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Abstract: Golden jackal optimization (GJO) is an effective metaheuristic algorithm that imitates the
cooperative hunting behavior of the golden jackal. However, since the update of the prey’s position
often depends on the male golden jackal and there is insufficient diversity of golden jackals in some
cases, it is prone to falling into a local optimal optimum. In order to address these drawbacks of
GJO, this paper proposes an improved algorithm, called a hybrid GJO and golden sine (S) algorithm
(Gold-SA) with dynamic lens-imaging (L) learning (LSGJO). First, this paper proposes novel dual
golden spiral update rules inspired by Gold-SA. These rules give GJO the ability to think like a
human (Gold-SA), making the golden jackal more intelligent in the process of preying, and improving
the ability and efficiency of optimization. Second, a novel nonlinear dynamic decreasing scaling
factor is introduced into the lens-imaging learning operator to maintain the population diversity. The
performance of LSGJO is verified through 23 classical benchmark functions and 3 complex design
problems in real scenarios. The experimental results show that LSGJO converges faster and more
accurately than 11 state-of-the-art optimization algorithms, the global and local search ability has
improved significantly, and the proposed algorithm has shown superior performance in solving
constrained problems.

Keywords: hybrid metaheuristics; golden jackal algorithm; lens-imaging learning; golden sine
algorithm; global optimization problems

1. Introduction

Natural science and social economy optimization problems are a research hotspot in
computer science, management and decision-making, artificial intelligence, and other fields.
The search for high-precision solutions to such optimization problems has attracted many
researchers. However, the traditional optimization methods based on mathematical theory,
such as Newton’s downhill method and the gradient descent method, have been unable to
solve these problems effectively [1,2], so many scholars favor metaheuristic algorithms.

Metaheuristic algorithms are used to find the optimal solution or satisfactory solution
to complex optimization problems [3–5], and they are inspired by the phenomenon of a
biological population, physical phenomena, evolutionary law, etc. For example, the whale
optimization algorithm (WOA) is inspired by the humpback whales’ foraging behavior in
nature [6]. The salp swarm algorithm (SSA) is inspired by the swarming behavior of salps
when navigating and foraging in oceans [7]. The Harris’s hawk optimization (HHO) is
inspired by the different mechanisms of the Harris’s hawk’s strategy for capturing prey [8].
Biological populations inspire these algorithms. For example, the equilibrium optimizer
(EO) is inspired by control volume mass balance models that estimate both dynamic and
equilibrium states [9]. The lightning attachment procedure optimization (LAPO) is inspired
by the natural process of connecting the upward-facing and downward-facing leads of
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lightning [10]. The turbulent flow of water-based optimization (TFWO) is inspired by
whirlpools created in the turbulent flow of water [11]. Physical phenomena inspire these
algorithms. For example, the inspiration for the genetic algorithm (GA) comes from the
survival of the fittest under the action of genetics, selection, and variation in organisms to
achieve evolution and development [12]. The immune algorithm (IA) inspiration comes
from the immune mechanism of biology, combined with the evolutionary mechanism of
genes [13]. The laws of evolution inspire these algorithms. Metaheuristic algorithms are
widely used in signal processing [14], image processing [15,16], fault detection [17], produc-
tion scheduling [18], feature selection [19], path planning [20], numerical optimization [21],
engineering design [22–24], etc.

Moreover, the no-free-lunch theory (NFL) shows that no one algorithm can be ap-
plied to all optimization problems [25]. This theory has prompted many researchers to
improve existing algorithms. Alkayem et al. proposed the self-adaptive quasi-oppositional
stochastic fractal search (SA-QSFS) by employing triple modal-based objective function
combination and quasi-oppositional learning [26]. Tian and Shi proposed MPSO using
chaos initialization and sigmoid-like inertia weight based on the PSO algorithm [27].
Dhargupta et al. proposed SOGWO by combining opposition-based learning (OBL) with a
grey wolf optimizer [28]. Alkayem et al. proposed the social engineering particle swarm
optimization algorithm (SEPSO) by combining the PSO population-based elitist-solution
mechanism and the SEO two-solution attacker–defender paradigm [29].

Our team has also improved some algorithms and achieved good results in numerical
optimization and engineering applications: Wei et al. proposed a new unbalanced fault
diagnosis framework using MFO to optimize γ parameters in LS-SVM [30]. Fan et al.
proposed BGWO by combining the beetle antenna strategy with the gray wolf algorithm
and adopting the nonlinear control step size strategy [31]. Fan et al. proposed m-EO
based on EO with reverse learning, new update rules, and chaos strategy [32]. Fan et al.
proposed MMPA based on WOA with a new position update strategy, a logistic opposition-
based learning mechanism, inertia weight coefficient, and a nonlinear control step size
strategy [33]. Wei et al. proposed NI-MWMOTE based on MWMOTE with an adaptive
noise processing scheme and an aggregative hierarchical clustering method [34].

The golden jackal optimization algorithm (GJO) is a recently proposed biological
swarm intelligence algorithm [35], inspired by the collaborative hunting behavior of golden
jackals. Although GJO has the advantages of easy implementation, high stability, and few
adjustment parameters, its exploration and exploitation capabilities are unbalanced, which
can easily lead to excessive exploitation and fall into local optima. In the process of iteration,
the position of prey is always located in the middle of two golden jackals. However, the
position of male golden jackals is not necessarily the optimal solution, which easily leads to
slow convergence in the late iteration, poor convergence accuracy, and easily falling into
a locally optimal solution. Aiming at the shortcomings of GJO, this paper improves the
original algorithm and proposes LSGJO. The new algorithm adds the dynamic lens-imaging
learning strategy and the novel position updating strategy to make it have better global
search ability and local search ability.

In order to prove its superior result, LSGJO is compared with several well-known
and recent algorithms on 23 benchmark functions. Among the 23 benchmark functions,
the functions F1-F13 have three different dimensions (30, 100, 500), and F14-F23 are fixed-
dimension functions. The experimental results show that the algorithm proposed in this
paper has a fast convergence speed and high accuracy. In addition, the experimental results
of LSGJO on constrained optimization problems in three mechanical fields also show that
the proposed algorithm can solve practical problems.

The highlights and contributions of this paper are summarized as follows:

(1) LSGJO is proposed.
(2) Wilcoxon rank sum test and Friedman test are used to analyze the statistical data.

Observing the convergence curve and comparing it with other algorithms proves that
LSGJO has tremendous advantages.
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(3) LSGJO is applied to solve three constrained optimization problems in mechanical
fields and compared with many advanced algorithms.

The remaining sections of this paper are as follows: Section 2 briefly summarizes the
conventional golden jackal algorithm. Section 3 proposes LSGJO and analyzes its time
complexity. The benchmark functions are tested, and the results are analyzed in Section 4.
LSGJO is used to solve three constrained optimization problems in mechanical fields in
Section 5. Section 6 discusses the challenges, recommendations, and limitations related to
the proposed algorithm. Finally, Section 7 concludes the paper and proposes future studies.

2. Golden Jackal Algorithm

The golden jackal algorithm is a swarm intelligence algorithm proposed by Nitish
Chopra and Muhammad Mohsin Ansari; it mimics the hunting behavior of golden jackals
in nature. Golden jackals usually hunt with males and females. The hunting behavior of
the golden jackal is divided into three steps: (1) searching for and moving towards the
prey; (2) enclosing and irritating the prey until it stops moving; and (3) pouncing towards
the prey.

During the initialization phase, a randomly distributed set of prey position matrices is
generated by Equation (1):

Y1,1 · · · Y1,j · · · Y1,n
Y2,1 · · · Y2,j · · · Y2,n
· · · · · · · · · · · · · · ·

...
...

...
...

...
YN−1,1 · · · YN−1,j · · · YN−1,n

YN,1 · · · YN,j · · · YN,n


(1)

where N denotes the number of prey populations and n denotes dimensions.
The mathematical model of the golden jackal’s hunt is as follows (|E| > 1):

Y1(t) = YM(t)− E · |YM(t)− rl · Prey(t)| (2)

Y2(t) = YFM(t)− E · |YFM(t)− rl · Prey(t)| (3)

where t is the current iteration, YM(t) indicates the position of the male golden jackal,
YFM(t) indicates the position of the female, and Prey(t) is the position vector of the prey.
Y1(t) and Y2(t) are the updated positions of the male and female golden jackals.

E is the evading energy of prey and is calculated as follows:

E = E1 · E0 (4)

E1 = c1 · (1–(t/T)) (5)

where E0 is a random number in the range [–1, 1], indicating the prey’s initial energy;
T represents the maximum number of iterations; c1 is the default constant set to 1.5; and E1
denotes the prey’s decreasing energy.

In Equations (2) and (3), |YM(t)− rl·Prey(t)| denotes the distance between the golden
jackal and prey and “rl” is the vector of random numbers calculated by the Levy flight function.

rl = 0.05 · LF(y) (6)

LF(y) = 0.01× (µ× σ)/
(∣∣∣v(1/β)

∣∣∣) σ =

Γ(1 + β)× sin(πβ/2)

Γ
(

1+β
2

)
× β×

(
2β−1

)


1/β

(7)
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where u and v are random values in (0, 1) and β is the default constant set to 1.5.

Y(t + 1) =
Y1(t) + Y2(t)

2
(8)

where Y(t + 1) is the updated position of the prey based on the male and the female
golden jackals.

When the prey is harassed by the golden jackals, the evading energy is decreased. The
mathematical model of the golden jackals surrounding prey and devouring it is as follows
(|E| ≤ 1):

Y1(t) = YM(t)− E · |rl ·YM(t)− Prey(t)| (9)

Y2(t) = YFM(t)− E · |rl ·YFM(t)− rl · Prey(t)| (10)

The pseudo-code of the above GJO is shown in Algorithm 1.

Algorithm 1: Golden Jackal Optimization

Inputs: The population size N and maximum number of iterations T
Outputs: The location of prey and its fitness value
Initialize the random prey population Yi (i = 1, 2, . . . , N)
While (t < T)

Calculate the fitness values of prey
Y1 = best prey individual (Male Jackal Position)
Y2 = second best prey individual (Female Jackal Position)
for (each prey individual)

Update the evading energy “E” using Equations (4) and (6)
Update “rl” using Equations (6) and (7)
If (|E| ≤ 1) (Exploration phase)
Update the prey position using Equations (2), (3), and (8)
If (|E| > 1) (Exploitation phase)
Update the prey position using Equations (8), (9), and (10)

end for
t = t + 1

end while
return Y1

3. Proposed LSGJO

When solving some optimization problems, GJO easily falls into iterative stagnation,
slow convergence in later stages, and insufficient exploration and exploitation capacity,
and the shortcomings are more apparent when solving complex problems. In this section,
we propose two improvement strategies described in detail below.

