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Abstract: In order to solve the problems of low accuracy and low efficiency of point cloud regis-
tration for stereo camera systems, we propose a binocular stereo camera point cloud registration
method based on IWOA and Improved ICP. We propose the following approaches in this paper—the
registration process is divided into two steps to complete the initial coarse registration and the exact
registration. In the initial registration stage, an improved Whale Optimization Algorithm (IWOA)
based on nonlinear convergence factor and adaptive weight coefficients was proposed to realize the
initial registration in combination with the RANSAC algorithm, and the obtained transformation
matrix was used as the initial estimate of the subsequent exact registration algorithm. In the sec-
ond step of the exact registration stage, an IICP algorithm with the introduction of normal vector
weighting constraints at key points was proposed for achieving point cloud exact registration. This
algorithm was verified by using Stanford point clouds (bunnies and monkeys) and our own point
clouds algorithm, and the proposed algorithm in this paper has high registration accuracy, improved
registration speed, and convergence speed.

Keywords: IWOA; improved; RANSAC; ICP; point cloud registration

1. Introduction

Point cloud registration, widely used in various fields including industrial vision,
reverse engineering, cultural relics restoration, virtual reality, intelligent processing, flexible
manufacturing, etc., is a key technology in the fields of binocular vision inspection and
intelligent processing [1,2]. The purpose of point cloud alignment [3] is to unify multiple
point clouds of the same object or scene at different times, different positions, and different
angles into the same reference coordinate system by finding some spatial transformation
relationship, to realize the fusion and stitching between point clouds and obtain a complete
3D point cloud of the target object. Considerable relevant research has been carried out.
Hafiz et al. [4] proposed a novel method for the conversion of 2D RGB images to 3D
point clouds by constructing a single-code-multiple-decode depth network architecture
in which each decoder generates certain fixed viewpoints and, subsequently, fuses all the
viewpoints to generate a dense point cloud, which was experimentally shown to have
superior performance. The iterative closest point (ICP) algorithm proposed by Besl [5]
et al. in 1992 was extensively applied to point cloud matching, with the focus placed on
searching for the correspondence between two sets of registration points for calculating
the transformation matrix. However, the ICP algorithm is subject to the disadvantages of
necessary inclusion relationships, low computational efficiency, and high initial location
requirements [6]. Moreover, the registration results of the algorithm depend heavily on
the initial position of the point cloud. When the position of the two-point cloud data
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sets differs greatly, the results may converge to the optimal local solution and even lead
to failure in registration. Therefore, a good initial value is required for the algorithm to
ensure convergence.

In order to address the above-mentioned problems, scholars have made improvements
based on the ICP algorithm, and brought forth lots of new point cloud registration methods.
Yu Wenli et al. [7] accomplished the initial registration of point cloud using the four PCS
method, and calculated the rigid transformation matrix of the three-dimensional model
using the point-to-face ICP method and least square method, achieving some improvements;
Wang Yujian et al. [8] proposed a registration method based on the multi-layer index
structure of octree and KD tree and improved the efficiency and accuracy of point cloud
registration. Wang Dong et al. [9] reduced the matching error at the edge and corner points
and improved the overall matching effect by combining the ICP algorithm and inverse
method of surface point parameters. Segal et al. [10] integrated the point-to-point and point-
to-surface ICP algorithms into a statistical framework and greatly improved the robustness
of three-dimensional point cloud registration for noise, outliers and mismatching; Yang
et al. [11] adopted a nested branch and bound search structure comprising two branch and
bound searches, one of which was the Go-ICP algorithm bounded by an external branch
for rotation space search, with the highest accuracy but still exposed to the inferior strength
of time-consuming in the case of calculating a large number of point clouds.

With the algorithm mentioned above, some progress has been made in the study of
point cloud registration, but the real-time and accuracy of the point cloud are increasingly
demanding as intelligent manufacturing moves forward. Problems faced by point cloud
registration, including poor real-time registration, low accuracy, and poor robustness, are
still to be solved, thus making the research on rapid and accurate registration methods a
hot spot and a difficult point in the engineering field. The problems of determining the
corresponding points in the coarse alignment stage and solving the translation and rotation
matrix in the fine alignment stage can be converted into constrained optimization problems
in the final analysis. Conventional solutions are subject to problems such as failing to find
optimal solutions for constraints, being prone to local optimization and poor real-time
capability, etc. The application of an intelligent optimization algorithm has been a novel
idea in the study of point cloud registration in recent years. Thus far, relevant research has
been conducted, and corresponding progress has also been made. Yang Bo et al. [12] put
forward an improved ICP point cloud registration algorithm based on the genetic algorithm,
which is provided the ability of optimal global search for rough registration, registers point
cloud data with the 3D model, and provides a good iterative initial value for subsequent
accurate registration. Experimental results showed that this method could effectively
improve the accuracy and rate of point cloud registration. Huang et al. [13] fulfilled
point cloud registration using an iterative closest point algorithm based on hierarchical
particle swarm optimization to improve the performance of 3D point cloud registration,
then obtained the feature points precisely expressing the point cloud structure by jointly
searching for the optimal particles using the curvature of the point cloud as the fitness
value, and finally, performed the registration of the feature points using the iterative closest
point algorithm and achieved better registration efficiency. Based on the ICP algorithm, Wu
Hao [14] proposed an automatic registration algorithm that carries out automatic rough
registration in view of boundary characteristics of the point cloud, followed by automatic
fine registration through an improved ICP algorithm. Experimental results proved that this
method possesses a sub-millimeter improvement versus the classical algorithm.

