
Citation: Xu, B.; Sun, Y.; Meng, X.;

Liu, Z.; Li, W. MreNet: A Vision

Transformer Network for Estimating

Room Layouts from a Single RGB

Panorama. Appl. Sci. 2022, 12, 9696.

https://doi.org/10.3390/

app12199696

Academic Editor: Zhonghua Sun

Received: 3 August 2022

Accepted: 23 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

MreNet: A Vision Transformer Network for Estimating Room
Layouts from a Single RGB Panorama
Bing Xu 1, Yaohui Sun 2, Xiangxu Meng 3, Zhihan Liu 3 and Wei Li 3,*

1 China Communications Construction Company Limited (CCCC), Beijing 100088, China
2 China Industrial Control Systems Cyber Emergency Response Team Institute, Beijing 100040, China
3 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
* Correspondence: wei.li@hrbeu.edu.cn

Abstract: The major problem with 3D room layout reconstruction is estimating the 3D room layout
from a single panoramic image. In practice, the boundaries between indoor objects are difficult to
define, for example, the boundary position of a sofa and a table, and the boundary position of a
picture frame and a wall. We propose MreNet, a novel neural network architecture for predicting
3D room layout, which outperforms previous state-of-the-art approaches. It can efficiently model
the overall layout of indoor rooms through a global receptive field and sparse attention mechanism,
while prior works tended to use CNNs to gradually increase the receptive field. Furthermore, the
proposed feature connection mechanism can solve the problem of the gradient disappearing in the
process of training, and feature maps of different granularity can be obtained in different layers.
Experiments on both cuboid-shaped and general Manhattan layouts show that the proposed work
outperforms recent algorithms in prediction accuracy.

Keywords: three-dimensional reconstruction; deep learning; panoramic; room layout

1. Introduction

When humans receive information from the outside world, more than 70% of the
information is obtained through vision [1]. Computer vision is a technology that combines
the eye (camera) with the brain (algorithm). This allows the computer to recognize, un-
derstand and analyze its environment, and to independently control behavior and solve
problems. Computer vision developed significantly in the 1960s, covering a wide range
of fields, such as image signals, texture and color modeling, geometric processing and
reasoning and object modeling. The problem of estimating the 3D room layout from a sin-
gle panoramic image is a subproblem of the problem of object modeling. It focuses on
reconstructing three-dimensional shapes from two-dimensional images, such as spheres
and cuboids. In the process of the high-quality reconstruction of a 3D room layout using
panoramic images, understanding the room scene plays an extremely important role in the
effect of the 3D reconstruction. For example, the floor is used as a support surface for tables
and chairs, and objects such as paintings are typically aligned with the walls.

Due to the rise of machine learning, scholars have tried to predict the corners and
boundaries of rooms in panoramic images based on machine learning. Lee et al. [2] used
the Bayesian method to combine visual cues with some prior knowledge of the scene to
reconstruct 3D structures. Specifically, this method generated layout assumptions based
on line segments extracted from a single indoor image and selected the most appropriate
layout from them. Ramalingam et al. [3] converted the indoor layout estimation problem
into the conditional random field inference problem. They chose to use a voting mechanism
to identify and classify the connection points and then introduced the characteristics of
the connection points into the conditional random field inference problem, to estimate the
layout of indoor scenes. Some subsequent studies also adopted similar methods to improve
the extraction method of feature clues and the mechanism of generating the layout [4].
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In general, however, the above methods of 3D room reconstruction using traditional
machine learning methods have some drawbacks, such as poor model expression ability,
a low amount of data processing and a tendency toward overfitting.

Thanks to the rapid development of deep learning, the 3D reconstruction of a room
layout has gained new possibilities, and scholars have begun to use deep convolutional
neural networks to explore 3D reconstruction problems. HorizonNet [5] proposed the
combination of ResNet [6] and a recurrent neural network (RNN) for 3D room layout
reconstruction. Wang et al. [7] proposed a method based on a convolution neural network
for the task of predicting the surface normal from a single image. Intuitively, the problem of
3D room layout reconstruction should focus on the shape bias of the indoor layout instead
of the texture bias. For example, the distance between two objects can be considered,
as shown in Figure 1.

