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Abstract: An ultra-wideband (UWB) positioning system consists of at least three anchors and a tag
for the positioning procedure. Via the UWB transceivers mounted on all devices in the system, we can
obtain the distance information between each pair of devices and further realize the tag localization.
However, the uncertain measurement in the real world may introduce incorrect measurement infor-
mation, e.g., time, distance, positioning, and so on. Therefore, we intend to incorporate the technique
of ensemble learning with UWB positioning to improve its performance. In this paper, we present
two methods. The experimental results show that our ideas can be applied to different scenarios and
work well. Of note, compared with the existing research in the literature, our first algorithm was
more accurate and stable. Further, our second algorithm possessed even better performance than the
first. Moreover, we also provide a comprehensive discussion for an ill-advised point, which is often
used to evaluate the positioning efficiency in the literature.

Keywords: positioning system; distance information; ensemble learning; machine learning

1. Introduction

Sensors play significant roles in several modern applications [1–5]. Diverse sensors
help us obtain various information for different applications. For instance, we use a depth
camera to capture stereo vision and then calculate the corresponding depth information [4].
This is a method that requires line of sight (LOS) to obtain the distance information between
the object and sensor(s). On the other hand, an ultra-wideband (UWB) positioning system
is a non-line-of-sight (NLOS) example. Its architecture estimates the distance information
as well as the location of an object in a specific space [4,5]. More specifically, via the UWB
transceivers mounted on all devices in the system, the distance between each pair of devices
can be obtained. Upon receiving enough distance information at a specific time interval,
the object localization can be realized [5].

However, for practical applications, the uncertainty of the measurement may introduce
incorrect measurement information, e.g., time, distance, positioning, and so on. Hence,
in order to deal properly with uncertainty in measurement in practice, research have consid-
ered the UWB positioning issue by incorporating various machine learning approaches [5].
Their experimental results show some important and interesting properties. In particular,
they refine the raw data before applying the classical trilateration; then, more accurate and
stable positioning information is obtained.

According to the discussions presented in [5], the anchors with identical specification
report various distance values even with the same real distance between themselves and
the tag in the same scenario at the same time. Therefore, training distinct machine learning
models for different pairs of anchors and tags is practical and better. Accordingly, we will
use this concept in this work. On the other hand, after collecting enough data, the procedure
in [5] enters the next phase, i.e., the learning phase. In this phase, all training data are
refined first by sorting the data from large to small and then removing the largest and
smallest 10% data, the authors claim that this filtering method helps them remove some
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extreme data and works well. Here, we have a question about these thresholds: are they
the best threshold values for their filtering method? Hence, we will apply the concept of
ensemble learning to set the thresholds independently and automatically and also present a
comprehensive discussion with regard to different thresholds. Note that ensemble learning
is a critical and interesting concept, which does not directly modify the original models,
but combines several weak and independent models in order to achieve a stronger one [6,7].
In this paper, it is adopted to cascade machine learning algorithms.

Last but not least, the authors in [5] utilize the positioning error to conduct their
evaluation. However, the positioning information and error are calculated by a trilateration,
which may implicitly include some error-tolerant or optimization design, such as the digit-
by-digit calculation. Obviously, a fairer evaluation mechanism is to evaluate the distance
information. Consequently, in this paper, to avoid such a situation, we will consider the
distance error to conduct our evaluation instead of the positioning error.

This paper is organized as follows: first, some preliminaries related to our research are
reviewed in Section 2. Then our methods and the experimental results corresponding to
different settings and scenarios are presented and discussed in Sections 3 and 4. Finally,
this research is concluded in Section 5, and we suggest some feasible future work as well.

2. Preliminaries
2.1. Problem Formulation

In the UWB positioning architecture, anchors can measure the distance from the tags
to themselves via some radio ranging approaches. The measured distance can be expressed
as follows:

dmeasure = dreal + dnoise, (1)

where the noise part is assumed as a white Gaussian noise generally. However, in [5],
the authors illustrate that the white Gaussian noise may not fit the uncertain measurement
well in practice. Thus, we need some novel ideas for overall consideration instead of merely
using a deterministic process to simulate the uncertainty.

