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Abstract: The formation control technology of the unmanned aerial vehicle (UAV) swarm is a current
research hotspot, and formation switching and formation obstacle avoidance are vital technologies.
Aiming at the problem of formation control of fixed-wing UAVs in distributed ad hoc networks,
this paper proposed a route-based formation switching and obstacle avoidance method. First, the
consistency theory was used to design the UAV swarm formation control protocol. According to
the agreement, the self-organized UAV swarm could obtain the formation waypoint according to
the current position information, and then follow the corresponding rules to design the waypoint to
fly around and arrive at the formation waypoint at the same time to achieve formation switching.
Secondly, the formation of the obstacle avoidance channel was obtained by combining the geometric
method and an intelligent path search algorithm. Then, the UAV swarm was divided into multiple
smaller formations to achieve the formation obstacle avoidance. Finally, the abnormal conditions
during the flight were handled. The simulation results showed that the formation control technology
based on distributed ad hoc network was reliable and straightforward, easy to implement, robust
in versatility, and helpful to deal with the communication anomalies and flight anomalies with
variable topology.

Keywords: fixed-wing UAV; UAV swarm formation; distributed ad hoc network; consistency theory;
formation obstacle avoidance

1. Introduction

The fixed-wing UAV swarm has essential application prospects and has become a
current research hotspot. Completing combat missions such as coordinated reconnaissance,
early warning, strike, and evaluation in the military field; and realizing disaster emergency,
geological survey, and pesticide-spraying tasks in the civilian field [1–4]. Formation control
is one of the key issues to achieve UAV swarm flight [5,6]. Its primary con-tents include
formation maintenance, formation switching, formation obstacle avoidance, and exception
handling. The distributed wireless ad hoc network [7] is the core of realizing the cluster
unmanned system [8]. The formation control based on the distributed ad hoc network can
better reflect the distributed, networked, and centerless characteristics of the cluster system,
which is the future development trend of cluster control.

The formation control technology for UAV swarm behavior has been extensively
studied. Wang [9] proposed the leader–follower method. Its basic idea is that other UAVs
follow a leader UAV as followers. Luo et al. [10] and Gu et al. [11] also adopted the leader–
follower method to design a control method for the leader and followers in the formation.
CamPa et al. [12], based on the leader–follower method, proposed a virtual leader method.
Its main idea was to treat the formation of a multi-UAV formation as a rigid virtual structure.
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When the formation moved as a whole, the UAV only needed to track the movement of
the fixed point corresponding to the rigid body. Li and Liu [13] designed a synchronized
position tracking controller to improve the effectiveness of using a virtual structure method
to maintain formation geometry. Yun and Albayrak [14] applied behavior-control methods
to study the formation of multiplatform formations, such as linear formation and circular
formation. Chen and Luh [15] applied behavior-control methods to achieve the purpose of
object transportation. Ginlietti et al. [16] used behavior methods to define the concept of
the formation geometric center. When flying in formation, each aircraft needs to maintain a
prescribed distance from the geometric center, and be able to perceive the movements of
other aircraft and reconstruct the formation, similar to the behavior of migratory birds in
nature. Joongbo et al. [17] proposed a feedback linearization method based on consistency
for multi-UAV systems to maintain a specific time-varying formation flight geometry.
Glavas et al. [18] applied the consistency research strategy to study the situation when there
were random communication noise and information packet loss constraints in the network,
and used the polygon method based on information exchange to achieve formation control.
Yasuhiro and Toru [19] studied the cooperative control problem of multi-UAV systems, and
proposed a cooperative formation control strategy with collision-avoidance capability using
decentralized model predictive control (MPC) and consensus-based control. Zhao et al. [20]
studied the problem of formation control of multiaircraft formation with time-varying
formation characteristics when there was a spanning tree in the network topology based on
the consistency theory, and obtained the stability conditions of the system. Dong et al. [21]
designed a distributed formation controller based on the consistency theory, proving that
as long as the network topology was guaranteed to have directional strong connectivity,
even if the aircraft was lost during the formation flight, the multiaircraft system could still
achieve stable formation control. Seo et al. [22] designed a consistent control protocol for the
situation in which the network topology had fixed connectivity, and studied the problem of
cooperative formation control of multiaircraft systems forming geometric formations. Tang
et al. [23] used evolutionary control theory to complete distributed collaborative control of
UAV formations. He and Lu [24] proposed a decentralized design method based on a UAV
distributed-formation maintenance controller, decomposing the UAV formation model into
decoupled parts and associated parts using robust control methods, and improved the
distributed control method of the associated system designs of the controller to control the
UAV formation flying. However, most of the research content was based on the formation
controller design coupled with the UAV’s underlying control system. It was assumed that
the UAV had a three-channel autopilot and had the ability of instantaneous response [25].
These assumptions made it difficult to apply the formation algorithm to an actual UAV
swarm control. Furthermore, the research content was insufficient in the control algorithm
of real flight environments such as network topology jump, communication delay, and
even weak communication.

