
|Esc

z (ρ)|2 + Z2
0 |Hsc

z (ρ)|2
]
. (13)

The total radial scattered power, Psc
ρ , may be found by integrating Ssc

ρ (ρ) on the surface
of a cylinder of infinite radius, α1 → ∞ , and finite length, dz. Consequently, the total
scattering cross section, σt, of the structure is obtained by [50]

σt =
Psc
ρ

|Sinc(ρ)| dz
⇒ σt =

1
k0

[
2

sin θ′

]2 1
E2

0 + Z2
0H2

0

∞

∑
n=−∞

(∣∣∣ c1
n

∣∣∣2 + ∣∣∣Z0 d1
n

∣∣∣2), (14)

where Sinc(ρ) is the Poynting vector of the incident plane wave.

3. Numerical Results and Convergence

Indicative numerical results, derived from the analysis presented in Section 2, are
given in Figures 3–10. The scattered far-field, as well as the total scattering cross section,
are presented for specific configurations of the general structure of Figure 1, considering
both polarizations. Each configuration considered herein is depicted as a small inset in the
corresponding Figure, for the sake of clarity. All details that concern the configurations
examined, such as the geometric characteristics of the cylinders and the electrical character-
istics of each region of space, are given in the captions; they are omitted from the text for
the sake of brevity.
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Figure 3. The far electric field pattern (in polar coordinates) for the inset structure, arising from that
of Figure 1 when L = 3, D23 = 0.4λ0, ε1 = ε2 = ε4 = ε0, α3 = 0.1λ0, α5 = 0.2λ0, ε3 = ε5 = 2ε0,
µi = µ0 and σi = 0 (i = 1, 2, 3, 4, 5), while E0 = 1, H0 = 0, ϕ′ = 90

◦
and θ′ = 30

◦
, 45

◦
, 90

◦
.
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L = 3, D23 = λ0, ε1 = ε0, α2 = α4 = 0.3λ0, ε3 = ε5 = 9.6ε0, α3 = α5 = 0.1λ0, ε2 = ε4 = ε0, 2.32ε0, 4.34ε0,
µi = µ0 and σi = 0 (i = 1, 2, 3, 4, 5), while E0 = 1, H0 = 0, θ′ = 60

◦
and ϕ′ = 45

◦
.



Appl. Sci. 2022, 12, 10172 10 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 
Figure 5. The far electric field pattern ( 1φ =ϕ ) for the inset structure, arising from that of Figure 1 

when L = 3, 23 0D = λ , 1 0ε = ε , 2 4 00.3α = α = λ , 3 5 09.6ε = ε = ε , 3 5 00.1α = α = λ , 

2 4 0 0 0,2.32 ,4.34ε = ε = ε ε ε , 0μ = μi  and 0σ =i  ( 1,2,3,4,5=i ), while 0E 1= , 0H 0= , 
o60′ =θ  and o45′ =φ . 

 
Figure 6. The far electric field pattern ( 1φ =ϕ ) for the inset structure, arising from that of Figure 1 

when L = 3, 23 0D = λ , 1 0ε = ε , 2 4 02.32ε = ε = ε , 2 4 00.4α = α = λ , 3 5 04.34ε = ε = ε , 

3 5 00.2α = α = λ , 0μ = μi  ( 1,2,3,4,5=i ), 1 3 5 0σ = σ = σ =  and 2 4 0,10,50 S/ mσ = σ = , 

while 0E 1= , 0H 0= , o70′ =θ  and o45′ =ϕ . 

Figure 6. The far electric field pattern (ϕ = ϕ1) for the inset structure, arising from that of Figure 1
when L = 3, D23 = λ0, ε1 = ε0, ε2 = ε4 = 2.32ε0, α2 = α4 = 0.4λ0, ε3 = ε5 = 4.34ε0, α3 = α5 = 0.2λ0,
µi = µ0 (i = 1, 2, 3, 4, 5), σ1 = σ3 = σ5 = 0 and σ2 = σ4 = 0, 10, 50 S/m, while E0 = 1, H0 = 0,
θ′ = 70

◦
and ϕ′ = 45

◦
.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20 
 

 
Figure 7. The normalized total scattering cross section ( 0 tk σ ) versus ′φ  for the inset structure, 

arising from that of Figure 1 when L = 3, 1 0ε = ε , 2 4 02.32ε = ε = ε , 2 4 00.2α = α = λ , 

3 5 04.34ε = ε = ε , 3 5 00.1α = α = λ , 0μ = μi , 0σ =i  ( 1,2,3,4,5=i ) and 

23 0 0 0 0D 0.4 ,0.6 ,0.8 ,= λ λ λ λ , while 0E 1= , 0H 0=  and o45′ =θ . 