Figure 1. The relationships between objects and the room layout.

However, CNNs are limited by the problem of receptive fields; for example, a common
convolution kernel is 3 × 3. Typical hidden layer feature sizes range from 256,512 to
1024, and the information felt by the 3 × 3 convolution kernel under the feature of these
dimensions is very local. Increasing the size of the convolution kernel increases the receptive
field, but it also brings about a large increase in the number of parameters and a delay
in inference speed. For instance, suppose the size of the input feature is 64,384,64,64; we
input this into a 24-layer depthwise convolution with a 13 × 13 kernel size, implemented
with Pytorch, and with a latency of 600 ms [8]. Recently, Vision Transformer (ViT) [9],
with its global receptive field and dynamic interaction capabilities, has been used to fully
represent and model the context relationships in the image, achieving better results in many
downstream tasks such as semantic segmentation and image classification. It is natural to
think of a way to introduce ViT into 3D room layout reconstruction problems, using its
shape sensitivity to better shape the layout prediction. However, drawbacks to the direct
use of ViT for the 3D reconstruction of room layout remain: (1) The time complexity of
calculation is high. The computation time complexity of the dot-product attention is O(L2),
where L is the length of the input feature. (2) A large number of parameters. This not only
makes training difficult, but also brings about the problem of gradient dissipation during
gradient backpropagation. (3) Attention deficit. Although ViT has the advantage of a global
receptive field, in theory, it has the problem of a limited receptive field in practice when
analyzing its attention.

To solve the above problems, we propose a novel neural network named MreNet.
Generally speaking, to make structural inferences about an indoor layout, we introduce
dot-product attention into the model and obtain a global receptive field similar to ViT.
To improve the inference speed of the model, we use sparse attention instead of full
attention to calculate dot-product attention. To accelerate the speed of training and the
mixing of features of different granularity, we propose a feature connection mechanism to
connect different layers. Finally, we propose a novel structure based on a larger convolution
kernel to enhance its sensitivity to local shape and address the attention deficit.

In general, the contributions of this paper are as follows:
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1. We propose a novel neural network named MreNet, based on ViT [9], to model the
structural problem of the room layout. By using this architecture, we obtain a larger
receptive field than the traditional convolutional neural networks, so we obtain a
better modeling effect.

2. We introduce a sparse attention mechanism to replace the traditional full attention
mechanism in order to enhance the inference speed of the model and reduce the time
complexity of operation.

3. We propose an assistant structure that enhances the local large receptive field and
introduce it into our model to enhance the shape sensitivity of the model.

4. We propose a novel feature connection mechanism to solve the problem of the gradient
disappearing in the process of training, and feature maps of different granularity can
be obtained in different layers.

The rest of the paper is organized as follows. A brief overview of related work is given
in Section 2. Section 3 presents our proposed approach, MreNet. Section 4 presents our
experimental results, and Section 5 concludes the paper.

2. Related Work

In the following, we first review two main methods for 3D indoor reconstruction:
traditional machine-learning-based methods and deep-learning-based methods. Then, we
present a brief description of the vision transformer.

2.1. Methods Based on Traditional Machine Learning

Delage et al. [10] proposed a dynamic Bayesian network to identify the boundary
between the floor and wall in each column of the image and solved some ambiguities in
autonomous 3D reconstruction. The model could recognize the boundary between different
objects in each column of the image by assuming the conjecture, in order to carry out 3D
reconstruction. However, due to the well-known disadvantages of the Bayes method,
its performance was hard to improve further, in terms of factors such as sensitivity to
the representation of input data and poor performance in processing large datasets, etc.
Lee et al. [2] generated the layout hypothesis based on the line segment set extracted
from a single room image and could also identify the layout of the 3D structure of the
building under the condition of occlusion and then select the most appropriate layout from
it. However, they used a method based on line segments, and it was therefore difficult
to provide global information on room layout. Ramalingam et al. [3] converted the room
layout estimation problem into a conditional random field inference problem. They chose
to use a simple and efficient voting mechanism to identify and classify connection points
and then introduced the characteristics of connection points into a conditional random
field inference problem, to estimate the layout of indoor scenes. Some subsequent studies
also adopted similar methods, improving the extraction method of feature clues and the
mechanism of generating the layout [4]. Most of the above studies used traditional machine
learning methods, which are limited by the representation ability of the model, and the
effect of 3D reconstruction is difficult to further improve.