The ICP algorithm presupposes that the coarse registration process establishes the
correct initial registration point pairs and achieves accurate registration of point clouds. The
quality of rough registration directly affects the efficiency and accuracy of fine registration.
Until now, the coarse registration methods mainly include Gaussian-likelihood estimation
factor analysis proposed by Li Zan et al. [15], 3D-NDT-based point cloud registration
by Zhang Xiao et al. [16], the feature-based method by Tian et al. [17], and RANSAC
algorithm by RUSU et al. [18]. Liu Meiju et al. [19] combined the descriptor algorithm for
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internal morphology with the histogram algorithm with fast point characteristics and then
improved the RANSAC algorithm for the initial registration of point cloud by means of
pre-estimation and 3D grid segmentation to obtain better results. Ren et al. [20] proposed
a color-based point cloud alignment algorithm that extracts the hue components based
on the color information of the point cloud and makes the hue distribution of the tangent
plane continuous. The error function consists of the color of the point cloud to be aligned
and the geometric error. The error function is optimized using the Gauss–Newton method,
and the algorithm has good robustness under different lighting conditions. Choi et al. [21]
proposed a new algorithm to improve numerical stability. Unlike previous algorithms that
rely heavily on point-to-plane distances, their algorithm constructs a cost function based
on two different projection distances, and experiments show that the algorithm has high
accuracy for color point cloud alignment. Ge et al. [22] proposed a pairwise non-rigid
alignment algorithm for 3D point clouds, which generates a correspondence between
two deformed point clouds based on the isometric deformation property invariant, and
subsequently uses a random sample consensus (RANSAC) algorithm for cloud point feature
extraction to better prepare for the optimization of alignment. Yang et al. [23] proposed
a spatially decomposed and optimized RANSAC algorithm for indoor plane detection
based on the phenomenon that the traditional RANSAC algorithm is prone to feature
extraction errors for occluded and missing point cloud data. The method uses a weighted
PCA method to estimate the normal vector of the point cloud and then employs angular
clustering to partition the indoor space, followed by an optimized RANSAC method
to calculate the alignment parameters from the obtained point cloud data. Ghahreman
et al. [24] proposed a robust method for direct analysis of point cloud data, which proposes
an improved RANSAC algorithm to overcome the adverse effects of point cloud data, such
as loss and occlusion. The plant feature extraction experiment proved the effectiveness of
this algorithm. Niloy et al. [25] investigated the effects of neighborhood size, curvature,
sampling density, and noise on normal estimation and proposed an initial position selection
based on the curvature of the point cloud surface, which can effectively improve the
robustness of the ICP alignment algorithm. Takeshi et al. [26] proposed a new point cloud
alignment and data segmentation algorithm with random sampling and the Least Median
of Squares (LMS) or the least-median-of-squares (LMedS) estimator. The algorithm was
robust in the presence of outliers (outliers) such as noise and occlusion. Rantoson et al. [27]
improved the point cloud alignment by considering a new discrete curvature parameter,
which also divides the alignment process into two steps: coarse alignment and exact
alignment, for which the coarse alignment is performed based on the enhanced Hough
transform (HT) and the improved RANSAC model transformation. In the exact alignment
stage, the author proposed a new variant of the ICP method to reduce the alignment
error when using the curvature parameter. The algorithm they used took into account the
curvature similarity and the Euclidean distance to define the criteria used to search for
correspondences. Donoso et al. [28] from Australia compared common improved ICP-based
algorithms to scan the scene at 20 Hz using their own Velodyne HDL-64E scanner installed
on a minecart, and none of the improved ICP-based algorithms could achieve alignment
accurately, precisely, and quickly at the same time in three evaluation metrics based on
accuracy, precision, and relative computational cost. The best-performing improvement
algorithm employs a strategy of filtering the dataset, uses normal forms of local surface
geometry, uses the distance between points in a point cloud and the corresponding surface
in a reference point cloud as a measure of the fit between the two point clouds, and points
out the limitations of various existing improvement algorithms based solely on ICP for
terrain mapping. The above-mentioned algorithms have their characteristics for feature
extraction, but there are fewer point cloud features that have been applied to processing.
There are still many research and studies that are needed to address some of the challenges
and difficulties in pre-processing and alignment of point cloud data, considering the time-
sensitiveness and accuracy of feature identification in processing.
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In the field of robot vision processing, the vision system extracts the point cloud data
of the target workpiece in real-time, identifies the features of the workpiece through the
calculation of the point cloud data, and then determines the area to be processed and the
reserved area. The ICP algorithm alignment accuracy is high, but the algorithm requires
the point cloud to be aligned to have a certain initial relationship, and the ICP alignment
algorithm alone is easy to fall into misalignment, and the alignment is not high in real
time. In the field of robot processing, the surface characteristics of the workpiece and the
model data distribution can be described by some model parameters, so the RANSAC
algorithm is faster, but it is an uncertain algorithm that has a certain probability of yielding
a reasonable result; therefore, the RANSAC algorithm can be used as the basis of the initial
alignment algorithm. Based on the above, a new hybrid point cloud registration algorithm
integrating the whale optimization RANSAC algorithm and ICP algorithm for point cloud
initial alignment was hereby presented in this paper. First, the optimal solution of the
RANSAC algorithm is solved quickly by the improved whale optimization algorithm,
and the coordinate translation and rotation parameters are obtained by the improved ICP
algorithm. Simulations and experiments verified the registration accuracy and efficiency of
the algorithm designed in this paper.