 
Figure 8. The normalized total scattering cross section ( 0 tk σ ) versus ′φ  for the inset structure, 

arising from that of Figure 1 when L = 3, 1 0ε = ε , 23 0D = λ , 2 4 04.34ε = ε = ε , 3 5 09.6ε = ε = ε , 

3 5 00.1α = α = λ , 0μ = μi , 0σ =i  ( 1,2,3,4,5=i ) and 2 4 0 0 00.2 ,0.3 ,0.4α = α = λ λ λ , while 

0E 0= , 0H 1=  and o75′ =θ . 

Figure 7. The normalized total scattering cross section (k0σt) versus ϕ′ for the inset structure, arising
from that of Figure 1 when L = 3, ε1 = ε0, ε2 = ε4 = 2.32ε0, α2 = α4 = 0.2λ0, ε3 = ε5 = 4.34ε0,
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◦
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Figure 9. The far electric field pattern (ϕ = ϕ1) for the inset structure, arising from that of Figure 1
when L = 5, D23 = D34 = D45 = D25 = 0.8λ0, D24 = D35 = 0.8

√
2 λ0, ε1 = ε2 = ε4 = ε6 = ε8 = ε0,

α3 = α5 = α7 = α9 = 0.2λ0, ε3 = ε5 = ε7 = ε9 = 2.32ε0, µi = µ0 and σi = 0 (i = 1, 2, 3, 4, 5, 6, 7, 8, 9),
while E0 = 1, H0 = 0, ϕ′ = 45

◦
and θ′ = 30

◦
, 45

◦
, 90

◦
.
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√
2 λ0, ε1 = ε2 = ε4 = ε6 = ε8 = ε0,

α3 = α5 = α7 = α9 = 0.2λ0, ε3 = ε5 = ε7 = ε9 = 4.34ε0, µi = µ0 and σi = 0 (i = 1, 2, 3, 4, 5, 6, 7, 8, 9),
while E0 = 0, H0 = 1, θ′ = 90

◦
and ϕ′ = 0

◦
, 40

◦
, 90

◦
.

Moreover, the analysis presented herein and the corresponding computer codes were
verified using reciprocity and energy conservation internal tests. The reciprocity was
examined for multiple duets of scattering and incidence directions. Energy conservation
was tested using the optical theorem, according to which the scattering cross section should
be identical to the extinction cross section when all materials constituting the complex
cylindrical structure are lossless [50]. All these tests were successful, and the corresponding
results are omitted for brevity.

Figures 3 and 4 correspond to a pair (L = 3) of dissimilar dielectric cylindrical rods,
Figures 5–8 correspond to a pair (L = 3) of similar lossy dielectric doubly-layered cylinders,
while Figures 9 and 10 refer to a quadruplet (L = 5) of similar dielectric cylindrical rods.
Regions 0 and 1, in all cases, are considered as vacuum.

In order to check the convergence of the algorithm, we calculated the scattered electric
field intensity, for several configurations, by sequentially increasing the truncation number,
Nr, until the achievement of accuracy with seven digits. An indicative example is presented
in Table 1, where the values of

∣∣Esc
z (ρ1 → ∞, ϕ1 = 45

◦
)
∣∣ are shown for an increasing Nr. The

geometric configuration used for the production of Table 1 corresponds to the inset of Figure 5
with θ′ = ϕ′ = 45

◦
, E0 = H0 = 1, L = 3, D23 = 0.7λ0, ε1 = ε0, ε2 = ε4 = 2.32ε0,

α2 = α4 = 0.3λ0, ε3 = ε5 = 4.34ε0, α3 = α5 = 0.2λ0, µi = µ0 and σ1 = σ2 = σ3 = σ4 = σ5 = 0.
Evidently, the algorithm converges very rapidly and steadily, since an Nr as low as 12 is sufficient
to determine the far-field value within six significant decimal digits.
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Table 1.
∣∣Esc

z (ρ1 → ∞, ϕ1 = 45
◦
)
∣∣ when increasing truncation number Nr for the structure shown in

the inset of Figure 5.