3.1. Dynamic Lens-Imaging Learning Strategy

Lens-imaging learning strategy is a recently proposed opposition-based learning
method [36]. This strategy is derived from the law of optics in the convex lens-imaging
law. The principle of the strategy is to refract the entity on one side to the other through
a convex lens to form an inverted image. Here, Figure 1 is used to outline its principle:
on the left of the coordinate axis y, there is an individual G (the male golden jackal); its
projection on the coordinate axis x is X, and its distance from the coordinate axis x is h. The
coordinate axis y denotes a convex lens of focal length f, and the O point is the center of the
convex lens. G passes through a convex lens to produce an opposite individual G′, whose
projection on the coordinate axis x is X′, and its distance from the coordinate axis x is h′.
The individual X and its opposite individual X′ are obtained.
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According to Figure 1, X and X′ can be derived from the convex lens-imaging principle:

ub+lb
2 − X

X′ − ub+lb
2

=
h
h′

(11)

where ub and lb are the upper and lower bounds. Let h/h′ = α, and α is called the scaling
factor; then, Equation (11) is transformed to obtain the formula for the opposite point X′:

X′ =
ub + lb

2
+

ub + lb
2 · α − X

α
(12)

The scaling factor α can increase the local development ability of the LSGJO. In
the original lens-imaging learning strategy, the scaling factors are generally considered
constant, which reduces the convergence performance of the algorithm. Therefore, this
paper proposes a new scaling factor based on nonlinear dynamic decreasing, which can
obtain larger values in the early iteration of the algorithm so that the algorithm can search
in the broader range of different dimensional regions and improve the diversity of the
population. At the end of the algorithm iteration, a smaller value is obtained, so the fine
search near the optimal individual can be carried out to improve the local optimization
ability. The nonlinear dynamic scaling factor α is calculated by Equation (13):

α = ζmin − (ζmax − ζmin) ∗ (t/T)2 (13)

where ζmax is the maximum scaling factor, ζmin is the minimum scaling factor, and T is the
maximum number of iterations; the value ζmax is 100, and the value ζmin is 10.

Equation (12) can be popularized to the n-dimensional search space:

X′j =
ubj + lbj

2
+

ubj + lbj

2 · α −
Xj

α
(14)

where X′j and Xj are the components of X′ and X in dimension j, respectively, and lbj and
ubj are the upper and lower bounds of dimension j, respectively. The dynamic lens-imaging
strategy considers the candidate and opposite solutions and selects the best solution
according to the calculated fitness. In this paper, the dynamic lens-imaging learning
strategy is applied to the current global optima of the swarm in the GJO and is beneficial to
help the population avoid stagnation in local optima.

Learning strategies mainly include the opposition-based learning (OBL) strategy, the
quasi-opposition-based learning strategy, and the dynamic lens-imaging-based learning
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strategy. The original OBL is a special form of α = 1 in Equation (12). Quasi-oppositional
learning, proposed by Tizhoosh et al. [37], is utilized to improve the overall exploration
of the initial and execution stages, and it is an excellent improvement on the original
opposition-based learning method. It can increase the diversity of the population but
ignores that with the increase in the number of iterations, the algorithm changes from
global optimization to local optimization. The dynamic lens-imaging learning proposed in
this paper takes this into account.

3.2. Novel Update Rules

The golden sine algorithm was proposed by Tanyildizi et al. [2]; it is inspired by the
relationship between the sine function and the unit circle in mathematics. The golden
section coefficient is introduced in the position update in the golden sine algorithm, and
the special relationship between the sine function and the unit element is combined with
the golden section. The golden sine algorithm finds the global optimal solution by reducing
the search scope continuously. First, the global search finds the optimal solution space, then
the local search is carried out, and finally the global optimal solution is sought. The golden
sine algorithm has better local search ability, and its mathematical model is as follows:

Xt+1
i = Xt

i · |sin(R1)|+ R2 · sin(R1) ·
∣∣x1 · Pt

i − x2 · Xt
i
∣∣ (15)

where t denotes the current iteration number; R1 is a random value inside [0, 2π]; R2 is
a random value inside [0, π]; R1 and R2 indicate the direction and distance of the next
generation of movement, respectively; and x1 and x2 are the golden section coefficients,
which are used to narrow the search space and guide the individual to converge to the
optimal solution.

x1 = a · (1− τ) + b · τ (16)

x2 = a · τ + b · (1− τ) (17)

τ =
(√

5− 1
)

/2 (18)

where a and b are the initial values −π and π, and τ represents the golden number.
When the golden sine algorithm and the golden jackal algorithm are combined, the

position update rules of male and female jackals in the exploitation stage are as follows:

Y1(t) = prey(t) · |sin(R1)|+ R2 · sin(R1) · |x1 ·YM(t)− x2 · prey(t)| (19)

Y2(t) = prey(t) · |sin(R1)|+ R2 · sin(R1) · |x1 ·YFM(t)− x2 · prey(t)| (20)

The position updating rule adopts the dual golden spiral update rules, mimics the
golden jackal surrounding the prey in a curve way, consumes the prey’s physical strength,
gradually narrows the encircling circle of the prey, and then captures the prey. This position
updating rule is more in line with the natural golden jackal surrounding and capturing
prey state, and the principle of the dual golden spiral update rules is shown in Figure 2.

In a word, combining the lens-imaging strategy with a nonlinear dynamic decreasing
factor and the new update rules enables GJO to jump out of the local optimum, accelerate
the convergence, and improve the convergence accuracy. In the exploitation phase of
the golden jackal algorithm, adding a levy flight function can avoid falling into local
optimization to a certain extent. Since the levy flight function is characterized by short-
distance and occasional long-distance jumps, GJO still falls into local optima in some
numerical optimizations. Especially in the high-dimensional function, its effect will be
significantly reduced. In this regard, the dynamic lens-imaging learning strategy is used to
find the opposite of the current global optimal solution, increase the population’s diversity,
and retain a better one by comparing the fitness function values. In the exploitation
phase, the positions of male and female jackals are updated by the new update rules. The
pseudo-code of LSGJO is shown in Algorithm 2 and Figure 3.
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Algorithm 2: The pseudo-code of LSGJO

Inputs: The population size N and maximum number of iterations T
Outputs: The location of prey and its fitness value
Initialize the random prey population Yi (i = 1, 2, . . . , N)
While (t < T)
Calculate the fitness values of prey
Y1 = best prey individual (Male Jackal Position)
Y2 = second best prey individual (Female Jackal Position)

Obtain Y∗1 by Equation (14)
Calculate the fitness function values of Y1 and Y∗1 , set the better one as Y1

for (each prey individual)
Update the evading energy “E” using Equations (3) and (4)
Update “rl” using Equations (6) and (7)
If(|E| ≥ 1) (Exploration phase)
Update the prey position using Equations (8), (19), and (20)
If(|E| < 1) (Exploitation phase)
Update the prey position using Equations (8), (9), and (10)
end for
t = t + 1
end while
return Y1
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3.3. The Computational Complexity of LSGJO

The time complexity indirectly reflects the convergence rate of the algorithm. Suppose
the time required to initialize the parameters (population size N, dimension d, coefficient E,
rl, etc.) is γ1. According to Equation (7), the time needed for each dimension to update the
position of the prey and the position of the golden jackal is γ2, and the time for solving the
fitness value of the objective function is f (n); then, the time complexity of GJO is:

T1(n) = O(γ1 + N(d× γ2 + f (n))) = O(d + f (n)) (21)

In the LSGJO algorithm, it is assumed that the initialization parameters (population
size N, dimension d, τ, x1, x2 coefficient E, rl, etc.) are γ3, and the time required to perform
the lens-imaging learning strategy is γ4. The time required to execute the greedy mechanism
is γ5. According to Equation (7), the time needed for each dimension to update the position
of the prey and the position of the golden jackal is γ6; then, the time complexity of the
LSGJO is:

T2(n) = O(γ3 + γ5 + N(d× γ6 + γ4 + f (n))) = O(d + f (n)) (22)

The LSGJO proposed in this paper has the same time complexity as GJO:

T1(n) = T2(n) (23)

In summary, the LSGJO does not increase the time complexity.

4. Simulation and Result Analysis

To verify the performance of the LSGJO, this study uses 23 benchmark functions
commonly used in the literature [2,35], which are listed in Table 1. The functions F1~F7
are high-dimensional unimodal functions and have a single global optimal solution. These
functions are used to test the convergence rate of search algorithms, The functions F8~F13
are high-dimensional multimodal functions and have a single global optimum and multiple
locally optimal solutions; these functions are designed to test the search capacities of
optimization algorithms. The functions F14~F23 are low-dimensional multimodal functions
and have a small number of local minima. The range indicates the solution space, and Fmin
denotes the optimal value. In order to verify the robustness of LSGJO, the 13 functions
F1~F13 were tested with 100 and 500 dimensions.

Table 1. The benchmark functions.

Function Dim Range Fmin Type

f1(x) =
n
∑

i=1
x2

i
30, 100, 500 [−100, 100] 0 Unimodal

f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30, 100, 500 [−1.28, 1.28] 0 Unimodal

f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30, 100, 500 [−100, 100] 0 Unimodal

f4(x) = maxi{|xi |, 1 6 i 6 n} 30, 100, 500 [−100, 100] 0 Unimodal

f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30, 100, 500 [−30, 30] 0 Unimodal

f6(x) =
n
∑

i=1
[xi + 0.5]2 30, 100, 500 [−100, 100] 0 Unimodal

f7(x) =
n
∑

i=1
ix4

i + random[0, 1] 30, 100, 500 [−1.28, 1.28] 0 Unimodal

f8(x) =
n
∑

i=1
−xi sin(

√
|xi |) 30, 100, 500 [−500, 500] −418.9829 × n Multimodal

f 9 (x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30, 100, 500 [−5.12, 5.12] 0 Multimodal
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Table 1. Cont.

Function Dim Range Fmin Type

f10(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )−

exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

30, 100, 500 [−32, 32] 0 Multimodal

f11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30, 100, 500 [−600, 600] 0 Multimodal

f12(x) = π
n

 10 sin(πyi) +
n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+(yn − 1)2

+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k, m) =

 k(xi − a)m, xi > a
0,−a < xi < a
k(−xi − a)m, xi < −a



30, 100, 500 [−50, 50] 0 Multimodal

f13(x) = 0.1

 sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]
+

n
∑

i=1
u(xi , 5, 100, 4)

30, 100, 500 [−50, 50] 0 Multimodal

f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6


−1

2 [−65.536, 65.536] 1 Multimodal

f15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003 Multimodal

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316 Multimodal

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398 Multimodal

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3 Multimodal

f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(

xj − pij
)2

)
3 [0, 1] −3.86 Multimodal

f 20 (x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij
(

xj − pij
)2

)
6 [0, 1] −3.32 Multimodal

f 21 (x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532 Multimodal

f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4029 Multimodal

f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5364 Multimodal

All experiments were conducted on the same environment configuration, and all
algorithms were implemented in Matlab 2016 b installed on Windows 10 (64 bit), CPU
Intel(R) i5-9400 F at 2.9 GHz and 16 GB of RAM.