2.2. Methods Based on Deep Learning

Mallya et al. [11] proposed a method for estimating the edge character of an indoor
layout from a panoramic image, which could extract the edge of the room scene characteris-
tic and used it to analyze the room layout, assuming that the edge referred to each plane’s
intersecting lines, such as ceiling and metope, ground and metope of the line intersection
curve, etc. They used a structured forest to extract the local information of the input image,
and a full convolutional neural network to extract the global information of the input image
to obtain the edge image, and then extracted its features and used a maximum margin
classifier to estimate the room layout. Dasgupta et al. [12] proposed a new optimization
framework based on a convolutional neural network, which could generate a room layout
estimation with high accuracy in the face of complex room scenes. Lee et al. [13] pro-
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posed a network model with an encoder–decoder structure based on self-attention, which
could predict the key points of an indoor layout. This method showed that an indoor
layout estimation result and segmentation result could be obtained according to some
specific sequence key points. AtlantaNet [14] proposed a neural network structure, which
double-projected the original panoramic images to better encode the required modeling
information. Recursive neural networks (RNNs) were used to capture remote geometric
patterns, and custom training strategies based on domain-specific knowledge were utilized.
Most of the deep-learning-based methods use a CNN as their backbone, but, being limited
by the CNN’s smaller receptive field, their performance is hard to improve further.

2.3. Vision Transformer

Vision Transformer (ViT) [9] directly uses the pure transformer structure without com-
bining it with a convolutional neural network. Vanilla ViT [9] has achieved good results
in many image classification tasks. Specifically, it mainly adopts a method of converting
pictures into tokens and introduces the concept of picture to patch in the original text.
The input picture is divided into patches one by one, and then a flatten conversion is per-
formed for each patch to transform it into an input structure, similar to Bert [15]. The Swin
Transformer [16] makes use of a sliding window and hierarchical structure, making the
Swin Transformer the new backbone in the field of machine vision, reaching the level of
SOTA in image classification, target detection, semantic segmentation and other machine
vision tasks. ConvMixer [17] uses a 9 × 9 convolution to replace the attention mechanism
in ViT. The Pyramid Vision Transformer [18] proposes a feature pyramid structure based
on Vision Transformer to accommodate downstream tasks requiring different feature densi-
ties and introduces sparse attention to solve computational complexity problems, but the
proposed sparse attention is based on heuristics. The above work on ViT has achieved
comparable or even better results than CNNs in many fields, but they also have problems:
the number of model parameters is too large, and the training cost is too high. For example,
if the number of parameters is limited, the performance of ViT is greatly weakened.

3. Methodology

Aimed at solving the existing problems, we proposed a new neural network to enhance
the effect of 3D indoor reconstruction, named Multiple Receptive Fields Enhanced Net
(MreNet). The architectural design is shown in Figure 2.

Figure 2. Architecture of the MreNet.

The proposed MreNet consists of three main components, including ResNet-50 [6],
an attention and convolution interaction (ACI) module, and LSTM. ResNet-50 and LSTM
are similar to those used in HorizonNet [5]. Through experiments, we found that MreNet
mainly benefited from the enhancement of the receptive field of the ACI module with regard
to the improvement in the effect of 3D reconstruction. Therefore, the rest of this paper
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focuses on the ACI module. The ACI module mainly consists of three different parts: (1) the
sparse attention layer; (2) the enhancement layer; and (3) the feature connection mechanism.
Specifically, the sparse attention layer is responsible for modeling the indoor layout by using
a global receptive field, while the enhancement layer uses a large convolution kernel to
enhance the part that attention cannot cover in practice. The feature connection mechanism
enables features of different granularity between different layers to interact, thus obtaining
richer modeling effects.