The rest of this paper consists of four sections. Section 2 introduces the RANSAC
algorithm to achieve initial alignment and proposes a nonlinear convergence factor and
adaptive weight coefficient method to improve the whale optimization algorithm to opti-
mize the RANSAC algorithm in order to achieve initial alignment quickly and accurately.
Section 3 is the point cloud accurate alignment and proposes a method to improve the ICP
algorithm based on the key point normal vector weighted judgment method. Section 4
describes our experiments by comparing the RANSAC algorithm, ICP algorithm, Depth
Filtering-ICP, and IWOA-RANSAC-ICP algorithms, and it was concluded that the pro-
posed method in this paper has a small mean square error, low false identification rate,
and faster alignment speed. The effectiveness and superiority of the algorithms in this
paper are proved. Section 5 summarizes the research in this paper and suggests future
research directions.

2. Optimized RANSAC Algorithm Using IWOA
2.1. RANSAC Algorithm

The requirement for a typical ICP algorithm to register the initial position of the
point cloud is rather demanding, and it is easy to fall into local optimization when there
is a large initial position deviation. In this study, the RANSAC algorithm was used for
coarse registration in the initial registration stage. This very algorithm aims to find an
optimal transformation matrix for eliminating the error matching and solve 12 unknown
parameters of the transformation matrix by randomly selecting six matching points using
the normalization method. The general expression of the transformation matrix T is:

x′

y′

z′

1

 =


R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1




x
y
z
1

 (1)

where (x′, y′, z′) and (x, y, z) are the cartesian coordinates of the target point cloud and the
point cloud to be registered.

Given a large number of point clouds, the existence of many mismatching points, and
the poor timeliness, coupled with the fact that the solution obtained within the specified
iterations may not be optimal, the accuracy of the initial registration is affected while
solving the transformation matrix by the RANSAC algorithm.

2.2. Improve WOA Based on Nonlinear Convergence Factor

Whale optimization algorithm (WOA) is a new swarm intelligence algorithm proposed
by Australian scholars Seyedal et al. [29] based on the predatory behavior of humpback



Appl. Sci. 2022, 12, 9461 5 of 16

whales, which, compared with most optimization algorithms, is characterized by strong
global optimization capability and simple structure. Inspired by bionics, the algorithm
models the featured hunting methods of whales as the processes of encirclement, predation,
and random search. The basic model of this algorithm is described as follows: Supposing
that the number of whale individuals in d-dimensional search space is N, the i th individual
in the t th iteration is represented as:

Xt
i = (x1

i , x2
i , · · · )(i = 1, 2, · · · , m; t = 1, 2, · · · , Tmax) (2)

where Tmax is the maximum times of the iterations.
The encirclement and contraction phase simulates the behavior of humpback whale

populations identifying the prey and contracting the encirclement. The behavior is ex-
pressed by the formula:

D = |C·X∗(t)− X(t)| (3)

X(t + 1) = X∗(t)− A·D (4)

where A and C denote coefficient vectors; X∗ is the current global optimal position; X is
the position of the individuals in the t th generation; and t denotes the current number of
iterations. Coefficients A and C are calculated as:

A = 2a·r− a (5)

C = 2r (6)

where a represents the accommodation coefficient that decreases linearly from 2 to 0 with
the increasing number of iterations; and r is the random vector of the [0, 1] distribution.
Given that |A| < 1 in this phase, the population converges to the current optimal solution.