Nr |Esc
z (ρ1→∞,ϕ1= 45

◦
)|

7 56.99990
8 57.30295
9 57.24285
10 57.24623
11 57.23580
12 57.23515
13 57. 23517
14 57. 23517
15 57. 23517

The convergence of our semi-analytical solution was further investigated through
Figures 11 and 12. We calculated the error from the following relationship [52]:

err =

∣∣∣σN+1
t − σN

t

∣∣∣∣∣σN
t
∣∣ , N = 1, 2, 3, . . . , Nr (15)

where σN
t and σN+1

t stand for the total scattering cross section of the structure, computed
from Equation (14), after truncating the infinite sum to N and N + 1 terms, respectively.
Figure 11 refers to the E-polarized incident plane wave, while in Figure 12 the incident
wave is arbitrarily polarized. The main remark to be made about Figures 11 and 12
is that all curves follow the same trend: the error function decreases as the truncation
number increases. This is an expected outcome, which is necessary to guarantee the
convergence of the solution and has also been reported by other researchers, albeit for
different configurations [52].
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Figure 11. Convergence curves of magnitude error, with Err given by Equation (15), for the inset
structure of Figure 5, arising from that of Figure 1 when E0 = 1, H0 = 0, θ′ = 45

◦
, ϕ′ = 45

◦
, L = 3,

ε1 = ε0, ε2 = ε4 = 1.6ε0, ε3 = ε5 = 2.32ε0, µi = µ0 and σi = 0 (i = 1, 2, 3, 4, 5). An E-polarized
incident plane wave is assumed. (a) α2 = α4 = 0.6λ0, D23 = 1.6λ0 and α3 = α5 = 0.1λ0 (black curve),
α3 = α5 = 0.3λ0 (red curve), α3 = α5 = 0.5λ0 (blue curve). (b) α2 = α4 = 0.3λ0, α3 = α5 = 0.1λ0 and
D23 = 0.6λ0 (black curve), D23 = 1.0λ0 (red curve), D23 = 1.5λ0 (blue curve).
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Figure 12. Convergence curves of magnitude error, with Err given by Equation (15), for the inset structure
of Figure 5, arising from that of Figure 1 when E0 = 1, H0 = 1, θ′ = 30

◦
, ϕ′ = 60

◦
, L = 3, ε1 = ε0,

ε2 = ε4 = 1.6ε0, α2 = α4 = 0.3λ0, ε3 = ε5 = 2.3ε0, α3 = α5 = 0.2λ0, µi = µ0 and σi = 0 (i = 1, 2, 3, 4, 5).
D23 = 0.6λ0 (black curve), D23 = 1.0λ0 (red curve), D23 = 1.5λ0 (blue curve), D23 = 2.0λ0 (magenta curve).
Arbitrary polarization of the incident plane wave is assumed.

In addition, Figure 11a suggests that the truncation number does not depend strongly
on the size of the inner cylinders, especially when they are rather small; the black and
red curves almost coincide. However, by inspecting the curves of Figure 11b, one might
conclude that the truncation number is strongly affected by the distance between the inner
cylinders. For example, for D23 = 0.6λ0 (black curve), 3-digit accuracy may be achieved
with Nr ≈ 7, while 13 terms are necessary for the same accuracy if D23 = 1.5λ0 (blue curve).
The rather strong dependence of the truncation number on the separation between the
inner cylinders may also be verified for the arbitrary polarization of the incident wave
(Figure 12). It is evident from Figure 12 that the greater the distance between the rods, the
greater the truncation number required in order to achieve a specific accuracy.

4. Discussion and Comparisons

Figure 3 illustrates the scattered electric far-field polar pattern |Esc
z (ϕ1)| of the structure

shown in the inset, for ϕ′ = 90
◦

and for several values of θ′. The structure is stimulated
by an E-polarized plane wave which is obliquely incident. In Figure 4, we present the
scattered magnetic far-field polar pattern |Hsc

z (ϕ1)| of the inset structure, in the excitation
case of an obliquely incident H-polarized plane wave with ϕ′ = 0

◦
and θ′ = 30

◦
, 45

◦
, 90

◦
.