2.2. Ensemble Learning

Ensemble learning is growing in popularity due to its variability and efficiency [8,9].
Ensemble learning is composed of multiple weaker models that are independently trained;
then, the collective prediction will be more accurate. The ensemble approach can simultane-
ously consist of several learners applying unsupervised algorithms, supervised algorithms,
and so forth, in distinct ways, e.g., sequence, parallel, and mixture. Figure 1 shows a simple
instance of ensemble learning with the parallel type.

Figure 1. An example of ensemble learning with parallel type.
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2.3. k-Means Clustering

Clustering is a way bto group data into disjoint sets without labeling training data
beforehand and is one of the most common unsupervised algorithms [4,8,9]. Moreover,
classifying data into several disjoint sets should be purposeful. k-means clustering is one of
the most utilized manners; it can group elements into k separate clusters for k ≥ 2.

The pseudocode is abstracted below [10]:

• Place k centroids c1, c2, . . . , ck randomly;
• For each point, which is not a centroid, find the nearest centroid and assign it to the

cluster where the nearest centroid belongs;
• After assigning each point to its cluster, find a new centroid for each cluster;
• Repeat steps 2 and 3 until a predefined number of iterations or convergence.

k-means clustering is very simple, with low computational complexity.

2.4. Regression Analysis

Regression analysis is used to estimate the relationship between the dependent variable
and independent variable(s) [11–13]. The most common form is linear regression. In
particular, if a linear line fitting the data closely can be found in an analysis, we can make a
prediction via calculating the weighted sum of the input features and bias term. The concept
is shown in the following equation:

ŷ = anxn + an−1xn−1 + . . . + a0, (2)

where ŷ is the prediction, n is the number of features, xi the ith feature, and aj the jth
parameter.

Polynomial regression is another form, where the relationship between the dependent
variable and independent variable(s) is as a nth degree polynomial for n > 1 [13]. In
particular, if the analysis is more complicated than a linear line style, the power of each
feature is added as a new feature. Thus, we can train this modified model with these
extended features.

2.5. Artificial Neural Network

An Artificial Neural Network (ANN) is a machine learning model inspired by the net-
works of biological neurons found in animals’ brains. It is powerful, scalable, and versatile.
Due to its characteristics, it can be collocated with other approaches to tackle large and
highly complex tasks, e.g., classifying images, speech recognition, recommending videos,
and so on [13].

One of the simplest ANN architectures is Perceptron, which is based on artificial
neurons. For each neuron, the inputs and output are numbers, and each input is associated
with a weight and an extra bias feature may be added. Then, the weighted sum is applied
to an activation function to output the result. Furthermore, Multi-Layer Perceptron (MLP)
is an improvement of Perceptron. It is composed of one input layer, one or more hidden
layers constructed from the concept of Perceptron, and one output layer. Thus, every
layer except the output layer is fully connected to the next layer [13]. The computation of
Perceptron is shown in the following equations:

yi = xnwn + xn−1wn−1 + . . . + x1w1 + x0w0 + biasi, (3)

zi = acti(yi), (4)

where xi is the input, wi is the weight of xi, biasi is the bias, yi the weighted sum, and zi the
output produced from the activation function acti().

Here, most importantly, MLP can be applied to complex nonlinear problems. In [5],
the authors illustrated that the white Gaussian noise may not fit the uncertain measurement
well in practice. Thus, they utilized the concept of linear and polynomial regression to
refine the distance information. However, it is obvious that the refinement of the UWB
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positioning topic is not a linear or simple polynomial issue due to the effects of signal
attenuation and multipath propagation [14,15]. Hence, this is another motivation for us to
design a new architecture including ANN to refine the distance information further.

2.6. The Original Design

The main concept in [5] is that in practice, the white Gaussian noise may not fit the
uncertain measurement for UWB positioning well. Hence, instead of utilizing a determinis-
tic model to evaluate the uncertainty, they utilized several machine learning methods for
overall consideration. The following Figure 2 shows the operating procedure presented
in [5].

Figure 2. The refinement for UWB positioning in [5].

First, in the data collection procedure, for each reference point, they initialized the
locations of the sole tag tag and anchor anchori. Then, they collected the real distance
between tag and anchori as well as the corresponding distance provided by the UWB
positioning system, i.e., real_dis(tag, anchori) and sys_dis(tag, anchori). Hence, the actual
distance and its inaccurate version provided by the UWB positioning system were obtained
as the training data.