Whales prey in two ways of spiraling procession and narrowing encirclement. Assume
that the probability of both methods is fifty-fifty when they carry out a task, the position
can be updated as:

X(t + 1) = D′·el · cos(2πl) + X∗(t) (7)

D′ = |X∗(t)− X(t)| (8)

where D′ denotes the distance between the individual and the optimal solution in the t th
Generation; and l is a random number from [–1, 1].

If |A| > 1 while searching for optimal solutions, the position between individuals
updates based on each other’s positions to avoid falling into the local optimal solution to
some extent. The mathematical models of the mechanism are described as follows:

D = |C·Xrand(t)− X(t)|. (9)

X(t + 1) = Xrand(t)− A·D. (10)

where Xrand denotes the position vector of random individuals in the population.
It can be concluded from the above algorithms that the global search capability of the

conventional WOA is dependent on the convergence factor a, whose decreasing tendency
with the increasing number of iterations reduces both the convergence rate and the search
capability. At the initial stage of the algorithm, a larger a endows the algorithm with a
greater global search capability. As the algorithm proceeds, a smaller convergence factor
a can provide a higher search accuracy. Therefore, a nonlinear convergence factor is
proposed as:

ω = (1+
2t

Tmax
)

5
(11)

a = (2− 2t
Tmax

)(1−ω). (12)
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where t means the current time of iterations; and Tmax, the maximum time of iterations
set for the algorithm. The nonlinear convergence factor introduced in this paper produces
large parameter A in the early iteration stage, improves the global search capability of the
algorithm, and speeds up its convergence; in the latter iteration stage, a smaller parameter
A is produced, and the convergence accuracy is improved.

Given that the standard WOA does not take into account the current optimal solution
during the iterative process, there may be differences while guiding whales for position
updating. WOA combines the idea of population optimization guided by inertia weight
in the PSO algorithm, and introduces the adaptive parameters as inertia weight factors in
the formula for updating the position, so that the optimal solution can be fully utilized for
improving the optimization accuracy of the algorithm. The improved formula for position
update is presented as:

X(t + 1) = ω·Xrand(t)− A·D. (13)

where the weighting factor ω nonlinearly increases with the rising number of iterations,
and the algorithm shows greater global search capability in the case of a relatively large
weighting factor in the initial stage; the weighting factor is gradually decreasing with
the increase in iterations, and in this case, the algorithm carries out a spiral search in the
neighborhood of optimal solution using a smaller weight to prevent it from falling into
local optimization.

2.3. Realize Point Cloud Initial Registration Process

In the realization process of the point cloud coarse registration by RANSAC, an
appropriate sample subset can improve the registration efficiency, while the distance error
determines the registration accuracy. Six sampling points are selected from P, the point
cloud to be registered, and the distance between every two points is greater than the preset
minimum threshold d. In order to obtain a minimal value by the error function, optimal
ones should be found from all the transformations to complete the initial registration. In
this paper, the improved WOA was used for optimization. However, the problem needs
to be first elaborated by a mathematical model—fitness function, i.e., the target of the
optimization algorithm. The corresponding point cloud registration error of the algorithm
used in this paper and l are defined as:

l =

√
1
n

n

∑
i=1

[
(xp

i − xq
i )

2
+ (yp

i − yq
i )

2
+ (zp

i − zq
i )

2
]
. (14)

The fitness function f (t) is defined as:

f (t) = argmin
n

∑
i=1

H(l) =
{

0.5l2, |l| < ml
0.5ml(2|l| −ml), |l| > ml

(15)

where H(l) indicates Huber penalty function, ml denotes the preset threshold, and l is the
distance difference after the transformation of the corresponding points in the i th group.
The transformation satisfying the minimum value of the error function is considered opti-
mal when the transformation matrix is the initial registration and is used for completing the
initial registration of the residual point cloud. The realization flow of RANSAC registration
by IWOA is shown in the figure below (Figure 1):
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3. Realize Point Cloud Fine Registration Using Improved ICP Algorithm
3.1. Mathematical Models of the ICP Algorithm

In point-based point cloud registration, the transformation between the target point
cloud and the point cloud to be registered can be determined by the affine transformation
translation matrix T and the rotation matrix R. Currently, the iterative closet point (ICP)
and various variants of the ICP algorithm are the most widely-used point cloud registration
algorithms. The ICP algorithm was first developed by Besl et al. [1], which finds the
least-square rigid transformation matrix between two point cloud data sets according to
the closest distance criterion of the corresponding point, and repeats the iterations until the
local minimum value is obtained. Considerable deformations and optimizations of the ICP
algorithm were proposed for different application environments.