In this paper, some novel swarm intelligence algorithms, including grey wolf op-
timizer (GWO) [38], Harris’s hawk optimization (HHO), chimp optimization algorithm
(ChoA) [39], golden jackal optimization (GJO), equilibrium optimizer (EO), whale op-
timization algorithm (WOA), salp swarm algorithm (SSA), snake optimizer (SO) [40],
particle swarm optimization (PSO) [41], modified particle swarm optimization (MPSO),
and selective opposition-based grey wolf optimization (SOGWO), are compared with the
improved algorithms.

The parameters of all the comparison algorithms are shown in Table 2. In order to
ensure the fairness of the experimental results, the population size of each algorithm was set
to 30, and the maximum number of iterations was set to 500. Each algorithm ran 30 times
independently, and its average and standard deviation were recorded.
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Table 2. Parameter settings of various algorithms.

Algorithm Parameter Settings

GWO a = 2( linearly decreased over iterations)
HHO J = [0, 2]
ChoA a = 2 (linearly decreased over iterations), m = chaos (3, 1, 1)
GJO a = 1.5 (linearly decreased over iterations)
EO a1 = 2, a2 = 1, GP = 0.5, t = 1 (nonlinearly decreased over iterations)

WOA b = 1
SSA c1 = 2 (nonlinearly decreased over iterations)
SO a = 2 (linearly decreased over iterations)

PSO W = 0.9, c1 = 2, c2 = 2
MPSO Wmax = 0.9, Wmin = 0.4, c1 = 2, c2 = 2

SOGWO a = 2 (linearly decreased over iterations)
LSGJO A = 1.5 (linearly decreased over iterations)

4.1. Comparison and Analysis with Metaheuristic Algorithms

The experimental results of 11 algorithms on 23 benchmark functions are shown in
Table 3. As can be seen from the mean and standard deviation, LSGJO performs better than
GJO in almost every function. Compared with other algorithms, LSGJO is the first in all
the test functions except the average ranking of F6, F12, F14, and F20. In all benchmark
function tests, the average value and standard deviation of LSGJO test results are small,
indicating that the performance of the LSGJO is the best. From the convergence curve in
Figure 4, it can be seen that LSGJO converges to the optimal solution much faster than
other algorithms.
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Figure 4. The convergence curves of the LSGJO and other comparison algorithms with Dim = 30.

4.2. Experimental Analysis of the Algorithm in Different Dimensions of Function

As the dimension of the function increases, the computational cost of the function
increases exponentially. The other setting conditions are shown above when the dimensions
are set to 100 and 500. As can be seen from Tables 4 and 5, LSGJO can obtain the optimal
solutions in both 100 dimensions and 500 dimensions. To further observe the performance
of LSGJO, 100-dimensional convergence curves and the 500-dimensional convergence curve
are shown in Figures 5 and 6, respectively. The convergence speed of LSGJO in the image
of functions F1–F13 is faster than that of other algorithms, and the convergence accuracy is
higher in Figures 5 and 6. The results show that LSGJO has better robustness than other
comparison algorithms.

Multidimensional testing not only reflects the robustness of the algorithm but also
has a certain practical significance. The traveling salesman problem (TSP) is a typical NPC
problem that aims to minimize the path traversing all cities. When there are many cities,
the algorithm needs to have the ability to solve multidimensional problems. When swarm
intelligence algorithms are used to optimize the weights and thresholds of multilayer neural
networks and when the number of layers of the network is large, the number of variables
will exceed 500, and the algorithm needs to have the ability to solve 500-dimensional
problems. When solving large-scale job-shop scheduling problems, due to a large number
of jobs and machines, the algorithm will need to be able to solve multidimensional problems.
When a swarm intelligence algorithm is used for wireless sensor coverage optimization, if
the coverage area is large, the algorithm needs to have the ability to solve multidimensional
problems. In addition, swarm intelligence algorithms are also used in assembly sequence
and process planning, and under certain conditions, the ability of algorithms to deal with
multidimensional variables is also required.
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Table 3. Results and comparison of different algorithms on 23 benchmark functions with Dim = 30. The best results of the experiments are shown in bold.

F(x) Item GWO HHO ChoA GJO EO WOA SSA SO PSO MPSO SOGWO LSGJO

F1
Ave 1.34 × 10−27 3.65 × 10−94 2.98 × 10−7 2.66 × 10−54 3.13 × 10−41 7.02 × 10−73 1.93 × 10−7 4.32 × 10−94 2.96 × 102 1.00 3.87 × 10−27 0
Std 1.53 × 10−27 2.00 × 10−93 5.47 × 10−7 8.99 × 10−54 5.33 × 10−41 2.85 × 10−72 2.61 × 10−7 2.07 × 10−93 1.72 × 102 2.86 1.30 × 10−26 0

rank 7.0 2.0 10.0 5.0 6.0 4.0 9.0 3.0 12.0 11.0 8.0 1.0

F2
Ave 1.13 × 10−16 1.75 × 10−50 2.64 × 10−6 2.97 × 10−32 6.19 × 10−24 9.23 × 10−51 2.08 7.39 × 10−43 3.34 × 101 2.54 × 101 9.35 × 10−17 0
Std 1.02 × 10−16 4.21 × 10−50 2.65 × 10−6 6.64 × 10−32 6.39 × 10−24 2.67 × 10−50 1.57 1.61 × 10−42 1.43 × 101 1.65 × 101 6.13 × 10−17 0

rank 8.0 3.0 9.0 5.0 6.0 2.0 10.0 4.0 11.5 11.5 7.0 1.0

F3
Ave 6.17 × 10−5 8.14 × 10−77 2.24 × 101 3.81 × 10−17 2.96 × 10−9 4.43 × 104 1.66 × 103 1.41 × 10−57 1.12 × 104 1.49 × 104 1.10 × 10−4 0
Std 2.66 × 10−4 3.96 × 10−76 5.57 × 101 1.26 × 10−16 8.69 × 10−9 1.87 × 104 8.31 × 102 5.97 × 10−57 1.03 × 104 7.41 × 103 2.64 × 10−4 0

rank 6.5 2.0 8.0 4.0 5.0 12.0 3.0 4.0 10.5 10.5 6.5 1.0

F4
Ave 7.43 × 10−7 4.58 × 10−47 1.27 × 10−1 1.36 × 10−14 3.56 × 10−10 4.64 × 101 1.06 × 101 3.25 × 10−40 9.72 1.95 × 101 1.16 × 10−6 0
Std 6.07 × 10−7 2.50 ×10 −46 1.43 × 10−1 5.72 × 10−14 8.51 × 10−10 2.63 × 101 3.37 9.32 × 10−40 2.68 6.00 1.18 × 10−6 0

rank 6.0 2.0 8.0 4.0 5.0 12.0 10.0 3.0 9.0 11.0 7.0 1.0

F5
Ave 2.71 × 101 1.86 × 10−2 2.88 × 101 2.79 × 101 2.53 × 101 2.79 × 101 3.98 × 102 1.80 × 101 1.85 × 104 2.78 × 104 2.72 × 101 1.83 × 10−2

Std 8.68 × 10−1 2.26 × 10−2 1.98 × 10−1 7.20 × 10−1 1.64 × 10−1 5.37 × 10−1 1.27 × 103 1.24 × 101 1.43 × 104 4.15 × 104 7.65 × 10−1 3.27 × 10−2

rank 6.5 1.5 6.5 6.75 3.5 6.25 10.0 6.0 11.0 12.0 6.5 1.5

F6
Ave 7.79 × 10−1 1.16 × 10−4 3.90 2.77 8.70 × 10−6 3.97 × 10−1 2.77 × 10−7 7.37 × 10−1 3.54 × 102 1.21 7.77 × 10−1 5.84 × 10−4

Std 3.60 × 10−1 1.51 × 10−4 3.82 × 10−1 4.87 × 10−1 5.34 × 10−6 2.47 × 10−1 8.79 × 10−7 5.84 × 10−1 1.56 × 102 3.99 3.63 × 10−1 1.10 × 10−3

rank 7.0 3.0 9.5 9.5 2.0 5.0 1.0 8.0 12.0 10.0 7.0 4.0

F7
Ave 2.23 × 10−3 1.64 × 10−4 1.78 × 10−3 5.14 × 10−4 1.39 × 10−3 3.46 × 10−3 1.65 × 10−1 2.99 × 10−4 1.53 3.72 × 10−1 1.77 × 10−3 1.47 × 10−4

Std 1.05 × 10−3 2.09 × 10−4 2.04 × 10−3 4.42 × 10−4 6.33 × 10−4 6.16 × 10−3 6.79 × 10−2 2.89 × 10−4 3.90 1.07 9.29 × 10−4 1.45 × 10−4

rank 7.5 2.0 7.5 4.0 5.0 9.0 10.0 3.0 12.0 11.0 6.0 1.0

F8
Ave −5.83 × 103 −1.26 × 104 −5.73 × 103 −3.85 × 103 −9.23 × 103 −1.00 × 104 −7.43 × 103 1.25 × 104 −7.37 × 103 −8.82 × 103 −6.02 × 103 −1.26 × 104

Std 8.82 × 102 6.06 × 101 6.23 × 101 1.14 × 103 8.11 × 102 1.89 × 103 8.41 × 102 1.81 × 102 9.01 × 102 6.26 × 102 8.98 × 102 1.30 × 10−1

rank 8.5 1.75 6.5 11.0 5.0 7.0 6.5 8.0 8.5 5.0 8.0 1.25

F9
Ave 2.53 0 2.86 0 0 3.32 × 10−2 5.23 × 101 2.20 2.20 × 102 1.32 × 102 3.06 0
Std 4.66 0 2.68 0 0 1.82 × 10−1 1.64 × 101 6.11 3.06 × 101 3.16 × 101 4.72 0

rank 7.0 2.5 7.0 2.5 2.5 5.0 10.0 7.5 11.5 11.5 8.5 2.5

F10
Ave 1.03 × 10−13 8.88 × 10−16 2.00 × 101 7.40 × 10−15 8.70 × 10−15 4.09 × 10−15 2.78 2.83 × 10−1 6.05 3.52 1.03 × 10−13 8.88 × 10−16

Std 1.58 × 10−14 0 1.22 × 10−3 1.35 × 10−15 2.17 × 10−15 3.14 × 10−15 9.44 × 10−1 7.38 × 10−1 1.91 3.16 1.68 × 10−14 0
rank 6.25 1.5 10.0 3.5 4.5 4.0 9.5 8.5 11.0 11.0 7.0 1.5

F11
Ave 2.58 × 10−3 0 1.09 × 10−2 0 0 1.47 × 10−2 1.80 × 10−2 7.95 × 10−2 3.79 2.49 × 10−1 2.31 × 10−3 0
Std 5.54 × 10−3 0 2.44 × 10−2 0 0 4.66 × 10−2 1.13 × 10−2 2.05 × 10−1 1.44 2.31 × 10−1 5.37 × 10−3 0

rank 6.0 2.5 7.5 2.5 2.5 8.5 8.0 10.0 12.0. 11.0 5.0 2.5

F12
Ave 4.65 × 10−2 7.18 × 10−6 5.63 × 10−1 2.59 × 10−1 3.46 × 10−3 2.87 × 10−2 8.57 8.59 × 10−2 5.89 3.67 5.01 × 10−2 1.50 × 10−5

Std 2.74 × 10−2 1.06 × 10−5 2.40 × 10−1 1.48 × 10−1 1.89 × 10−2 2.59 × 10−2 4.28 1.33 × 10−1 2.80 1.86 2.90 × 10−2 2.13 × 10−5

rank 5.0 1.0 9.0 8.0 3.0 4.0 12.0 7.0 11.0 10.0 6.0 2.0

F13
Ave 6.08 × 10−1 1.14 × 10−4 2.78 1.64 1.64 × 10−2 5.03 × 10−1 1.79 × 101 2.66 × 10−1 2.33 × 101 9.20 6.34 × 10−1 8.71 × 10−5

Std 2.28 × 10−1 1.45 × 10−4 1.38 × 10−1 2.19 × 10−1 4.36 × 10−2 2.37 × 10−1 1.77 × 101 5.68 × 10−1 2.59 × 101 6.25 2.65 × 10−1 1.23 × 10−4

rank 6.0 2.0 6.5 6.5 3.0 6.0 11.0 6.5 12.0 10.0 7.5 1.0
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Table 3. Cont.