3.1. ResNet for the Extraction of Features

We used ResNet-50 [6] as a feature extractor for the initial feature acquisition, similar
to the one used in HorizonNet. The convolution kernel used in ResNet-50 has a sizes
of 3× 3 and 1× 1, and the existence of receptive fields makes the feature granularity of
different layers different. Intuitively, the 3D indoor reconstruction information they contain
is also different. For example, shallow features may contain attributes such as texture
and color, while deep features may contain shapes and relative relationships between
objects with different orientations due to the increase in the number of receptive fields. We
cached the outputs of different layers, and finally spliced the cached features of different
granularity so that the obtained feature map was rich in these features. The detailed process
of information transfer is shown in the following formulas.

Y1 = ResNetBlock1(X) (1)

Y2 = ResNetBlock2(X) (2)

Y3 = ResNetBlock3(X) (3)

Y4 = ResNetBlock4(X) (4)

Y = Y1 ⊕Y2 ⊕Y3 ⊕Y4 (5)

where X denotes the origin input feature, ResNetBlocki
is the ith block of ResNet, Yi repre-

sents the output of the ith block of ResNet, ⊕ represents the concatenation operation and Y
is the output of the whole ResNet.

3.2. ACI Module

ResNet is a combination of convolutional neural network layers based on two different
convolutional kernels of different sizes. It has well-known limitations, such as the small size
of a single receptive field, which is not conducive to capturing global features. Therefore,
we started from its limitations and designed a new neural network that could make up for
its shortcomings to enhance the 3D room reconstruction. In this section, we describe the
ACI module from the following perspectives: (1) the inputs and outputs of the module, (2)
the sparse attention, (3) the enhancement layer and (4) the shortcut.

3.2.1. Input and Output of the Overall ACI Module

The input and output operations of the ACI module are shown in Figure 2. In practice,
we made three copies of the output features from ResNet after normalization [19]. We
then calculated them as Q, K and V for the sparse attention, similar to the full attention
in Transformer [20], but with a difference in the amount of computation. The formula of
the vanilla full dot-product attention is as follows. We introduce our sparse dot-product
attention in the next section.

Attention(Q, K, V) = so f tmax(
QkT
√

dK
)V (6)

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO (7)

where
headi = Attention(QWQ

i , KWk
i , VWV

i ) (8)
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where WQ
i ∈ Rdmodel×dk , WQ

i ∈ Rdmodel×dk , WQ
i ∈ Rdmodel×dk and WO

i ∈ Rdmodel×dk are the
projections, and headi is the dimension of the subfeature.

We then put the output of the sparse dot-product attention layer through a layer of
dropout, which randomly dropped some neurons to enhance the robustness of the model
and avoid overfitting. Furthermore, the output was input into the enhancement layer to
enrich the feature information. Finally, we propagated the resulting output to the MLP,
which was similar to the one used in ViT.

3.2.2. Sparse Attention Layer

The original calculation of self-attention requires a large amount of computation,
and its time complexity is O(n2). In the training phase, this requires a great deal of
calculation, so the training time is too long and is difficult to deploy in practical applications.
In the inference stage, due to the problem of computational complexity, the inference is
slow, thus resulting in a low efficiency in practical applications. In the actual operation,
we output the reconstructed attention of the 3D room layout and found that attention
was sparsely distributed, and that many of the dot-product operations did not have a
great influence on the result. Inspired by Informer [21], we used a similar sparse attention
mechanism in each of our layers. This reduced the overall time complexity of the operation
to O(L · logL). The sparse attention formulas are as follows:

Attention(Qtop, K, V) = so f tmax

(
Qtop × KT
√

dk

)
V (9)

Attentionmean = Mean(Attention(Qtop, K, V)) (10)

Attentionout = Attention(Qtop, K, V)⊕ Attentionmean (11)

where ⊕ is the concatenation operation, Qtop is the top Q with the highest score, Mean
denotes the operation of the mean and Attentionout is the output of the single sparse
attention layer. The other variables are the same as those of the original formula, which we
described above.