Next, the prefilter was used to discard the highest and lowest parts from the raw data
and then average them before entering the training procedure. After the training procedure
was finished, this trained model was utilized in the testing procedure to evaluate the
performance, including accuracy and stability. Here, the trained model was only regression
analysis [5].

3. Our Architecture and Algorithm

The uncertain measurement in the real environment may introduce incorrect infor-
mation. Generally speaking, the noise part is often assumed as a white Gaussian noise.
However, the white Gaussian noise may not fit the uncertain measurement well in prac-
tice. Thus, we need some novel ideas for overall consideration instead of merely using a
deterministic process to simulate the uncertainty.

Now, we begin to detail our algorithm, which is shown in Algorithm 1. Fore-
most, anchori and tag represent the devices with UWB transceivers in the experiment
(line 1). Then we have some data sets, which are set to φ initially, i.e., DATA, TRAINING,
and TESTING (lines 2–5). Moreover, we define several functions (lines 6–9):

• initialize(x) is used to put device x at a specific location for the purpose of obtaining
training and testing data;

• sys_dis(x, y) is utilized to return the distance information between device x and device
y provided by the UWB system;

• real_dis(x, y) is utilized to return the actual distance information between device x
and device y;
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• prefilter(a) is a method to discard unreasoned parts from data a and then return the
residual part.

Algorithm 1. The improved algorithm for tag in a specific scenario.

Variable:
(01) anchori and tag are devices with UWB transceivers;
(02) DATA, TRAINING and TESTING are data sets;
(03) DATA← ∅;
(04) TRAINING← ∅;
(05) TESTING← ∅;
Function:
(06) initialize(x): put device x at a specific location;
(07) sys_dis(x, y): the distance between device x and device y provided by the UWB system;
(08) real_dis(x, y): the actual distance between device x and device y;
(09) prefilter(a): a method to discard unreasoned parts from data a;
Collecting phase:
(10) for all combinations of anchori and tag do
(11) initialize(anchori);
(12) initialize(tag);
(13) for 1 ≤ x ≤ n do
(14) DATA← DATA ∪ (sys_dis(anchori, tag), real_dis(anchori, tag));
(15) separate DATA into TRAINING and TESTING;
Learning phase:
(16) TRAINING← prefilter(TRAINING);
(17) train the model via TRAINING;
Evaluating phase:
(18) TESTING← prefilter(TESTING);
(19) evaluate the trained model via TESTING;

In the collecting phase, for all combinations of anchor anchorii and the tag tag, we
initialized the locations of anchori and tag (lines 10–12). Then, the information about the
distance between the anchori and the tag provided by the UWB system and the real distance
between the anchori and the tag are stored, i.e., sys_dis(x, y) and real_dis(x, y). This means
that we obtained the actual distance and its inaccurate version provided by the UWB system
as the training/testing data. Here, for the reliability of entire procedure, each combination
was gathered n times (lines 13–14). Particularly, if there are ` anchors and m combinations
in a scenario, we collected `×m× n pairs of distance information as the training/testing
data. Finally, data set DATA was separated into data set TRAINING and TESTING for
the training and testing procedure (line 15).

Next, we appled the concept of ensemble learning to set the thresholds independently
and automatically to remove the extreme unreasoned data. Namely, TRAINING was
filtered via an independent machine learning model first (line 16); then, we trained the
refinement model via TRAINING (line 17). Note that the former model was unsupervised
learning, since we have no idea about the thresholds of unreasoned data in advance, and the
latter one for the purpose of refinement was supervised learning. Lastly, in the evaluating
procedure (lines 18–19), TESTING was also filtered via an independent machine learning
model first and then used to evaluate the performance via the existing trained model.

Figures 3 and 4 illustrate the main differences between [5] and our two improved
versions. In Figure 3, the first refinement, k-means was introduced into the architecture
for the purpose of setting the thresholds independently and automatically to remove the
extreme unreasoned data. Next, as shown in Figure 4, was the second refinement; since
MLP can be applied to complex nonlinear problems, this was another motivation for us to
introduce ANN into the architecture to refine the distance information further.
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Figure 3. Our first refinement for UWB positioning.

Figure 4. Our second refinement for UWB positioning.