The registration of the surface point cloud can be simplified as the matching of mea-
sured point cloud relative to the theoretical point cloud. If P is set as the measured point
cloud of the curved workpiece while Q is the theoretical point cloud, the relationship
between these two point clouds can be shown as:

Q = R·P + T (16)

where R = [Rx, Ry, Rz]
T and T =

[
Tx, Ty, Tz]

T represent the rotation and translation of
the three axes (x, y, z) of P relative to the theoretical point cloud Q, respectively. Select
multiple point pairs in the measured point cloud dataset, denoted by pi ∈ P, and find the
corresponding point set qi in the theoretical point cloud set Q so that the value of the target
function shown in the following formula can be the minimum:

d = min|pi − qi| (17)
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Then, calculate the transformation matrices R and T to minimize value of the error function:

f (R, T) = min
R,T

1
NP

NP

∑
i=1
|qi − (pi·R + T)|2 (18)

Rotate and translate the rotation matrix R and translation matrix T obtained in Step 2
for pi using the transformation matrix for a new corresponding point set:

P′i =
{

p′i = pi·R + T, pi ∈ P
}

(19)

Calculate the average distance between P′i and the corresponding point set Q:

d =
1

NP

NP

∑
i=1
|Pi −Qi|2 (20)

If the average distance d is less than the preset threshold or the number of iterations
is greater than the preset maximum number of iterations τ, leave the loop and stop the
iterations; otherwise, return to recalculate the transformation matrix until the convergence
requirements are met. The standard flow of ICP registration is shown in Figure 2.
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The accuracy of the ICP algorithm is generally evaluated as the root-mean-square
error σMSE that calculates the distance of all point clouds. The formula is:

σMSE =

√√√√√ NP
∑

i=1
|qi − (pi·R + T)|2

NP
. (21)

The standard ICP algorithm is not necessarily required to segment and extract features
from the point cloud data to be processed, which saves time for feature extraction and
helps obtain more accurate registration results. Additionally, the algorithm converges well
in the presence of better initial registration values. However, in search of corresponding
points, a comparison with a large number of point cloud data should be conducted, and
large computation is therefore required. It is irrational for the standard ICP to make the
hypothesis that the closest point of Euclidean Distance is the corresponding point, which
brings about a certain number of corresponding false points [29]. For this reason, an
improved ICP algorithm was proposed in this paper.

3.2. Realize Accurate Registration of Point Cloud

Conventional point cloud matching algorithms are applicable only between two-
point clouds, and the two-point cloud sets have an inclusion relation. In the case of a big
difference in the initial spatial position of the overlapping point clouds, the conventional
algorithm is apt to fall into the local optimal solution [15,30]. Therefore, under the premise
that the standard ICP algorithm satisfies the minimum error function. The algorithms are
detailed as follows:

(1) Downsample the point cloud to be registered P and the target point cloud Q;
(2) Search for the closest point of the target cloud using KD-tree, calculate the distance di

in accordance with Equation (17); if di < k, calculate the normal vector θi of the two
corresponding points in P and Q, and the point is determined as the corresponding
point in P if θi < θ, otherwise, repeat the iteration;
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(3) Calculate the average distance d of the corresponding point set. If it is less than the
preset threshold, or if the times of iterations are greater than the preset maximum
number of iterations τ, leave the loop and stop the iterations; otherwise, return to
recalculate the transformation matrix until the convergence requirements are met.
The registration flow of the algorithm proposed in this paper is shown in Figure 3.
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4. Verification and Analysis
4.1. Registration Visualization