3.2.3. Enhancement Layer

ViT can theoretically model the global relationship of features and capture feature
interactions over long distances. However, many scholars have found that there is a lack
of attention in actual operation. Some works provided empirical results to demonstrate
this. Inspired by these works, we viewed the problem from another angle. Since ViT can
generate suboptimal levels of global modeling, can we design a new structure to enhance
its utility rather than replace it? To this end, we designed a new structure to enhance
the sensitivity of local receptive fields. Specifically, we input the output of the multiplex
attention into two convolution layers with large convolution kernels to obtain the output
of the receptive field enhancement. In our work, we used convolution kernels of 1× 7 and
7× 1. Convolution kernels of different sizes can also be used in different tasks, which is
easy to achieve in practice. In addition, inspired by the guideline for the use of large-scale
convolution kernels in [8], we output multiattention outputs through a 1× 1 convolution
and added the output results from two convolution layers with 7× 7 and 7× 7 convolution
kernels. Specifically, the output process of the enhancement layer is shown below:

Output1 = Conv2(Conv1(X)) (12)

Output2 = Conv3(X) (13)

Output = Output1 + Output2 (14)

where X denotes the input of the enhancement layer, Conv1 denotes the convolution layer
with a 1× 7 convolution kernel, Conv2 denotes the convolution layer with a 7× 1 convolu-
tion kernel and Conv3 denotes the convolution layer with a 1× 1 convolution kernel.
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3.2.4. Feature Connection Mechanism

In the deep neural network, the feature granularity between different layers is different.
Generally speaking, features at lower levels tend to be fine-grained, which means they
can more easily grasp fine features such as textures, corners, furniture details and so
on. Features at higher levels tend to be coarser in granularity, which means they focus
on broader information than features at lower levels, such as the shape of the indoor
furniture, the distance between the center of the sofa and the floor and the relative position
of the ceiling and walls. To better capture the feature information between different
layers and to not lose the features of different granularity of each layer, we adopted a
hierarchical connection mode for feature interaction between different layers. In addition to
the above-mentioned benefits brought by the fusion of features with different granularity,
we also observed an improvement of the gradient disappearance in the experiment, thus
accelerating the convergence speed and strengthening the convergence effect in the training,
similar to that found in [22]. Specifically, our connection mode was as follows:

output1 = SubLayer1(X) (15)

output2 = SubLayer2(output1) (16)

output3 = SubLayer3(output2 + output1) (17)

where X denotes the input of the ACI module and SubLayeri denotes the ith of the ACI
module.

3.3. The Use of a Recurrent Neural Network for the Convergence of Features

Intuitively, each part of the room has a relationship with the others. For example, if we
know where the floor is, we know the ceiling is probably on the other side of the floor.
Conversely, knowing the position of the ceiling, we also know that the floor is probably on
the other side of it, as shown in Figure 3.

Figure 3. Correspondence between the ceiling and floor.

To this end, we used a bidirectional RNN [23] to capture bidirectional relationships
between different positions. The bidirectional RNN we used was as follows:

−→
ht = f

(−→
W xt +

−→
V
−−→
ht−1 +

−→
b
)

(18)

←−
ht = f

(←−
W xt +

←−
V
←−−
ht+1 +

←−
b
)

(19)

yt = g
(

U
[−→

ht ;
←−
ht

]
+ c
)

(20)

where
−→
W denotes the positive weight matrix corresponding to the input,

−→
V denotes the

positive weight matrix corresponding to the output at the last moment,
−→
b denotes the pos-

itive bias,
←−
W denotes the inverse weighting matrix corresponding to the input,

←−
V denotes
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the inverse weighting matrix corresponding to the previous output, B2 denotes the inverse
bias, f denotes the activation function, U denotes the weight matrix of the output mixing
information, c denotes the final mixing bias and g denotes the final activation function.