F(x) Item GWO HHO ChoA GJO EO WOA SSA SO PSO MPSO SOGWO LSGJO

F14
Ave 4.56 1.13 9.98 × 10−1 5.82 9.98 × 10−1 3.09 1.40 9.99 × 10−1 9.98 × 10−1 9.98 × 10−1 3.36 1.36
Std 4.20 3.44 × 10−1 3.20 × 10−4 4.45 1.75 × 10−16 3.28 7.64 × 10−1 4.13 × 10−3 2.88 × 10−10 9.22 × 10−17 3.31 1.02

rank 11.0 6.0 3.25 12.0 2.25 9.0 7.5 5.0 2.75 1.75 10.0 7.5

F15
Ave 7.76 × 10−3 4.23 × 10−4 1.32 × 10−3 2.46 × 10−3 6.36 × 10−3 7.07 × 10−4 1.54 × 10−3 6.18 × 10−4 1.23 × 10−2 4.07 × 10−3 7.06 × 10−3 3.86 × 10−4

Std 9.75 × 10−3 2.68 × 10−4 5.84 × 10−5 6.07 × 10−3 9.32 × 10−3 4.22 × 10−4 3.57 × 10−3 3.63 × 10−4 9.54 × 10−3 7.42 × 10−3 9.57 × 10−3 5.82 × 10−5

rank 11.5 2.5 3.5 7.0 9.0 4.5 6.0 3.5 11.0 8.0 10.5 1.0

F16
Ave −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
Std 2.01 × 10−8 1.13 × 10−9 2.23 × 10−5 1.86 × 10−7 6.32 × 10−16 6.08 × 10−10 4.34 × 10−14 5.45 × 10−16 8.05 × 10−5 5.98 × 10−16 1.81 × 10−8 1.82 × 10−4

rank 7.25 6.25 8.25 7.75 4.75 5.75 5.25 3.75 8.75 4.25 6.75 9.25

F17
Ave 3.98 × 10−1 3.99 × 10−1 3.99 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Std 8.74 × 10−7 7.79 × 10−4 7.19 × 10−4 7.26 × 10−6 0 5.08 × 10−6 1.90 × 10−14 0 3.62 × 10−5 0 3.09 × 10−6 3.31 × 10−4

rank 5.25 11.75 11.25 6.75 3.75 6.25 4.75 3.75 7.25 3.75 5.75 7.75

F18
Ave 5.70 3.00 3.00 3.00 3.00 3.00 3.00 5.70 3.00 3.00 3.00 3.00
Std 1.48 × 101 1.05 × 10−6 2.20 × 10−4 4.38 × 10−6 1.28 × 10−15 1.68 × 10−4 3.32 × 10−13 8.24 6.65 × 10−4 1.07 × 10−15 5.51 × 10−5 3.38 × 10−3

rank 11.75 4.75 6.75 5.25 3.75 6.25 4.25 11.25 7.25 3.25 5.75 7.75

F19
Ave −3.86 −3.86 −3.85 −3.86 −3.86 −3.85 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86
Std 1.99 × 10−3 5.27 × 10−3 1.84 × 10−3 3.86 × 10−3 2.58 × 10−15 2.46 × 10−2 7.77 × 10−12 2.43 × 10−15 3.72 × 10−3 2.68 × 10−15 2.74 × 10−3 3.60 × 10−3

rank 5.75 8.25 8.25 7.75 3.75 11.75 4.75 3.25 7.25 4.75 6.25 6.75

F20
Ave −3.26 −3.10 −2.66 −3.09 −3.27 −3.20 −3.22 −3.31 −2.96 −3.27 −3.23 −3.19
Std 9.27 × 10−2 9.27 × 10−2 4.55 × 10−1 2.06 × 10−1 5.92 × 10−2 2.25 × 10−1 5.83 × 10−2 3.63 × 10−2 5.18 × 10−1 6.03 × 10−2 7.96 × 10−2 7.58 × 10−2

rank 5.75 8.25 11.5 9.5 2.75 8.5 4.0 1.0 11.5 3.25 5.5 6.5

F21
Ave −9.64 −5.22 −3.18 −8.52 −8.29 −7.77 −8.48 −1.01 × 101 −9.74 −6.82 −9.81 −1.02 × 101

Std 1.55 9.18 × 10−1 2.05 2.85 2.74 2.81 2.90 3.07 × 10−1 1.77 3.49 1.28 3.30 × 10−3

rank 5.5 7.0 9.5 8.0 8.0 9.0 9.0 2.0 5.0 11.0 3.5 1.0

F22
Ave −9.87 −5.58 −4.05 −9.68 −8.77 −7.52 −9.29 −1.03 × 101 −9.72 −8.07 −9.87 −1.04 × 101

Std 1.62 1.51 1.78 1.83 2.79 3.20 2.59 3.07 × 10−1 2.12 3.20 1.62 2.36 × 10−3

rank 4.0 7.0 9.0 6.5 9.0 10.75 8.0 2.0 6.5 10.25 4.0 1.0

F23
Ave −1.03 × 101 −5.30 −4.46 −1.03 × 101 −9.43 −6.77 −8.42 −1.04 × 101 −1.05 × 101 −8.45 −1.01 × 101 −1.05 × 101

Std 1.48 9.40 × 10−1 1.40 9.79 × 10−1 2.57 3.03 3.36 3.09 × 10−1 2.22 × 10−5 3.30 1.75 3.99 × 10−3

rank 5.75 7.5 9.0 4.75 8.0 10.0 10.5 3.0 1.25 9.5 7.0 1.75

Total Rank 160.75 96.0 185.25 147.5 108 166.5 174.0 117.0 200.5 195.25 155.0 71.5
Final Rank 8 2 10 5 3 6 9 4 12 11 7 1
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Table 4. Results and comparison of different algorithms on 13 benchmark functions with Dim = 100. The best results of the experiments are shown in bold.

F(x) Item GWO HHO ChoA GJO EO WOA SSA SO PSO MPSO SOGWO LSGJO

F1
Ave 2.64 × 10−12 2.77 × 10−94 2.15 × 10−1 9.33 × 10−28 4.13 × 10−29 3.87 × 10−70 1.45 × 103 5.20 × 10−82 3.96 × 103 3.29 × 104 2.43 × 10−12 0
Std 2.73 × 10−12 1.45 × 10−93 2.12 × 10−1 1.85 × 10−27 5.48 × 10−29 1.85 × 10−69 4.54 × 102 1.09 × 10−81 1.37 × 103 1.11 × 104 1.78 × 10−12 0

rank 8.0 2.0 9.0 6.0 5.0 4.0 10.0 3.0 11.0 12.0 7.0 1.0

F2
Ave 4.25 × 10−8 2.34 × 10−49 3.34 × 10−2 1.06 × 10−17 2.14 × 10−17 6.02 × 10−51 4.81 × 101 1.32 × 10−35 1.33 × 102 2.86 × 102 4.12 × 10−8 0
Std 1.37 × 10−8 8.16 × 10−49 1.87 × 10−2 8.02 × 10−18 1.44 × 10−17 2.02 × 10−50 8.35 1.59 × 10−35 4.04 × 101 3.80 × 101 1.40 × 10−8 0

rank 7.5 3.0 9.0 5.0 6.0 2.0 10.0 4.0. 11.5 11.5. 7.5 1.0

F3
Ave 8.96 × 102 8.65 × 10−52 6.10 × 104 1.51 8.96 × 101 1.15 × 106 5.63 × 104 3.16 × 10−38 1.24 × 105 2.35 × 105 1.41 × 103 0
Std 1.45 × 103 4.74 × 10−51 2.56 × 104 5.10 4.05 × 102 3.22 × 105 2.59 × 104 1.70 × 10−37 6.73 × 104 3.96 × 104 1.20 × 103 0

rank 6.5 2.0 8.5 4.0 5.0 12.0 8.5 3.0 10.5 10.5 6.5 1.0

F4
Ave 1.09 5.52 × 10−49 7.56 × 101 6.67 6.75 × 10−2 7.91 × 101 2.69 × 101 1.04 × 10−36 2.33 × 101 6.70 × 101 8.12 × 10−1 0
Std 1.95 1.74 × 10−48 1.49 × 101 9.02 3.55 × 10−1 2.26 × 101 3.76 1.31 × 10−36 4.53 5.36 6.49 × 10−1 0

rank 6.0 2.0 11.0 8.5 4.0 12.0 8.0 3.0 8.0 9.5 5.0 1.0

F5
Ave 9.76 × 101 4.00 × 10−2 1.54 × 102 9.82 × 101 9.65 × 101 9.82 × 101 1.53 × 105 7.38 × 101 5.64 × 105 2.70 × 107 9.80 × 101 3.30 × 10−2

Std 7.59 × 10−1 8.62 × 10−2 1.25 × 102 5.60 × 10−1 9.08 × 10−1 2.20 × 10−1 6.64 × 104 4.05 × 101 4.88 × 105 3.12 × 107 6.15 × 10−1 4.06 × 10−2

rank 5.5 2.0 9.0 5.75 5.5 5.25 10.0 5.5 11.0 12.0 5.5 1.0

F6
Ave 9.77 4.26 × 10−4 2.22 × 101 1.62 × 101 4.03 4.34 1.52 × 103 1.32 × 101 4.75 × 103 2.79 × 104 1.07 × 101 2.83 × 10−3

Std 1.01 6.28 × 10−4 1.74 9.56 × 10−1 8.06 × 10−1 1.42 4.77 × 102 1.05 × 101 2.30 × 103 1.03 × 104 1.01 4.29 × 10−3

rank 5.25 1.0 8.5 6.0 3.0 5.5 10.0 8.0 11.0 12.0 5.75 2.0

F7
Ave 6.43 × 10−3 2.01 × 10−4 1.36 × 10−2 1.37 × 10−3 2.30 × 10−3 4.23 × 10−3 2.88 2.25 × 10−4 2.75 × 101 8.05 × 101 7.61 × 10−3 1.29 × 10−4