In order to test the effectiveness of the proposed algorithm, the data sets Bunny (40256)
and Monkey (125952) from Stanford University were adopted for simulation. The initial
state of the point cloud is shown in Figure 4. The model computer used in the test is
I5-10400F, configured with a memory of 16G, a display card of Nvidia GTX 1060 6G, an
operating system of win10 64 bit, and is operated on VS2019. The target point cloud was
rotated −50 degrees on the Z axis, and shifted 5 mm in X and Y directions, respectively,
but −10 mm in the Z direction, which was then used as a point cloud to be registered. The
downsampling grid size was set to 0.05 mm. Since the initial alignment results obtained
by the method in the literature [21] have a large deviation, the alignment accuracy and
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speed were further compared in this paper. and the proposed algorithm was compared to
standard ICP, RANSAC algorithms, Depth Filtering-ICP. The initial state of the point cloud
is shown in Figure 4.
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The maximum number of iterations of ICP, RANSAC, Depth Filtering- ICP and IWOA-
RANSAC-ICP algorithms was all set as 50. In IWOA algorithm, set 20 times iterations,
10 whale populations and a 0.05 threshold of fitness function ml were set. For the research
objects of this paper, characteristic quantities f were selected as the evaluation index in
order to evaluate the algorithm. It is [50, 1000] for the value range of characteristic quantity
f in this paper, which was used for histogram feature quantity evaluating feature points.
We can express the feature evaluation function fk of point cloud as follows:

fk = k1 + 3 ∗ k2 (22)

Among which k1 is determined by the angle between the normal vector of any point
and that of its adjacent point. Moreover, the plane is divided into [0, π/3][π/3, 2π/3]
[2π/3, π], and k1 is noted as 1,2,3 according to the range of angle between the normal
vector and that of its adjacent point. k2 is the Euclidean distance between any point and
the nearest adjacent point. If the distance is one that is greater than a certain threshold
value and zero that is less than the threshold value, the threshold value was set to 0.005 in
this paper. Then we established a histogram with an interval number that two multiple by
3 equals six to obtain the corresponding 6-dimensional characteristic value in accordance
with the classifications of these two feature values.

We regarded the percentage occupying the total number of the points of the point
cloud in each interval as the corresponding interval value and characteristic value. The
default values were adopted for other parameters, which fk were 16 before optimization.
Moreover, it was 0.500000 for the fitness function value. It was 0.000015 for the evaluation
function value. After optimization, they fk were 42, 0.239051, and 0.000006, respectively,
for the default value, the fitness function value, and the evaluation function value. For
convergence curve of the optimized RANSAC algorithm of IWOA, it is shown in Figure 5.

It can be seen from the iteration curve that it can quickly obtain the optimal solution
after the start of iteration for the optimized RANSAC algorithm of IWOA. It is less than
that of the simple RANSAC algorithm for the fitness value of this algorithm, which has a
faster speed of convergence, stable curve, and good real-time performance. The registration
results of the four registration methods are shown in Figure 6.



Appl. Sci. 2022, 12, 9461 11 of 16Appl. Sci. 2022, 12, x FOR PEER REVIEW  12  of  18 
 

 

Figure 5. Iteration curve of IWOA optimized RANSAC algorithm. 

It can be seen from the iteration curve that it can quickly obtain the optimal solution 

after the start of iteration for the optimized RANSAC algorithm of IWOA. It is less than 

that of the simple RANSAC algorithm for the fitness value of this algorithm, which has a 

faster  speed  of  convergence,  stable  curve,  and  good  real‐time  performance.  The 

registration results of the four registration methods are shown in Figure 6. 

Bunny 

   

 
 

Monkey 

   

 
 

  (a)  (b)  (c)  (d) 

Figure  6. Registration  results  of Bunny  and Monkey.  (a)  Standard  ICP  algorithm;  (b)  Standard 

RANSAC algorithm; (c) Depth Filtering‐ICP ; (d) IWOA‐RANSAC‐ICP algorithm.   

According to Figure 6, the standard ICP algorithm and the three standard algorithms 

are  all  capable  of  completing  the  registration  of  Bunny  and Monkey  point  clouds. 

However,  the  standard  ICP  algorithm  is  greatly  influenced  by  the  accuracy  of  initial 

registration and poses a great impact on subsequent registration due to the poor accuracy 

of registration in the process of Monkey registration. In the case of direct registration with 

ICP,  despite  the  fast  rate,  there  is  a  large  error,  and  in  some  cases,  it  falls  into  local 

optimization, failing to fulfill accurate registration. The standard RANSAC algorithm is 

Figure 5. Iteration curve of IWOA optimized RANSAC algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  12  of  18 
 

 

Figure 5. Iteration curve of IWOA optimized RANSAC algorithm. 

It can be seen from the iteration curve that it can quickly obtain the optimal solution 

after the start of iteration for the optimized RANSAC algorithm of IWOA. It is less than 

that of the simple RANSAC algorithm for the fitness value of this algorithm, which has a 

faster  speed  of  convergence,  stable  curve,  and  good  real‐time  performance.  The 

registration results of the four registration methods are shown in Figure 6. 