4. Experimental Results and Discussion
4.1. Experimental Settings

Environment setting: In our experiment, we used a server equipped with an Intel Xeon
E5-2650 V2 CPU and GeForce GTX 3090 GPU for training. The network was implemented
in PyTorch.
Datasets: In terms of datasets, we used the PanoContext [24] and Stanford 2D-3D [25]
datasets to train and evaluate the proposed network model. The PanoContext dataset
contains 500 annotated cuboid layouts, including indoor environments such as bedrooms
and living rooms. Since the resolution of panoramic images in the original PanoContext
dataset was 9104 × 4552, which did not meet the requirements of the model in this paper
for input images, the resolution of all images in the PanoContext dataset was changed to
1024 × 512 in this paper.
Hyperparameter setting: We employed the Adam optimizer [26] to train the network
for 300 epochs and a learning rate of 0.0003. The training process is analyzed in the
following sections. We set the number of sparse attention layers as three and the number of
enhancement layers as three. We also tested different numbers of sparse attention layers
and enhancement layers, e.g., six and nine. With the increase of the number of layers, there
was no significant improvement, but the training time was greatly increased. We set the
batch size of the training as four and the batch size of the validation as two. Through
experiments, we found that different batch sizes did not cause visible differences, but a big
batch size easily caused an out-of-memory error from the GPU.
Training time: The training time overhead of MreNet was 0.0184 h per epoch and that of
HorizonNet was 0.0179 h per epoch. Due to the introduction of the multihead attention of
Vision Transformer into MreNet which brought extra parameters, the time consumption of
MreNet increased slightly. However, compared to HorizonNet, considering that MreNet
could achieve more than 0.68% of improvement in 3D IoU, the 0.027% time overhead
was tiny.

4.2. Evaluation Metrics

In this section, we present the three metrics used to evaluate the proposed MreNet,
including 3D intersection over union (IoU), corner error and pixel error. We describe the
three metrics next.

IoU is the measurement of the accuracy of the test results. The object to be detected
has a truth box, namely the ground truth. It is necessary to artificially mark the general
range of the object with a rectangular box on the pictures in the dataset. In the evaluation of
an algorithm, the algorithm first needs to be used to detect the image, then the prediction
box of the corresponding object generated by the algorithm can be obtained, and then the
IoU index between the prediction box and the truth box is calculated.

The larger the value of the IoU, the better the consistency between the prediction
box and the truth box, and the higher the accuracy of the algorithm. The corresponding
mathematical formula is as follows:

IoU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) (21)

where area
(

Bp ∩ Bgt
)

denotes the area of the prediction box generated by the neural net-
work and area

(
Bp ∪ Bgt

)
denotes the area of the real box.
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The 3D IoU in this paper refers to the result of dividing the area of the intersection and
the union area between the 3D layout and the marked real layout generated by the layout
estimation based on the proposed method. The formula is as follows:

3D IoU =
V1 ∩V2

V1 ∪V2
(22)

where V1 denotes the volume of the generated 3D layout estimated using the neural network
and V2 denotes the volume of the actual 3D layout.

Corner error denotes the average Euclidean distance between the predicted angle and
the true angle. The calculation formula of the corner error is as follows:

CE =

√
∑ Di

2

H2 + W2 (23)

where CE denotes the value of the corner error, Di denotes the average Euclidean distance,
H denotes the distance between the predicted angle and the real angle and W denotes the
width of the input panoramic image.

Pixel error refers to the average pixel error between the predicted layout and the real
layout, and its mathematical calculation formula is as follows:

PE =
∑ (pi 6= gi)

H ×W
(24)

where pi denotes the pixel values of the structural lines, such as walls and ceilings in the
generated 3D layout, gi denotes the pixel value of each structure line in a real 3D layout
and PE denotes the pixel error.