Std 2.31 × 10−3 3.48 × 10−4 9.10 × 10−3 1.18 × 10−3 8.01 × 10−4 5.41 × 10−3 5.82 × 10−1 1.42 × 10−4 4.66 × 101 4.50 × 101 2.68 × 10−3 1.27 × 10−4

rank 6.5 2.5 9.0 4.5 4.5 7.0 10.0 2.5 11.5 11.5 7.5 1.0

F8
Ave −1.61 × 104 −4.19 × 104 −1.81 × 104 −8.23 × 103 −2.59 × 104 −3.63 × 104 −2.16 × 104 −4.18 × 104 −1.53 × 104 −2.22 × 104 −1.70 × 104 −4.19 × 104

Std 2.37 × 103 3.94 × 101 1.34 × 102 3.31 × 103 1.29 × 103 5.42 × 103 1.86 × 103 1.51 × 102 2.27 × 103 1.53 × 103 1.49 × 103 3.66 × 10−1

rank 10.0 1.75 5.5 11.5 5.0 8.0 7.5 3.0 10.0 6.5 7.5 1.25

F9
Ave 9.74 0 1.16 × 101 0 0 7.58 × 10−15 2.41 × 102 8.79 9.60 × 102 7.60 × 102 1.04 × 101 0
Std 7.14 0 1.09 × 101 0 0 2.88 × 10−14 4.13 × 101 2.28 × 101 2.56 6.98 × 101 7.84 0

rank 7.0 2.5 9.0 2.5 2.5 5.0 10.5 8.0 9.0 11.5 8.0 2.5

F10
Ave 1.14 × 10−7 8.88 × 10−16 2.00 × 101 4.78 × 10−14 3.59 × 10−14 4.56 × 10−15 1.04 × 101 4.44 × 10−15 9.65 1.83 × 101 1.37 × 10−7 8.88 × 10−16

Std 4.83 × 10−8 0 1.16 × 10−2 7.66 × 10−15 4.82 × 10−15 2.55 × 10−15 1.03 0 2.56 1.08 5.72 × 10−8 0
rank 7.0 1.75 10.5 6.0 5.0 4.0 10.5 2.5 10.5 11 8.0 1.75

F11
Ave 2.96 × 10−3 0 1.98 × 10−1 0 2.55 × 10−4 0 1.54 × 101 0 3.66 × 101 2.75 × 102 4.52 × 10−3 0
Std 8.15 × 10−3 0 1.94 × 10−1 0 1.40 × 10−3 0 3.84 0 1.97 × 101 6.90 × 101 9.46 × 10−3 0

rank 7.0 3.0 9.0 3.0 6.0 3.0 10.0 3.0 11.0 12.0 8.0 3.0

F12
Ave 2.88 × 10−1 4.40 × 10−6 1.18 5.90 × 10−1 4.30 × 10−2 4.76 × 10−2 3.60 × 101 9.04 × 10−2 4.38 × 102 2.35 × 107 3.03 × 10−1 1.91 × 10−5

Std 5.93 × 10−2 3.93 × 10−6 2.75 × 10−1 8.80 × 10−2 1.18 × 10−2 1.95 × 10−2 1.08 × 101 2.62 × 10−1 2.15 × 103 6.40 × 107 6.40 × 10−2 3.53 × 10−5

rank 5.5 1.0 9.0 7.5 3.0 4.0 10.0 6.5 11.0 12.0 6.5 2.0

F13
Ave 6.75 1.77 × 10−4 9.77 8.31 6.08 3.02 5.49 × 103 1.04 6.72 × 104 7.71 × 107 6.77 1.49 × 10−4

Std 3.43 × 10−1 2.36 × 10−4 1.05 2.79 × 10−1 1.02 9.83 × 10−1 9.48 × 103 1.96 1.35 × 105 1.48 × 108 5.04 × 10−1 2.99 × 10−4

rank 5.0 1.5 8.5 5.5 6.0 5.0 10.0 6.0 11.0 12.0 6.0 1.5

Total Rank 86.75 26 115.5 75.75 60.5 76.5 125 54 137 132.5 88.75 20.0
Final Rank 7 2 9 5 4 6 10 3 12 11 8 1
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Table 5. Results and comparison of different algorithms on 13 benchmark functions with Dim = 500. The best results of the experiments are shown in bold.

F(x) Item GWO HHO ChoA GJO EO WOA SSA SO PSO MPSO SOGWO LSGJO

F1
Ave 1.66 × 10−3 3.29 × 10−94 5.42 × 102 6.77 × 10−13 2.24 × 10−22 1.59 × 10−65 9.59 × 104 2.66 × 10−71 3.87 × 104 7.59 × 105 2.33 × 10−3 0
Std 4.60 × 10−4 1.60 × 10−93 2.78 × 102 4.56 × 10−13 3.19 × 10−22 8.71 × 10−65 6.68 × 103 4.38 × 10−71 1.61 × 104 3.44 × 104 7.75 × 10−4 0

rank 7.0 2.0 9.0 6.0 5.0 4.0 10.5 3.0 10.5 12.0 8.0 1.0

F2
Ave 1.12 × 10−2 3.66 × 10−48 7.76 6.47 × 10−9 7.65 × 10−14 2.15 × 10−48 5.40 × 102 1.02 × 10−31 7.69 × 102 2.70 × 10126 1.14 × 10−2 0
Std 1.83 × 10−3 1.70 × 10−47 2.06 2.29 × 10−9 3.52 × 10−14 9.16 × 10−48 1.65 × 101 2.27 × 10−31 1.37 × 102 1.48 × 10127 1.54 × 10−3 0

rank 7.5 3.0 9.0 6.0 5.0 2.0 10.0 4.0 11.0 12.0 7.5 1.0

F3
Ave 3.21 × 105 2.56 × 10−36 4.18 × 106 3.27 × 104 3.94 × 104 2.75 × 107 1.43 × 106 1.84 × 10−15 2.78 × 106 4.54 × 106 3.32 × 105 0
Std 7.49 × 104 1.40 × 10−35 1.80 × 106 2.62 × 104 5.81 × 104 7.48 × 106 6.54 × 105 1.01 × 10−14 1.50 × 106 8.31 × 105 7.66 × 104 0

rank 6.0 2.0 10.5 4.0 5.0 12.0 8.0 3.0 9.5 10.0 7.0 1.0

F4
Ave 6.56 × 101 1.66 × 10−47 9.69 × 101 8.21 × 101 7.16 × 101 8.36 × 101 4.02 × 101 7.32 × 10−34 3.56 × 101 9.92 × 101 6.57 × 101 0
Std 7.16 8.38 × 10−47 1.65 3.99 1.61 × 101 1.77 × 101 2.65 1.04 × 10−33 4.80 2.26 × 10−1 5.17 0

rank 8.0 2.0 8.0 8.0 9.5 11.0 5.5 3.0 6.0 8.0 8.0 1.0

F5
Ave 4.98 × 102 2.82 × 10−1 2.47 × 105 4.98 × 102 4.98 × 102 4.96 × 102 3.77 × 107 4.08 × 102 4.07 × 107 2.53 × 109 4.98 × 102 1.81 × 10−1

Std 2.50 × 10−1 3.48 × 10−1 3.49 × 105 1.64 × 10−1 1.29 × 10−1 3.38 × 10−1 4.22 × 106 1.80 × 102 4.38 × 107 1.91 × 108 4.20 × 10−1 3.39 × 10−1

rank 4.75 4.0 9.0 4.25 3.75 4.0 10.0 5.5 11.0 12.0 6.75 3.0

F6
Ave 9.15 × 101 1.96 × 10−3 5.82 × 102 1.10 × 102 8.71 × 101 3.45 × 101 9.29 × 104 6.24 × 101 3.85 × 104 7.64 × 105 9.17 × 101 9.81 × 10−3

Std 2.13 3.46 × 10−3 1.62 × 102 1.22 1.73 6.35 5.96 × 103 5.35 × 101 1.52 × 104 3.00 × 104 2.28 1.30 × 10−2

rank 5.5 1.0 9.0 5.5 4.5 5.0 10.5 6.0 10.5 12.0 6.5 2.0

F7
Ave 4.73 × 10−2 2.10 × 10−4 2.42 6.23 × 10−3 3.97 × 10−3 5.48 × 10−3 2.69 × 102 1.69 × 10−4 2.80 × 103 1.86 × 104 4.51 × 10−2 1.59 × 10−4

Std 1.13 × 10−2 2.76 × 10−4 1.65 3.74 × 10−3 1.43 × 10−3 6.26 × 10−3 3.71 × 101 1.55 × 10−4 2.11 × 103 1.66 × 103 1.40 × 10−2 1.29 × 10−4

rank 7.5 3.0 9.0 5.5 4.0 5.5 10.0 2.0 11.5 11.5 7.5 1.5

F8
Ave −5.68 × 104 −2.09 × 105 −8.47 × 104 −2.35 × 104 −7.55 × 104 −1.81 × 105 −5.97 × 104 −2.08 × 105 −3.67 × 104 −6.06 × 104 −5.70 × 104 −2.09 × 105

Std 3.68 × 103 2.72 × 103 6.33 × 102 1.34 × 104 4.18 × 103 2.86 × 104 3.85 × 103 1.40 × 103 5.35 × 103 3.70 × 103 8.69 × 103 5.20
rank 7.5 2.75 3.5 11.5 7.0 8.0 7.5 3.0 10.0 6.5 9.5 1.25

F9
Ave 7.82 × 101 0 2.32 × 102 5.94 × 10−12 9.09 × 10−14 3.03 × 10−14 3.20 × 103 5.52 4.78 × 103 5.97 × 103 7.40 × 101 0
Std 2.23 × 101 0 5.80 × 101 1.49 × 10−11 2.78 × 10−13 1.66 × 10−13 9.92 × 101 1.95 × 101 5.25 × 102 1.69 × 102 1.88 × 101 0

rank 8.0 1.5 9.0 5.0 4.0 3.0 10.0 6.5 11.5 11.5 6.5 1.5

F10
Ave 1.88 × 10−3 8.88 × 10−16 2.01 × 101 3.31 × 10−8 5.85 × 10−13 4.20 × 10−15 1.42 × 101 4.68 × 10−15 1.36 × 101 2.02 × 101 2.14 × 10−3 8.88 × 10−16

Std 3.24 × 10−4 0 1.25 × 10−2 1.06 × 10−8 3.23 × 10−13 2.79 × 10−15 3.04 × 10−1 9.01 × 10−16 4.02 5.71 × 10−2 3.37 × 10−4 0
rank 7.0 1.5 10.0 6.0 5.0 3.5 10.5 3.5 10.5 11.0 8.0 1.5