4. Experimental Results

Here, we detail our experiments, and all relevant settings are listed as follows:

• In the experiments, three scenarios were considered, i.e., classroom, parking garage,
and parking lot (shown in Figure 5);

• Four anchors were set at fixed positions (red points);
• Twenty-seven points were utilized to collect the data: training data (blue points) and

testing data (green points);
• For every point, 100 continuing distance values were collected;
• The complete location information is shown in Figure 6;
• The UWB transceiver device utilized in the experiments was DWM1000 [16].
• The DWM1000 integrated the antenna, the Radio Frequency (RF), clock circuitries,

and the power management module. It used the Time Difference of Arrival (TDOA)
method to obtain the raw distance data between each pair of UWB devices [17].

• Google Colab [18] allowed us to write and execute Python 3 in the browser with the
power of a Graphics Processing Unit (GPU).

• The tools, scikit-learn [19] and Keras [20], were used to realize all the machine learning
algorithms in this paper.

Figure 5. Three scenarios are considered in this paper: (a) classroom, (b) parking garage, and
(c) parking lot.
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Figure 6. The complete location information.

Next, different prefilters and machine learning models were applied in our experi-
ment accordingly:

• Prefilters:

– MaxAve: We removed the largest 10% and smallest 10% and then only considered
the average of the cluster with the most elements for k-means clustering (k = 3)
as the training data;

– MaxCen: We removed the largest 10% and smallest 10% and then only considered
the median of the cluster with the most elements for k-means clustering (k = 3)
as the training data;

– CenAve: We removed the largest 10% and smallest 10% and then only consid-
ered the average of the central cluster for k-means clustering (k = 3) as the
training data;

– CenCen: We removed the largest 10% and smallest 10% and then only consid-
ered the median of the central cluster for k-means clustering (k = 3) as the
training data;

– 10%: We removed the largest 10% and smallest 10% and then only considered the
average of the residual part as the training data;

• Machine learning approaches:

– LR: Linear Regression;
– Third order PR: Third order Polynomial Regression;
– Fifth order PR: Fifth order Polynomial Regression;
– Tenth order PR: Tenth order Polynomial Regression;
– ANN:

* Model: sequential model;
* Activation function: rectified linear unit;
* Optimizer: adam;
* Loss function: mean absolute error;
* The architecture is shown in Figure 7.

Next, the experimental results are shown in the following tables. First, the higher
order polynomial regression, i.e., the tenth order polynomial regression, caused overfitting
for all the experiments, which was consistent with that in [5]. Hence, we will not discuss
this in this paper.
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According to Tables 1 and 2, we considered our methods with these new prefilters
to work well. More specifically, we observed that if the experimental space had a higher
density of obstacles (classroom), using the ANN refinement with the MaxCen prefilter was
better for accuracy (error) and stability (standard deviation). Then, for the space with a
lower density of obstacles (parking lot), using the ANN refinement was also better. Note
that since all standard deviation values were lower in the parking lot, we merely considered
the viewpoint of error.

Figure 7. The ANN architecture for the refinement in the experiments.

These results met all three declarations in the beginning of this paper. Namely, in [5],
all training data were refined first by sorting the data from large to small and then removing
the largest and smallest 10% of data; the authors claimed that this filtering method helped
them to remove some extreme unreasoned data and worked well. However, they were not
the best threshold values. We applied the k-means prefilters to improve the performance,
which can be observed via the differences among the same refinement algorithm with
various prefilters.

Second, it is obvious that the refinement of the UWB positioning topic is not a linear or
simple polynomial issue due to the effects of signal attenuation and multipath propagation.
Since MLP can be applied to complex nonlinear problems, the introduction of ANN
helps us improve the performance further for the viewpoints of accuracy (error) and
stability (standard deviation), which can be observed via the differences among the distinct
refinement algorithms. This conforms with the characteristics of ANN as well.

For the last declaration in the beginning of this paper: the authors in [5] utilized the
positioning error to conduct their evaluation. However, the positioning information and
error was calculated by a trilateration, which may implicitly include some error-tolerant
or optimization design. Here, some results about the distance and positioning error are
provided in Table 3 to address this viewpoint, where the trilateration algorithm was realized
via invoking the solve function provided by SymPy [21,22].
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Table 1. The experimental results about accuracy.