Based on the consistency theory, this paper proposes a method for formation switching
and obstacle avoidance based on waypoint planning for the problem of formation control
of a fixed-wing UAV swarm in a distributed ad hoc networks. The organizational structure
of the paper is as follows. The first part gives a general description of the problem of
a fixed-wing UAV swarm formation in a distributed ad hoc network; the second part
proposes a method for switching the formation of the UAV swarm based on the consistency
theory; the third part designs a UAV swarm formation obstacle avoidance algorithm; the
fourth part deals with the problems of flight abnormality and communication abnormality
of the UAV swarm during the flight; the fifth part simulates and verifies the formation
switching of the UAV swarm, the formation obstacle avoidance, and handling of anomalies
during the flight; the sixth part analyzes and discusses the results; and finally, the seventh
part summarizes the article.
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2. Problem Formulation

This paper focuses on two critical problems of formation switching and formation
obstacle avoidance in a distributed ad hoc network for UAV swarm formation control.

Definition 1. Formation switch in distributed ad hoc network.

For n UAV, given an initial position Xi(0) of UAVi, a UAV swarm forms a com-
munication topology in the ad hoc network (as shown in Figure 1). Plan the waypoint
Pi = {Pi1, · · · , Pik, · · · } of the UAVi under the dynamic constraints of the maximum turning
angle constraint βmax and minimum route length constraint ds, so that the distance between
UAVi and other UAVs reaches the expected value ∆Xjire f within the time T:∣∣∣Xj(t)− Xi(t)− ∆Xjire f

∣∣∣→ 0 i = 1, 2, · · · , n (1)
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Figure 1. UAV swarm formation problem.

Definition 2. Formation obstacle avoidance in distributed ad hoc network.

For n UAV, given an initial position X of UAVi, intelligently split the UAV swarm
into Nc formation; the number of UAVs in the pth subformation is Np. Plan the waypoint
Pi = {Pi1, · · · , Pik, · · · } of the UAVi under the dynamic constraints of the maximum turning
angle βmax and the minimum direct flying distance ds, so that the UAVs will not collide
through the rectangular obstacle avoidance area S containing the circular obstacle O, and
the distance between UAVi the and other UAVs will eventually reach the expected value
∆Xjiref ; namely, reconstructed into the required formation.

Where n =
Nc
∑

p=1
Np, O is a collection of obstacles, and O = {o1, o2, · · · , ooN}, oN is the

number of obstacles, each obstacle om can be described as a dyadic array < Rom, Rm >; Rom
is the center point of the mth circle; Rm is the radius of the mth circle; S is the rectangular
obstacle avoidance area described as a ternary array < So, L, W >, where So is the center
point of the rectangular obstacle avoidance area; L is the length of the rectangle; and W is
the width of the rectangle.

A reasonable formation-switching control method requires that the UAV can perform
online formation switching based on the neighboring UAV information, and can meet the
UAV dynamic constraints and can handle communication delays and flight anomalies,
eliminating track deviation. Formation obstacle avoidance requires that a UAV swarm
can effectively avoid obstacles, and can form a desired formation after the avoidance is
completed. The UAV studied in this paper was a highly dynamic fixed-wing UAV with a
uniform speed. The dynamic constraints were required to satisfy the minimum turning
radius constraints and minimum track length constraints. The research space of this paper
was the two-dimensional Euclidean horizontal plane.
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3. Waypoint-Based Formation-Switching Method

The UAV studied in this paper was a highly dynamic fixed-wing UAV. Due to its high
speed, it was difficult for the control system to update flight parameters in real time, and the
errors were relatively large. Therefore, this article mainly considered the waypoint-based
formation switching, and the online design of a small number of waypoints to complete
the flight process of the UAV swarm formation, without the need to participate and change
the design of the aircraft control system.