F11
Ave 6.51 × 10−3 0 4.67 2.47 × 10−13 9.62 × 10−17 1.05 × 10−2 8.45 × 102 0 3.41 × 102 6.91 × 103 5.30 × 10−2 0
Std 2.42 × 10−2 0 1.56 4.74 × 10−13 3.84 × 10−17 5.73 × 10−2 6.80 × 101 0 1.27 × 102 3.02 × 102 6.58 × 10−2 0

rank 6.0 2.0 9.0. 5.0 4.0 7.0 10.5 2.0. 10.5 12.0 8.0 2.0

F12
Ave 7.52 × 10−1 2.00 × 10−6 6.84 × 104 9.32 × 10−1 5.84 × 10−1 1.05 × 10−1 1.41 × 106 1.47 × 10−1 2.42 × 105 4.98 × 109 7.60 × 10−1 2.02 × 10−5

Std 4.46 × 10−2 3.43 × 10−6 2.20 × 105 2.31 × 10−2 2.42 × 10−2 4.44 × 10−2 7.36 × 105 3.56 × 10−1 4.28 × 105 4.32 × 108 4.53 × 10−2 3.59 × 10−5

rank 6.0 1.0 9.0 5.5 4.5 4.0 11.0 6.0 10.0 12.0 7.0 2.0

F13
Ave 5.03 × 101 9.07 × 10−4 2.78 × 105 4.80 × 101 4.92 × 101 1.79 × 101 3.80 × 107 6.19 5.78 × 106 1.04 × 1010 5.10 × 101 4.19 × 10−4

Std 1.58 1.57 × 10−3 7.97 × 105 4.95 × 10−1 2.54 × 10−1 7.17 1.03 × 107 1.25 × 101 7.57 × 106 8.90 × 108 1.60 7.61 × 10−4

rank 6.0 2.0 9.0 4.5 4.5 5.5 11.0 5.5 10.0 12.0 7.0 1.0

Total Rank 86.75 27.75 104 76.75 65.75 74 125 51 132.5 142.5 97.25 19.75
Final Rank 6 2 8 9 4 5 10 3 12 11 7 1
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Figure 5. The convergence curves of the LSGJO and other comparison algorithms with Dim = 100.
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F2 
Ave 4.25 × 10−8 2.34 × 10−49 3.34 × 10−2 1.06 × 10−17 2.14 × 10−17 6.02 × 10−51 4.81 × 101 1.32 × 10−35 1.33 × 102 2.86 × 102 4.12 × 10−8 0 
Std 1.37 × 10−8 8.16 × 10−49 1.87 × 10−2 8.02 × 10−18 1.44 × 10−17 2.02 × 10−50 8.35 1.59 × 10−35 4.04 × 101 3.80 × 101 1.40 × 10−8 0 

rank 7.5 3.0 9.0 5.0 6.0 2.0 10.0 4.0. 11.5 11.5. 7.5 1.0 

F3 
Ave 8.96 × 102 8.65 × 10−52 6.10 × 104 1.51 8.96 × 101 1.15 × 106 5.63 × 104 3.16 × 10−38 1.24 × 105 2.35 × 105 1.41 × 103 0 
Std 1.45 × 103 4.74 × 10−51 2.56 × 104 5.10 4.05 × 102 3.22 × 105 2.59 × 104 1.70 × 10−37 6.73 × 104 3.96 × 104 1.20 × 103 0 

rank 6.5 2.0 8.5 4.0 5.0 12.0 8.5 3.0 10.5 10.5 6.5 1.0 

F4 
Ave 1.09 5.52 × 10−49 7.56 × 101 6.67 6.75 × 10−2 7.91 × 101 2.69 × 101 1.04 × 10−36 2.33 × 101 6.70 × 101 8.12 × 10−1 0 
Std 1.95 1.74 × 10−48 1.49 × 101 9.02 3.55 × 10−1 2.26 × 101 3.76 1.31 × 10−36 4.53 5.36 6.49 × 10−1 0 

rank 6.0 2.0 11.0 8.5 4.0 12.0 8.0 3.0 8.0 9.5 5.0 1.0 

F5 
Ave 9.76 × 101 4.00 × 10−2 1.54 × 102 9.82 × 101 9.65 × 101 9.82 × 101 1.53 × 105 7.38 × 101 5.64 × 105 2.70 × 107 9.80 × 101 3.30 × 10−2 
Std 7.59 × 10−1 8.62 × 10−2 1.25 × 102 5.60 × 10−1 9.08 × 10−1 2.20 × 10−1 6.64 × 104 4.05 × 101 4.88 × 105 3.12 × 107 6.15 × 10−1 4.06 × 10−2 

rank 5.5 2.0 9.0 5.75 5.5 5.25 10.0 5.5 11.0 12.0 5.5 1.0 

F6 
Ave 9.77 4.26 × 10−4 2.22 × 101 1.62 × 101 4.03 4.34 1.52 × 103 1.32 × 101 4.75 × 103 2.79 × 104 1.07 × 101 2.83 × 10−3 
Std 1.01 6.28 × 10−4 1.74 9.56 × 10−1 8.06 × 10−1 1.42 4.77 × 102 1.05 × 101 2.30 × 103 1.03 × 104 1.01 4.29 × 10−3 

rank 5.25 1.0 8.5 6.0 3.0 5.5 10.0 8.0 11.0 12.0 5.75 2.0 

F7 
Ave 6.43 × 10−3 2.01 × 10−4 1.36 × 10−2 1.37 × 10−3 2.30 × 10−3 4.23 × 10−3 2.88 2.25 × 10−4 2.75 × 101 8.05 × 101 7.61 × 10−3 1.29 × 10−4 
Std 2.31 × 10−3 3.48 × 10−4 9.10 × 10−3 1.18 × 10−3 8.01 × 10−4 5.41 × 10−3 5.82 × 10−1 1.42 × 10−4 4.66 × 101 4.50 × 101 2.68 × 10−3 1.27 × 10−4 

rank 6.5 2.5 9.0 4.5 4.5 7.0 10.0 2.5 11.5 11.5 7.5 1.0 

F8 
Ave −1.61 × 104 −4.19 × 104 −1.81 × 104 −8.23 × 103 −2.59 × 104 −3.63 × 104 −2.16 × 104 −4.18 × 104 −1.53 × 104 −2.22 × 104 −1.70 × 104 −4.19 × 104 
Std 2.37 × 103 3.94 × 101 1.34 × 102 3.31 × 103 1.29 × 103 5.42 × 103 1.86 × 103 1.51 × 102 2.27 × 103 1.53 × 103 1.49 × 103 3.66 × 10−1 

rank 10.0 1.75 5.5 11.5 5.0 8.0 7.5 3.0 10.0 6.5 7.5 1.25 

F9 
Ave 9.74 0 1.16 × 101 0 0 7.58 × 10−15 2.41 × 102 8.79 9.60 × 102 7.60 × 102 1.04 × 101 0 
Std 7.14 0 1.09 × 101 0 0 2.88 × 10−14 4.13 × 101 2.28 × 101 2.56 6.98 × 101 7.84 0 

rank 7.0 2.5 9.0 2.5 2.5 5.0 10.5 8.0 9.0 11.5 8.0 2.5 

F10 
Ave 1.14 × 10−7 8.88 × 10−16 2.00 × 101 4.78 × 10−14 3.59 × 10−14 4.56 × 10−15 1.04 × 101 4.44 × 10−15 9.65 1.83 × 101 1.37 × 10−7 8.88 × 10−16 
Std 4.83 × 10−8 0 1.16 × 10−2 7.66 × 10−15 4.82 × 10−15 2.55 × 10−15 1.03 0 2.56 1.08 5.72 × 10−8 0 

rank 7.0 1.75 10.5 6.0 5.0 4.0 10.5 2.5 10.5 11 8.0 1.75 

F11 
Ave 2.96 × 10−3 0 1.98 × 10−1 0 2.55 × 10−4 0 1.54 × 101 0 3.66 × 101 2.75 × 102 4.52 × 10−3 0 
Std 8.15 × 10−3 0 1.94 × 10−1 0 1.40 × 10−3 0 3.84 0 1.97 × 101 6.90 × 101 9.46 × 10−3 0 

rank 7.0 3.0 9.0 3.0 6.0 3.0 10.0 3.0 11.0 12.0 8.0 3.0 

F12 
Ave 2.88 × 10−1 4.40 × 10−6 1.18 5.90 × 10−1 4.30 × 10−2 4.76 × 10−2 3.60 × 101 9.04 × 10−2 4.38 × 102 2.35 × 107 3.03 × 10−1 1.91 × 10−5 
Std 5.93 × 10−2 3.93 × 10−6 2.75 × 10−1 8.80 × 10−2 1.18 × 10−2 1.95 × 10−2 1.08 × 101 2.62 × 10−1 2.15 × 103 6.40 × 107 6.40 × 10−2 3.53 × 10−5 

rank 5.5 1.0 9.0 7.5 3.0 4.0 10.0 6.5 11.0 12.0 6.5 2.0 

F13 
Ave 6.75 1.77 × 10−4 9.77 8.31 6.08 3.02 5.49 × 103 1.04 6.72 × 104 7.71 × 107 6.77 1.49 × 10−4 
Std 3.43 × 10−1 2.36 × 10−4 1.05 2.79 × 10−1 1.02 9.83 × 10−1 9.48 × 103 1.96 1.35 × 105 1.48 × 108 5.04 × 10−1 2.99 × 10−4 

rank 5.0 1.5 8.5 5.5 6.0 5.0 10.0 6.0 11.0 12.0 6.0 1.5 

Total Rank 86.75 26 115.5 75.75 60.5 76.5 125 54 137 132.5 88.75 20.0 
Final Rank 7 2 9 5 4 6 10 3 12 11 8 1 

Figure 6. The convergence curves of the LSGJO and other comparison algorithms with Dim = 500.

4.3. Convergence Behavior Analysis

This experiment is used to observe the convergence behavior of LSGJO with 30 di-
mensions and 500 iterations. The convergence process of the LSGJO is shown in Figure 7.
The diagram in the first column is a three-dimensional plot of the benchmark function.
The diagram in the second column is the convergence curve of the LSGJO, which is the
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optimal value of the current iteration. It can be seen that LSGJO converges quickly on
the unimodal function, and the ladder shape appears on the multimodal function, which
shows that the improved algorithm has better exploration ability and exploitation ability.
The diagram in the third column is the trajectory of the first golden jackal in the first
dimension. The significant fluctuation at the beginning is due to the global optimization
in the early iteration stage. The trajectory fluctuates significantly in the later stage of the
iteration because of the dynamic lens-imaging learning strategy added, which can avoid
falling into iterative stagnation. The fourth column diagram is the average fitness of the
overall solution, which is used to evaluate the overall performance of the population. The
curve will be relatively high in the initial iteration, and the average fitness will likely be
stable as the number of iterations increases. The fifth column diagram shows the historical
position of the search agent in the iterative process. In the search history of functions F1–F4
and functions F9–F11, the point positions are more clustered, indicating that the fitness of
the search agent is small, and the next iteration will be a local search in this area. In the
search history of functions F5, F6, and F16, many points are scattered, indicating that if
the optimal value is not found quickly, other search agents will continue to search for the
optimal solution.
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4.4. Statistical Analysis

In the statistical processing of experimental data, each experiment’s average value and
standard deviation have been calculated and can be used to judge the algorithms’ quality.
In order to further verify the significant differences between the proposed algorithm and
other algorithms, the Wilcoxon rank-sum test is performed at a significance level of 0.05 [42].
If the p-value is > 0.05, we should consider the performance of these two algorithms to be
similar, and the values are underlined. The performance of all the algorithms is ranked
by the Friedman rank test [43]. The results of the Wilcoxon rank sum test are shown
in Table 6. NaN indicates that significance cannot be determined. The total number of
significant differences is shown in the last column. In F9 and F11, some algorithms do
not have significant differences in 30 and 100 dimensions. However, they have significant
differences in 500 dimensions, indicating that other algorithms have poor performance in
high dimensions, while LSGJO has good performance. The sorting results by Friedman
show that LSGJO ranks first in both low-dimensional and high-dimensional functions.
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Table 6. Statistical analysis results.