It can be inferred that if the predicted pixel value is equal to the real pixel value,
the value of pi 6= gi is zero. Conversely, if the predicted pixel value is not equal to the real
pixel value, the value is one. H denotes the height of the input panoramic image and W
denotes the width of the input panoramic image.

4.3. Convergence Analysis

Convergence is a measure of the stability and reliability of deep learning neural
networks for 3D reconstruction, so it is important to test the convergence and generalization
of deep learning models.

To fully verify the reliability of our MreNet model, we adopted the state-of-the-art
HorizonNet [5] as the control. As shown in Figure 4, from the 300 epochs of training, both
MreNet and HorizonNet converged towards good performance, and they converged at
almost the same rate. However, in terms of stability, MreNet was better than HorizonNet
since in the first 100 epochs in training, MreNet had fewer peaks in the green curve in
Figure 4. Furthermore, we made a statistical analysis of the loss during training. In the
final smooth 250–300 epochs, the loss variance of MreNet was 5.76× 10−7 while that of
HorizonNet reached 7.24× 10−7.

Through the above experimental analysis, the convergence of the proposed MreNet
was proved.
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Figure 4. Convergence behavior of MreNet and HorizonNet.

4.4. Ablation Study

We performed an ablation study to verify the performance of MreNet. First, we took
the complete version of MreNet as the control group, MreNet without the enhancement
layer as experimental group 1, MreNet without the feature connection as experimental
group 2 and MreNet without the sparse attention layer as experimental group 3. We trained
and tested them on the PanoContext dataset + Stanford-2D3D. As shown in Figure 5,
in terms of 3D IoU, the experimental groups 1, 2 and 3 achieved 83.88%, 83.82% and 83.77%,
respectively, while the control group achieved 84.09%. Concerning the corner error, the ex-
perimental groups 1, 2 and 3 reached 0.657%, 0.659% and 0.661%, respectively, while the
control group achieved 0.639%. Regarding the pixel error, the experimental groups 1, 2
and 3 yielded 2.047%, 2.049% and 2.051%, respectively, while the control group had a pixel
error of 2.030%. We also conducted some statistical hypothesis tests. For the two-sample
heteroscedastic assumption-test, the 3D IoU result for the control group with experimental
groups 1, 2 and 3 was 0.0051, 0.0043 and 0.0049, respectively. The results for corner errors
were 0.0008, 0.004 and 0.002. The results for pixel error were 0.043, 0.029 and 0.0031.

In conclusion, as the complete version of MreNet achieved good performance from
these three metrics, the necessity of the sparse attention layer, enhancement layer and
feature connection were verified.

4.5. Quantitative Evaluation

Our approach was evaluated on the three above-mentioned standard metrics: (1) 3D
IoU, (2) corner error and (3) pixel error. The descriptions of these three metrics were
introduced in Section 3.1, so they are not repeated in this section. The results of differ-
ent approaches are summarized in Tables 1–3. The input resolution of HorizonNet and
LayoutNet [27] was 512× 1024. Our approach achieved state-of-the-art performance and
outperformed existing methods under all settings. The mean of the three indicators (3D IoU,
corner error and pixel error) are presented after each experiment was repeated five times.
The T-test was the two-sample heteroscedastic assumption for HorizonNet and MreNet.
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(a)

(b)

(c)

Figure 5. Ablation study for MreNet. (a) is for 3D IoU, (b) is for corner error (CE) and (c) is the result
of pixel error (PE).
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Table 1. Quantitative results of cuboid layout estimation evaluated on the PanoContext [24] dataset.
Our approach outperforms all listed methods under all settings.

Method 3D IoU (%) Corner Error (%) Pixel Error (%)

Training on PanoContext dataset

PanoContext 67.51 1.57 4.49

HorizonNet 82.11 0.79 2.26

MreNet 82.23 0.79 2.24

T-test 0.002 0.0164 0.07

Training on PanoContext + Stanford-2D3D datasets

HorizonNet 83.40 0.72 2.03

MreNet 84.08 0.67 1.98

T-test 0.048 0.0217 0.007

Table 2. Quantitative results of cuboid layout estimation evaluated on the Stanford-2D3D [25] dataset.
Our approach outperforms all listed methods under all settings.