Scene Classroom Parking Garage Parking Lot

Filtering algorithm MaxAve MaxCen CenAve CenCen 10% MaxAve MaxCen CenAve CenCen 10% MaxAve MaxCen CenAve CenCen 10%

Average error (cm)
for LR refinement 13.4840 13.5016 12.9833 12.9509 13.1802 13.1247 13.1195 13.2806 13.3082 13.2374 5.5774 5.5771 5.2287 5.2522 5.2791

Average error (cm)
for 3rd order PR refinement 14.7483 14.6830 14.1591 14.1242 14.4526 13.7075 13.7177 14.3688 14.3690 14.3312 7.0026 6.9436 6.7687 6.7979 6.8600

Average error (cm)
for 5th order PR refinement 16.2367 16.2464 16.0984 16.0911 16.1965 14.1433 14.0594 14.1278 14.1456 14.1356 7.7564 7.7698 7.6098 7.6510 7.7056

Average error (cm)
for ANN refinement 13.9084 12.7475 14.0147 13.3212 14.1257 12.7099 12.5266 12.8038 11.9679 12.6255 6.2953 6.2102 5.3152 4.9925 6.0157

Table 2. The experimental results about stability.

Scene Classroom Parking Garage Parking Lot

Filtering algorithm MaxAve MaxCen CenAve CenCen 10% MaxAve MaxCen CenAve CenCen 10% MaxAve MaxCen CenAve CenCen 10%

Standard deviation (cm)
for LR refinement 4.9911 5.0357 4.4573 4.4348 4.4121 11.2675 11.3058 11.1558 11.1844 11.2332 1.7559 1.7165 1.6711 1.6744 1.6475

Standard deviation (cm)
for 3rd order PR refinement 7.4616 7.3711 6.5284 6.5000 6.6460 10.4364 10.4098 11.8883 11.8629 11.7947 1.4641 1.4836 1.7100 1.7309 1.6900

Standard deviation (cm)
for 5th order PR refinement 6.4702 6.4784 6.1868 6.2237 6.3537 11.4380 11.4833 11.8216 11.7886 11.6871 1.4185 1.5199 1.6037 1.6316 1.5720

Standard deviation (cm)
for ANN refinement 4.2665 4.4225 3.1471 3.2531 3.6112 9.8709 10.0507 9.3053 9.7154 9.2710 1.4387 0.6929 1.4117 1.5468 1.1412

Table 3. The example to show the ill-advised point of error estimation.

Example Distance Error between Tag Distance Error between Tag Distance Error between Tag Distance Error between Tag Positioning Error (cm)and Anchor A (cm) and Anchor B (cm) and Anchor C (cm) and Anchor D (cm)

LR refinement with 10% prefilter 8.5619 14.7145 13.1708 3.1046 19.2614

Raw data 38.7411 33.6501 36.0461 54.3153 16.7028
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According to the results shown in the example in Table 3, since the trilateration al-
gorithm had some error-tolerant design, and even though all the distance errors between
the tag and anchors in the raw data row were higher, it still possessed a lower positioning
error. Apparently, this may cause the misjudgment of the algorithm efficiency. Conse-
quently, a fairer evaluation mechanism is to evaluate the distance error instead of the
positioning error.

5. Conclusions and Future Work

In this paper, we reconsidered the UWB positioning problem by incorporating en-
semble learning in the real world. According to the experimental results, our method
performed better than the existing one. More specifically, k-means was introduced into the
architecture for the purpose of setting the thresholds independently and automatically to
remove the extreme unreasoned data, and ANN was introduced into the architecture to
refine the distance information further.

Of note, in this work, the density of obstacles was applied to assess what refinement
and filtering algorithms may be better options for a specific scenario. However, the system
needs to be retrained for a new scenario, and there may be more environment conditions
that should be considered in practice. Hence, for future work, we intend to integrate more
heterogeneous machine learning algorithms and the corresponding hyperparameters to
automatically refine the UWB raw data to obtain more stable and accurate information
according to various and objective environment conditions.

Likewise, solving the positioning issues with regard to various kinds of technologies
is also significant, e.g., Global Positioning System (GPS), Wi-Fi, Dedicated Short Range
Communications (DSRC), cellular network, and so forth.
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