F(x) Dim GWO HHO ChoA GJO EO WOA SSA SO PSO MPSO SOGWO Total

F1
30 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
100 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
500 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10

F2
30 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
100 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
500 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10

F3
30 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
100 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
500 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10

F4
30 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
100 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10
500 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 10

F5
30 3.02 × 10−11 3.78 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.15 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
100 3.02 × 10−11 7.84 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.69 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 9
500 3.02 × 10−11 1.33 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.69 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 9

F6
30 1.61 × 10−10 2.25 × 10−4 3.02 × 10−11 3.02 × 10−11 2.23 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.50 × 10−11 1.78 × 10−10 10
100 3.02 × 10−11 3.85 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.08 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
500 3.02 × 10−11 4.71 × 10−4 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.78 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10

F7
30 3.02 × 10−11 3.04 × 10−1 6.12 × 10−10 8.66 × 10−5 3.69 × 10−11 2.38 × 10−7 3.02 × 10−11 3.78 × 10−2 4.11 × 10−7 3.02 × 10−11 4.98 × 10−11 9
100 3.02 × 10−11 2.90 × 10−1 4.08 × 10−11 4.62 × 10−10 3.02 × 10−11 1.43 × 10−8 3.02 × 10−11 1.38 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 9
500 3.02 × 10−11 7.96 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.17 × 10−9 3.02 × 10−11 9.82 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8

F8
30 3.02 × 10−11 2.16 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.34 × 10−11 3.02 × 10−11 1.09 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
100 3.02 × 10−11 3.34 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
500 3.02 × 10−11 3.03 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.41 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10

F9
30 4.43 × 10−12 NaN 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 8.87 × 10−7 1.21 × 10−12 1.21 × 10−12 4.47 × 10−12 6
100 1.21 × 10−12 NaN 1.21 × 10−12 NaN NaN 1.61 × 10−1 1.21 × 10−12 3.45 × 10−7 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 6
500 1.21 × 10−12 NaN 1.21 × 10−12 9.51 × 10−13 8.14 × 10−2 3.34 × 10−1 1.21 × 10−12 2.16 × 10−2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 7

F10
30 1.13 × 10−12 NaN 1.21 × 10−12 2.43 × 10−13 4.16 × 10−14 1.16 × 10−8 1.21 × 10−12 1.20 × 10−13 1.21 × 10−12 1.21 × 10−12 1.10 × 10−12 9
100 1.21 × 10−12 NaN 1.19 × 10−12 9.98 × 10−13 5.94 × 10−13 3.86 × 10−9 1.21 × 10−12 1.69 × 10−14 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 9
500 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.05 × 10−7 1.21 × 10−12 4.16 × 10−14 1.18 × 10−12 1.21 × 10−12 1.21 × 10−12 9

F11
30 6.62 × 10−4 NaN 1.21 × 10−12 NaN NaN 3.34 × 10−1 1.21 × 10−12 1.10 × 10−2 1.21 × 10−12 1.21 × 10−12 2.16 × 10−2 6
100 1.21 × 10−12 NaN 1.21 × 10−12 NaN 3.34 × 10−1 NaN 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 5
500 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 1.97 × 10−11 3.34 × 10−1 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 8
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Table 6. Cont.

F(x) Dim GWO HHO ChoA GJO EO WOA SSA SO PSO MPSO SOGWO Total

F12
30 3.02 × 10−11 3.50 × 10−3 3.02 × 10−11 3.02 × 10−11 8.35 × 10−8 3.02 × 10−11 3.02 × 10−11 3.34 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
100 3.02 × 10−11 5.01 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.34 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 9
500 3.02 × 10−11 1.34 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 5.57 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10

F13
30 3.02 × 10−11 7.51 × 10−1 3.02 × 10−11 3.02 × 10−11 1.76 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
100 3.02 × 10−11 1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10
500 3.02 × 10−11 4.21 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 10

F14 2 6.20 × 10−1 2.38 × 10−3 1.84 × 10−2 4.84 × 10−2 1.52 × 10−11 5.11 × 10−1 4.65 × 10−5 2.53 × 10−7 4.42 × 10−6 5.14 × 10−12 1.49 × 10−1 8
F15 4 9.93 × 10−2 1.70 × 10−2 3.02 × 10−11 3.56 × 10−4 1.68 × 10−4 2.75 × 10−3 2.87 × 10−10 1.37 × 10−1 6.70 × 10−11 1.38 × 10−6 1.22 × 10−1 7
F16 2 3.02 × 10−11 3.02 × 10−11 8.35 × 10−8 3.02 × 10−11 1.25 × 10−11 3.02 × 10−11 3.01 × 10−11 1.25 × 10−11 4.03 × 10−3 1.34 × 10−11 3.02 × 10−11 10
F17 2 3.02 × 10−11 8.15 × 10−11 9.52 × 10−4 1.56 × 10−8 1.21 × 10−12 3.08 × 10−8 2.75 × 10−11 1.21 × 10−12 1.69 × 10−9 1.21 × 10−12 2.15 × 10−10 10
F18 2 7.77 × 10−9 3.02 × 10−11 1.11 × 10−6 3.34 × 10−11 2.49 × 10−11 3.82 × 10−9 3.02 × 10−11 1.04 × 10−7 3.83 × 10−6 1.77 × 10−11 1.20 × 10−8 10
F19 3 2.60 × 10−5 1.27 × 10−2 6.36 × 10−5 1.58 × 10−1 1.34 × 10−11 4.64 × 10−1 3.02 × 10−11 1.25 × 10−11 9.03 × 10−4 2.36 × 10−12 5.86 × 10−6 9
F20 6 3.99 × 10−4 1.43 × 10−5 3.82 × 10−10 3.03 × 10−2 4.51 × 10−6 5.08 × 10−3 1.33 × 10−2 6.86 × 10−10 3.87 × 10−1 4.78 × 10−6 6.67 × 10−3 9
F21 4 2.84 × 10−1 3.02 × 10−11 3.02 × 10−11 1.55 × 10−9 5.64 × 10−4 5.19 × 10−7 6.63 × 10−1 8.74 × 10−2 4.86 × 10−9 2.68 × 10−2 5.75 × 10−2 7
F22 4 2.84 × 10−1 3.02 × 10−11 3.02 × 10−11 4.44 × 10−7 1.83 × 10−3 5.97 × 10−9 1.95 × 10−3 4.13 × 10−3 6.23 × 10−5 6.60 × 10−1 4.29 × 10−1 7
F23 4 8.88 × 10−1 3.02 × 10−11 3.02 × 10−11 1.25 × 10−7 8.14 × 10−6 5.97 × 10−9 9.51 × 10−6 7.61 × 10−3 2.00 × 10−9 1.99 × 10−2 1.33 × 10−1 8
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5. Real-World Engineering Design Problems

In order to verify the optimization performance of LSGJO in real-world engineering
design problems, this paper introduces three constraint problems, namely the speed reducer
design problem [44], the gear train design problem [45], and the multiple-disk clutch design
problem [46]. The number of iterations for all algorithms is set to 500, and the population
size is set to 30.

5.1. Speed Reducer Design Problem

The speed reducer is widely used in mechanical products. According to its use
occasion, its specific functions are mainly manifested as reducing the speed, increasing the
torque, reducing the inertia of the movement mechanism, and so on. The main goal of this
design problem is to minimize the weight of the speed reducer. The variables include face
width y1, the module of teeth y2, the number of teeth in the pinion y2, the length of the
first shaft y3, the length of the second shaft y4, the diameter of the first shaft y5, and the
diameter of the second shaft y6. The speed reducer is shown in Figure 8. The mathematical
model of the speed reducer design is stated in Appendix A, Equation (A1).
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Table 7 shows the optimal solution to the speed reducer design problem obtained
by 10 popular intelligent algorithms, namely the proposed algorithm in this paper, GWO,
HHO, ChoA, GJO, EO, WOA, SO, MPSO, and SOGWO. The experimental results show
that LSGJO is better than other algorithms. The minimum weight of the speed reducer is
Minimize f

(→
y
)

= 2994.4711, with the optimal solution
→
y = {3.5000, 0.7000, 17.0000, 7.3000,

7.7153, 3.3502, 5.2867}.

Table 7. Comparison results of speed reducer design problem. The best results of the experiments
are shown in bold.

Algorithm y1 y2 y3 y4 y5 y6 y7 Optimum Value

GWO 3.5023 0.7000 17.0000 7.4808 7.7251 3.3631 5.2872 3000.8341
HHO 3.5026 0.7000 17.0000 8.0413 8.0301 3.4989 5.2868 3049.1657
ChoA 3.6000 0.7000 17.0000 7.3000 8.3000 3.4427 5.3656 3121.8909
GJO 3.5584 0.7002 17.0000 7.4252 8.0148 3.3849 5.2873 3035.4171
EO 3.5000 0.7000 17.0000 7.3000 8.3000 3.3502 5.2869 3007.4366
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Table 7. Cont.

Algorithm y1 y2 y3 y4 y5 y6 y7 Optimum Value

WOA 3.5000 0.7000 17.0000 7.9128 7.9308 3.5822 5.3606 3116.4355
SO 3.5000 0.7000 17.0000 7.8849 7.7153 3.3519 5.2867 3000.2703

MPSO 3.5000 0.7000 17.0000 7.3000 8.3000 3.3502 5.2869 3046.7137
SOGWO 3.5067 0.7000 17.0000 7.3000 7.9316 3.3534 5.2930 3006.7350
LSGJO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4711

5.2. Gear Train Design Problem

The gear train plays an essential role in watches, clutches, differentials, machine tools,
fans, mixers, and many other products. It is one of the most common mechanisms in the
mechanical field. The main objective of the gear train design problem is to minimize the
gear ratio. The variable is the number of teeth of four gears. The gear train is shown
in Figure 9. The mathematical model of the gear train design is stated in Appendix A,
Equation (A2).
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Table 8 shows the optimal solution to the gear train design problem by 14 popular
intelligent algorithms, namely LSGJO, GWO, GJO, PSO, bat algorithm (BA) [47], ant colony
optimization (ACO) [48], simulated annealing (SA) [49], flower pollination algorithm
(FPA) [50], dragonfly algorithm (DA) [51], moth–flame optimization algorithm (MFO) [52],
polar bear optimization algorithm (PBO) [53], firefly algorithm (FA) [54], SOGWO, and EO.
Experimental results show that LSGJO is significantly superior to other algorithms. The
minimum transmission ratio of the gear train is Minimize f

(→
y
)

= 2.63 × 10−19, and the

optimal solution
→
y = {3.17 × 101, 1.20 × 101,1.20 × 101, 3.15 × 101}.