Method 3D IoU (%) Corner Error (%) Pixel Error (%)

Training on PanoContext dataset

HorizonNet 75.43 0.94 3.21

MreNet 75.55 0.94 3.18

T-test 0.004 0.023 0.048

Training on Stanford-2D3D dataset

HorizonNet 79.57 0.75 2.44

MreNet 79.89 0.70 2.38

T-test 0.047 0.015 0.041

Training on PanoContext + Stanford-2D3D datasets

HorizonNet 83.86 0.65 2.10

MreNet 84.11 0.62 2.06

T-test 0.037 0.031 0.034

Table 3. Quantitative results of cuboid layout estimation evaluated on the Stanford-2D3D [25]+
PanoContext dataset [24]. Our approach outperforms all listed methods under all settings.

Method 3D IoU (%) Corner Error (%) Pixel Error (%)

Training on PanoContext + Stanford-2D3D datasets

HorizonNet 83.76 0.67 2.07

MreNet 84.09 0.64 2.03

T-test 0.021 0.027 0.044

4.6. Qualitative Results

To test the actual effect of the reconstruction of a room layout, we took the best models
obtained from MreNet and HorizonNet to estimate the layout of the panoramic image of
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the same rooms. The obtained layout estimation results are shown in Figure 6. It is obvious
from the image that the layout estimation generated by the MreNet is more accurate in
predicting the boundary of each plane, especially for the estimation of the location of the
boundary between the ceiling and the wall.

Figure 6. Layout estimates generated by MreNet and HorizonNet.

To further verify the correctness of this conclusion, we used multiple panoramic images
for comparative experiments, and the results obtained are depicted in Figure 7 where the
green lines are layout estimated by MreNet while the orange lines are for HorizonNet. It
can be seen from the image that although both can perform relatively accurate layout
estimation, MreNet can more accurately fit the boundary position of each plane, such as
the position of the boundary between the ceiling and wall. In addition, MreNet can better
estimate the location of some plane boundaries obscured in the figure by indoor furniture.

4.7. Discussions

Compared to the-state-of-art methods, e.g., HorizonNet and PanoContext, MreNet
had a higher modeling capability, in terms of 3D IoU (%), and the highest improvement was
0.68% and 14.72%, respectively. Considering the rate of convergence, in 50 stable epochs,
the loss variance of MreNet was 5.76× 10−7 while that of HorizonNet was 7.24× 10−7. We
attributed these contributions mainly to the enlarged receptive field. Intuitively, the more
receptive fields, the more feature information is obtained. Moreover, our experiments
showed that the proposed approach outperformed the existing approaches on all three
standard metrics.

Although the proposed sparse attention layer and feature connection mechanism
greatly improved the estimating efficiency and the proposed enhancement layer enabled
the MreNet to have a large receptive field, compared with a CNN-based model, e.g., Hori-
zonNet, MreNet’s time consumption increased a bit. Therefore, our next research direction
is to combine the speed of CNNs and the global modeling ability of the attention module.
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Figure 7. Multiple layout estimates generated by MreNet (green) and HorizonNet (orange).

5. Conclusions

In this paper, we studied the problem of reconstructing the 3D room layout from a
single RGB panoramic image. A novel approach based on our high-efficiency network
structure was developed, which obtained a global receptive field. In addition, our proposed
feature connection mechanism significantly enhanced the speed of training and mixing
features. There are several possible directions that can be explored for future works. Firstly,
developing efficient techniques for complex, general layouts is an interesting issue to
be investigated. In actual application, indoor layouts are more sophisticated and often
possess features that are in conflict with the “Manhattan world” assumption, such as arches.
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Secondly, the incorporation of object classification/detection for a better understanding of
3D scenes is another interesting issue to be studied.
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