The occasion of normal incidence, i.e., θ′ = 90
◦
, is included in both figures for reference.

Moreover, exhaustive comparisons with previously published results that correspond
to much simpler, marginal cases of the complex geometric structure treated herein were
performed. Two examples are provided in Figures 3 and 4 by plotting the corresponding
numerical results, for normal incidence, given in Figure 5 of [11] and Figure 3 of [27],
respectively, as indicated in the insets. It is evident that our results coincide with the
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published ones. Other results, not presented herein for the sake of brevity, indicate that
our general solution is capable of reproducing Figures 3–10 of [22]; all these plots refer to
normal incidence and the corresponding configurations fall within the geometry illustrated
in Figure 1.

The scattered far-field pattern |Esc
z (ϕ1)| of two stratified cylinders for oblique incidence

(as shown in the inset) is depicted in Figures 5 and 6. The former is produced by setting
θ′ = 60

◦
and ϕ′ = 45

◦
, while θ′ = 70

◦
and ϕ′ = 45

◦
were assumed for the latter. Several

values of the dielectric constant of the cladding regions, with ε2 = ε4, are tested in Figure 5,
whereas the effect of the electric conductivity of the cladding regions (σ2 = σ4) on |Esc

z (ϕ1)|
is investigated through Figure 6. The main remark to be made about Figures 5 and 6 is
the presence of several lobes, with the main one at ϕ1 ≈ 229

◦
for the case ε2 = ε4 6= ε0

(Figure 5) or at ϕ1 ≈ 227
◦

for the case σ2 = σ4 (Figure 6). Figures 5 and 6 suggest that
the position of the main lobe does not depend strongly on the electrical characteristics of
the cladding regions. Moreover, it should be noted that a further increase in the cladding
regions’ conductivities σ2 and σ4 has practically no effect on the solid curve field pattern
that corresponds to σ2 = σ4 = 50 S/m.

Figures 7 and 8 present the total scattering cross section normalized to the free space
wavenumber (k0σt) versus the incidence angle ϕ′ for the configuration shown in the insets;
several values for the off-axis distance, D23 (Figure 7), or the cladding regions’ radii, α2
and α4 (Figure 8), were considered. Due to the symmetrical scatterer geometry, the k0σt
values are also symmetrical about the vertical xz-plane (ϕ′ = 90

◦
). Figure 7 indicates that

σt is strongly dependent on D23, provided that 54
◦
< ϕ′ < 126

◦
, while the dependence of

the total scattering cross section σt on the cylinders’ radius (size) is rather strong for most
values for the angle ϕ′. Thus, changing D23 and/or α2,α4 properly may offer the feasibility
to handle the scattering cross section of the cylindrical structure.

The scattered far-field patterns |Esc
z (ϕ1)| and |Hsc

z (ϕ1)| are depicted in Figures 9 and 10,
respectively, for the dielectric cylinders’ quadruplet shown in the insets. E-polarization
and several values of θ′, for ϕ′ = 45

◦
, are considered in Figure 9, while H-polarization and

several values of ϕ′, for θ′ = 90
◦
, are assumed in Figure 10. On the one hand, as regards

the patterns of the electric field intensity, Figure 9 suggests that the main lobe remains at
ϕ = 225

◦
regardless of the angle θ′. On the other hand, as far as the patterns of |Hsc

z (ϕ1)|
are concerned (Figure 10), no trend is observed regarding the lobes; the formation of the
latter depends strongly on the angle ϕ′.

5. Conclusions

The problem of electromagnetic scattering by a group of stratified lossy dielectric
cylinders enclosed in a cylindrical core which is surrounded by a boundless dielectric space
was treated herein in the uttermost general instance of an arbitrarily polarized and obliquely
incident plane wave. A boundary-value approach was employed, and the Bessel/Hankel
function’s translational addition theorem was applied, in order to form a group of linear
equations for the unknown expansion coefficients of the scattered electromagnetic field
intensity. The resulting solution may be considered as semi-analytical and exact since the
only approximation used is the truncation of the multipole expansions. The validation of
the developed computer codes was performed by checking the convergence of the solution
and by carrying out extended comparisons with available published results, which were
all successful. Plots of the total scattering cross section and the scattered far-field of various
geometric configurations manifested how the structure and the material of the composite
cylindrical model are imprinted on scattering.
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