Bunny 

   

 
 

Monkey 

   

 
 

  (a)  (b)  (c)  (d) 

Figure  6. Registration  results  of Bunny  and Monkey.  (a)  Standard  ICP  algorithm;  (b)  Standard 

RANSAC algorithm; (c) Depth Filtering‐ICP ; (d) IWOA‐RANSAC‐ICP algorithm.   

According to Figure 6, the standard ICP algorithm and the three standard algorithms 

are  all  capable  of  completing  the  registration  of  Bunny  and Monkey  point  clouds. 

However,  the  standard  ICP  algorithm  is  greatly  influenced  by  the  accuracy  of  initial 

registration and poses a great impact on subsequent registration due to the poor accuracy 

of registration in the process of Monkey registration. In the case of direct registration with 

ICP,  despite  the  fast  rate,  there  is  a  large  error,  and  in  some  cases,  it  falls  into  local 

optimization, failing to fulfill accurate registration. The standard RANSAC algorithm is 

Figure 6. Registration results of Bunny and Monkey. (a) Standard ICP algorithm; (b) Standard
RANSAC algorithm; (c) Depth Filtering-ICP; (d) IWOA-RANSAC-ICP algorithm.

According to Figure 6, the standard ICP algorithm and the three standard algorithms
are all capable of completing the registration of Bunny and Monkey point clouds. However,
the standard ICP algorithm is greatly influenced by the accuracy of initial registration and
poses a great impact on subsequent registration due to the poor accuracy of registration
in the process of Monkey registration. In the case of direct registration with ICP, despite
the fast rate, there is a large error, and in some cases, it falls into local optimization, failing
to fulfill accurate registration. The standard RANSAC algorithm is required to transform
and calculate a large amount of point cloud data, which makes its registration rate slower
than that of the standard ICP algorithm. However, the proposed IWOA-RANSAC-ICP
algorithm overcomes the shortcomings of both the above two algorithms and introduces
intelligent optimization algorithms that can quickly achieve the initial registration of point
clouds. The point cloud after initial registration subsequently provides a more reliable
initial value for the improved ICP algorithm, and the normal vector constraint of key points
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is introduced into the ICP registration algorithm to avoid local optimization in the stage
of accurate registration. On the whole, this method can achieve the optimum registration
effect, but given the long registration process, its efficiency remains to be improved. The
registration time of Bunny and Monkey using these four methods is shown in the following
table (Table 1).

Table 1. Registration time of these three methods (ms).

Point Cloud ICP RANSAC Depth Filtering-ICP IWOA-RANSAC-ICP

Bunny 745.52 1026.437 1652.41 1156.532
Monkey 2044.7 2806.24 3758.65 3025.42

As can be seen from the above table, the number of Bunny point clouds is small, and
the ICP algorithm converges the objective function by repeated iterations of the points so
that the corresponding points are gradually approximated to achieve accurate alignment
quickly, and when the number of point clouds increases significantly, the time required by
the ICP algorithm increases accordingly. Depth Filtering-ICP and IWOA-RANSAC-ICP
take more time to align than the previous two due to the increased workflow of point cloud
registration, and in the subsequent research, the focus is on improving and optimizing
the algorithm to increase the speed of the alignment. The mean square error of the four
methods is shown in Table 2 below.

Table 2. Comparison of mean square error between the proposed algorithm and other algorithms.

Point Cloud Error
σMSE (mm)

ICP RANSAC Depth Filtering-ICP Algorithm of This Paper

Bunny
x 0.321532 0.161132 0.752535 0.125004
y 0.247523 0.106212 0.532120 0.113524
z 0.374156 0.264652 0.332154 0.154236

Monkey
x 2.51821 3.152478 5.354225 2.245156
y 0.618039 0.872515 0.952452 0.528965
z 1.98336 1.502146 1.752154 0.896534

According to Tables 1 and 2, the registration speed of Bunny and Monkey using
the standard ICP algorithm is fast but is also subject to a large root-mean-square error,
which may be attributed to the great influence of the initial state on the registration.
Additionally, the standard RANSAC algorithm is slow but accurate, and the Depth Filtering-
ICP algorithm is better than the first two in some metrics. The IWOA-RANSAC-ICP
algorithm is close to the standard RANSAC algorithm in terms of the registration rate, but
it is more accurate with a minimal root-mean-square error.