Table 8. Comparison results of gear train design problem. The best results of the experiments are
shown in bold.

Algorithm y1 y2 y3 y4 Optimum Value

GWO 4.03 × 101 2.46 × 101 1.20 × 101 5.08 × 101 1.18 × 1013

GJO 5.00 × 101 1.71 × 101 1.26 × 101 2.98 × 101 1.52 × 1013

PSO 5.13 × 101 2.10 × 101 1.48 × 101 4.78 × 101 3.08 × 10−4

BA 5.75 × 101 1.95 × 101 1.86 × 101 4.37 × 101 1.53 × 10−11

ACO 5.15 × 101 2.14 × 101 1.58 × 101 4.73 × 101 2.87 × 10−5

SA 5.13 × 101 2.13 × 101 1.50 × 101 4.74 × 101 1.71 × 10−4

FPA 5.12 × 101 2.25 × 101 1.80 × 101 5.59 × 101 4.83 × 10−11

DA 5.24 × 101 1.70 × 101 2.30 × 101 5.17 × 101 3.02 × 10−11

MFO 4.42 × 101 1.88 × 101 2.11 × 101 5.70 × 101 1.44 × 10−14
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Table 8. Cont.

Algorithm y1 y2 y3 y4 Optimum Value

PBO 5.01 × 101 2.33 × 101 1.48 × 101 4.79 × 101 1.37 × 10−15

FA 5.01 × 101 2.44 × 101 1.40 × 101 4.64 × 101 6.52 × 10−13

SOGWO 4.81 × 101 2.99 × 101 1.38 × 101 5.94 × 101 2.35 × 10−11

EO 4.49 × 101 1.28 × 101 2.93 × 101 5.79 × 101 5.76 × 10−14

LSGJO 3.17 × 101 1.20 × 101 1.20 × 101 3.15 × 101 2.63 × 10−19

5.3. Multiple-Disk Clutch Design Problem

The multiple-disk clutch is widely used in mechanical transmission systems in machine
tools, steel rolling, metallurgical mining, handling, ship fishery equipment, etc. The main
objective of the multiple-disk clutch design problem is to minimize the weight of the clutch.
The variables include the internal surface area radius y1, the external surface radius y2,
the disc thickness y3, the driving force y4, and the number of friction surfaces y5. The
multiple-disk clutch is shown in Figure 10. The mathematical model of multiple-disk clutch
design is stated in Appendix A, Equation (A3).
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Table 9 is the optimal solution for multiple-disk clutch design obtained by 11 ad-
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Figure 10. Multiple-disk clutch design problem.

Table 9 is the optimal solution for multiple-disk clutch design obtained by 11 ad-
vanced intelligent algorithms. These intelligent algorithms are LSGJO, GWO, GJO, ChoA,
ant lion optimizer (ALO) [55], multi-verse optimizer (MVO) [56], ACO, sine cosine algo-
rithm (SCA) [57], EO, SOGWO, and MPSO. The experimental results show that LSGJO
is better than the other 10 algorithms; the minimum weight of the multiple-disk clutch
is Minimize f

(→
y
)

= 0.2352425, and the optimal solution
→
y = {69.9999928, 90.0000000,

1.0000000, 945.1761801, 2.0000000}.

Table 9. Comparison results of multiple-disk clutch design problem. The best results of the experi-
ments are shown in bold.

Algorithm y1 y2 y3 y4 y5 Optimum Value

GWO 69.9898148 90.0000000 1.0000000 565.6572929 2.0000000 0.2353473
GJO 69.9906674 90.0000000 1.0000000 524.8143417 2.0000000 0.2353385

ChoA 69.9657899 90.0000000 1.0000000 61.9191980 2.0000000 0.2355945
ALO 69.9999996 90.0000000 1.0000000 246.9492771 2.0000000 0.2352425
MVO 69.9880862 21.4000000 15.8000000 912.4722915 2.0000000 0.2353651
SCA 69.2616541 90.0000000 1.0000000 57.9068873 2.0000000 0.2428013
EO 70.0000000 90.0000000 1.0000000 45.1874349 2.0000000 0.2352425

SOGWO 69.9989554 90.0000000 1.0000000 525.2165780 2.0000000 0.2352532
MPSO 70.0000000 90.0000000 1.0000000 996.1753765 2.0000000 0.2352425
LSGJO 69.9999928 90.0000000 1.0000000 945.1761801 2.0000000 0.2352425
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6. Discussion

Every metaheuristic should be critically evaluated [58]. Metaheuristic algorithms are
created to solve practical problems. The algorithm proposed in this paper only proves the
effectiveness of numerical optimization problems and can not prove that the algorithm
is universal in other problems. The algorithm proposed in this paper only obtains the
approximate solution to the optimization problem, but not the exact solution, which is
worthy of further improvement and also our future work. The improved algorithm in this
paper is closer to the hunting state of the real golden jackal than the original algorithm,
but there is still a gap between it and the real hunting state. It is worth studying how
to establish a mathematical model consistent with the actual hunting state. Determining
which components of the algorithm have an impact on the optimization problem is also an
important issue that will help us further improve the algorithm.

7. Conclusions

In order to improve the efficiency of GJO in global numerical optimization and practical
design problems, a hybrid GJO and golden sine algorithm with dynamic lens-imaging
learning is proposed in this paper. LSGJO makes two effective improvements over the
GJO. Firstly, the candidate solution of the optimal solution is generated by the dynamic
lens-imaging learning strategy, which increases the possibility of finding the optimal value
quickly. Secondly, novel dual golden spiral update rules are introduced in the exploitation
stage to accelerate convergence and avoid falling into local optima. The algorithm’s global
search ability and local search ability are enhanced and achieve balance with each other
by combining the two proposed improvements. Twenty-three benchmark functions were
tested to evaluate the performance of the LSGJO, including three dimensions (30, 100,
500). Experimental results and statistical data show that the algorithm proposed in this
paper has a fast convergence speed, high convergence precision, strong robustness, and
stable searching performance. Compared to 11 state-of-the-art optimization algorithms,
LSGJO has excellent competitiveness. In addition, LSGJO was successfully applied to three
real-world engineering problems in the mechanical field (speed reducer design, gear train
design, and multiple-disk clutch design), and its optimization effect was better than that of
other algorithms.

In the future, the potential of LSGJO will be explored and focused on applications,
and research in other directions, such as (1) path planning for unmanned aerial vehicles
(UAVs), (2) the use of the oppositional learning method in the initialization stage, and (3) a
multiobjective optimization algorithm based on LSGJO, will be studied and applied to
feature selection and process parameter optimization.
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Appendix A

See Equations (A1)–(A3)

⇀
y =

{
y1, y2, y3, y4, y5, y6, y7

}
Minimize :

f
(→

y
)

= 0.7854y1y2
2
(
3.3333y2

3 + 14.9334y3 − 43.0934
)
− 1.508y1

(
y2

6 + y2
7
)

+7.4777
(
y3

6 + y3
7
)
+ 0.7854

(
y4y2

6 + y5y2
7
)

Subject to :

h1

(→
y
)
=

27
y1y2

2y3
− 1 ≤ 0

h2

(→
y
)
=

397.5
y1y2

2y2
3
− 1 ≤ 0

h3

(→
y
)
=

1.93y3
4

y2y4
6y3
− 1 ≤ 0

h4

(→
y
)
=

1.93y3
5

y2y4
7y3
− 1 ≤ 0

h5

(→
y
)
=

[
(745(y4/y2y3))

2 + 16.9 ∗ 106
]1/2

110y3
6

− 1 ≤ 0

h6

(→
y
)
=

[
(745(y5/y2y3))

2 + 157.5 ∗ 106
]1/2

85y3
7

− 1 ≤ 0

h7

(→
y
)
=

y2y3

40
− 1 ≤ 0

h8

(→
y
)
=

5y2

y1
− 1 ≤ 0

h9

(→
y
)
=

y1

12y2
− 1 ≤ 0

h10

(→
y
)
=

1.5y6 + 1.9
y4

− 1 ≤ 0

h11

(→
y
)
=

1.1y7 + 1.9
y5

− 1 ≤ 0

Variable range :
2.6 ≤ y1 ≤ 3.6, 0.7 ≤ y2 ≤ 0.8, 17 ≤ y3 ≤ 28,
7.3 ≤ y4 ≤ 8.3, 7.3 ≤ y5 ≤ 8.3, 2.9 ≤ y6 ≤ 3.9, 5.0 ≤ y7 ≤ 5.5

(A1)

⇀
y = {y1, y2, y3, y4}
Minimize :

f
(→

y
)
=

(
1

6.931
− y3y2

y1y4

)2

Variable range :
12 ≤ y1 ≤ 60, 12 ≤ y2 ≤ 60, 12 ≤ y3 ≤ 60, 12 ≤ y4 ≤ 60

(A2)
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⇀
y = {y1, y2, y3, y4, y5}
Minimze :
f (
→
x ) = π

(
y2

2 − y2
1
)
y3(y5 + 1)ρ

Subject to :
g1(
→
x ) = −pmax + prz ≤ 0

g2(
→
x ) = przVsr −Vsr,max pmax ≤ 0

g3(
→
x ) = ∆R + y1 − y2 ≤ 0

g4(
→
x ) = −Lmax + (y5 + 1)(y3 + δ) ≤ 0

g5(
→
x ) = sMs −Mh ≤ 0

g6(
→
x ) = T ≥ 0

g7(
→
x ) = −Vsr,max + Vsr ≤ 0

g7(
→
x ) = T − Tmax ≤ 0

where :
60 ≤ y1 ≤ 80
90 ≤ y2 ≤ 110
1 ≤ y3 ≤ 3
0 ≤ y4 ≤ 1000
2 ≤ y5 ≤ 9

Mh =
2
3

µy4y5
y3

2 − y3
1

y2
2 − y2

1
N.mm

ω =
πn
30

rad/s

A = π
(
y2

2 − y2
1
)
mm2

prz =
y4

A
N/mm2

Vsr =
πRsrn

30
mm/s

Rsr =
2
3

y3
2 − y3

1
y2

2y2
1

mm

T =
Izω

Mh + M f
∆R = 20mm, Lmax = 30mm, µ = 0.6
Vsr,max = 10m/s, δ = 0.5mm, s = 1.5
Tmax = 15s, n = 250rpm, Iz = 55Kg ·m2

Ms = 40Nm, M f = 3Nm, ρ= 0.0000078, pmax = 1

(A3)
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