4.2. Analysis of Experimental Data

In order to test the algorithm’s effectiveness in the laboratory scanning point cloud,
the data from two groups of mechanical devices were collected using a portable three-
dimensional scanner (PRINCE 335) with a reference distance of 300 mm and a field depth
of 250 mm. The operating distance of the scanner from the scanned surface ranged from
200 to 450 mm, and the precision reached 0.01 mm + 0.025 mm/m by precise scanning. The
number of collected workpiece point clouds was 853,105, and the collecting site and the
collection point clouds are shown in Figure 7. The above figure is named Workpiece A, and
the below figure, Workpiece B, to simplify the subsequent analysis. They are the same as
the above for the algorithm settings.
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Workpiece A has 853,105 points, which is reduced to 648,172 after downsampling.
Workpiece B has 356,310 points, which is reduced to 175,640 after the same operation.
Two groups of point clouds were processed by downsampling and translation rotation
transformation, respectively, and then registered using the three algorithms mentioned
above. The results of their registration using the four algorithms are shown in Figure 8.
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The registration time of the point clouds of Workpieces A and B using the three
algorithms are shown in Table 3 below.

Table 3. Registration time of surface workpiece point cloud (ms).

Point Cloud ICP RANSAC Depth Filtering-ICP Algorithm of This Paper

A 961,357 13,252,610 2,512,542 989,790
B 150,330 261,587 452,535 368,283

As can be seen from the above table, when the point cloud data increases significantly,
the time of all the above four algorithms increases accordingly. For workpieces A and B,
the time difference between the time required by the ICP algorithm and the time of the
method designed in this paper is not large. Although the algorithm process in this paper is
longer, it still maintains a good alignment speed and accuracy due to the better robustness
of IWOA, and the RANSAC and Depth Filtering-ICP algorithms require a larger increase
in time and a longer alignment time, which proves that the algorithms need to be further
optimized. The mean square error of the point clouds of Workpieces A and B using the
four algorithms is presented in Table 4 below.

Table 4. Comparison of mean square error of the 4 algorithms.

Point Cloud Error
σMSE (mm)

ICP RANSAC Depth Filtering-ICP Algorithm of This Paper

A
x 2.49386 2.38141 3.245254 1.145785
y 0.885543 0.507815 1.251014 0.751423
z 0.307292 0.65359 1.321525 0.895243

B
x 1.215468 0.856487 1.321587 0.786325
y 0.569874 1.325469 0.514524 0.684751
z 0.965124 0.956787 1.025410 0.884265

As can be seen from the above Figure 8, Tables 3 and 4, the standard ICP can roughly
accomplish the registration of some point clouds with the same downsampling rate and
maximum number of iterations throughout the test but is subject to poor registration
accuracy, which may be attributed to the higher initial point-to-point requirements of
ICP registration and the lower accuracy of subsequent registration in the case of a large
initial point pair error. The standard RANSAC algorithm can obtain better results than the
standard ICP algorithm in the registration of workpieces A and B. Given that the RANSAC
algorithm carries out the registration first based on the fast point feature histogram, it is su-
perior to the ICP algorithm for the registration of workpieces with obvious surface features,
but the speed is slower due to the necessity of extracting the histogram first. For Depth
Filtering, the ICP algorithm has a significant increase in error and a significant decrease
in alignment speed at higher data volumes. The hereby proposed IWOA-RANSAC-ICP
algorithm realizes rapid optimization of the RANSAC algorithm using WOA, accelerates
the feature extraction, and provides a more accurate initial point pair for the ICP algo-
rithm. Overall, this very algorithm possesses higher accuracy, but its efficiency still needs
further improvement.

5. Conclusions and Future Work

In this paper, a hybrid optimization algorithm based on the Improved Whale Opti-
mization Algorithm and improved ICP was proposed to achieve point cloud registration in
response to the problems and shortcomings of existing point cloud registration methods. In
the initial registration stage of this paper, an improved whale optimization algorithm based
on nonlinear convergence factor and adaptive weight coefficients was proposed because
the number of point clouds is usually substantial, and the standard whale optimization
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algorithm is easy to suffer premature convergence that causes it to trap in local optimum as
the search proceeds. The algorithm uses smaller weights to search in the neighborhood of
the optimal solution in a spiral manner to prevent falling into the local optimum. In the
second step of accurate registration, since the standard ICP algorithm is sensitive to noise
and outliers, it is prone to misregistration. We proposed an improved ICP algorithm with
weighted constraints on the normal vectors of key points to avoid the algorithm from falling
into local optimum and further improve the performance of the ICP algorithm in point
cloud accurate registration. The experimental results show that the proposed algorithm
has lower error compared with other registration algorithms, higher registration accuracy,
and faster convergence speed and can meet the needs of subsequent work.

With the increasing accuracy and resolution of visual systems, the obtained point
cloud data are becoming more and more informative, and further research is still needed
for point cloud denoising strategies while keeping the main cloud point data features and
information intact. For the registration of a large amount of point cloud data, there are
still limitations in the existing algorithms, and further research is needed to improve the
accuracy and efficiency of the registration algorithm.
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