3.1. Consensus-Based Design for UAV Swarm Formation Control Protocol

The algebraic graph theory was used to describe the UAV swarm system and its
behavior. Assume that the ad hoc network UAV swarm system has n UAVs, and each UAV is
regarded as a node, then the communication relationship is seen as an edge. An undirected
graph G = (V, E, A) represents the UAV swarm system, where V = {s1, s2, · · · , sn} is a
collection of nodes, E =

{
(si, sj) ∈ s× s, i 6= j

}
is a collection of edges, and A = [aij]n×n

represents an adjacency matrix with weights. The edge of the graph is indicated by
eij = (si, sj). For an undirected graph, UAVi and UAVj can receive the information sent by
each other, namely (si, sj) ∈ E⇔ (sj, si) ∈ E . The adjacency matrix is defined as aii = 0,
and aij = aji ≥ 0, when eij ∈ E, aij > 0. The neighbor set of the node si is defined as
Ni =

{
si ∈ V

∣∣(si, sj) ∈ E
}

.
An undirected graph Gn was used to describe the communication topology relation-

ship in the UAV swarm. At each moment t, the communication connection between the ad
hoc network and UAV swarm forms a communication topology. For the vertex i of graph G,
let xi(t) ∈ Rq and ui(t) ∈ Rq denote the state variable and state information input variable
of the UAV swarm, respectively, at the time t. The classic first-order continuous-time
consistency protocol [26] is:

.
xi(t) = ui(t) i = 1, 2, · · · , n (2)

ui(t) = −
n

∑
j=1

aij(t)
(
xi(t)− xj(t)

)
(3)

For any UAVi, the initial state is x(0) ∈ RP, when t→ ∞ , there is
∣∣xi(t)− xj(t)

∣∣→ 0 ,
which is called the state of UAV swarm system reaching consensus.

In this paper, the consensus algorithm needed to be applied to the formation switching
of the UAV swarm. The distance between UAVs needed to reach the expected value
eventually. Therefore, to improve the classic first-order consistency protocol, the first-order
consistency protocol with reference location information was proposed, and the specific
form was as follows:

.
xi(t) = ui(t) =

m
∑

j=1
(aij(t)[(Xj(t)− Xi(t))− Xjiref ])

m
∑

j=1
aij(t)

i = 1, 2, · · · , n (4)

where Xjiref is the expected formation relative distance between UAVj and UAVi.

3.2. Consensus-Based Waypoints Planning
3.2.1. Formation Waypoints

The UAV speed studied in this paper was constant, and the UAV swarm formation was
controlled based on the route. Therefore, the consistency control protocol in Equation (4)
needed to be discretized. First, the communication time of the UAV swarm was discretized,
then the position status of each UAV was updated in real time according to the difference
equation, and the discrete consistency control protocol can be given by:

Xi[k + 1] = Xi[k] + ∆Xi[k] + D (5)
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∆Xi[k] =

m
∑

j=1
(aij[k]((Xj[k]− Xi[k])− Xjire f ))

m
∑

j=1
aij[k]

(6)

where k represents a communication event, which is a formation process of the UAV swarm
formation waypoint; D is the distance required to switch the formation, and is selected
according to actual needs; Xj[k] and Xi[k] are the position status of the UAVj and UAVi at
time k, also called formation waypoint; aij[k] ∈ R× R is the adjacency weight matrix of the
communication topology, and its elements are defined as:

aij =

{
1
(
vj, vi

)
∈ E

0
(
vj, vi

)
/∈ E

(7)

The undirected graph in this article did not allow self-loops, so aij = 0.
During the flight, UAVi established a communication connection with other UAVs in

the ad hoc network, forming a formation waypoint Xi[k] within each communication event
k according to Equations (5) and (6).

According to the consistency theory, it can be proved that for any UAVi with an initial
value Xi[0] ∈ RP, the time-varying communication topology union is fully connected

in a formation transformation [27], namely
Nk
∑

k=0
aij[k] > 0 (i 6= j), when k→ Nk , there is∣∣∣∆Xji[k]− ∆Xjiref [k]

∣∣∣→ 0 ; that is, the relative distance between the UAV swarm reached the
desired value, and the formation switch was realized. If the initial state of the communica-
tion topology aij[0] was full connectivity; namely, the communication was in the normal
state, the formation fly could be achieved as the expected formation when k = 0.

3.2.2. Flying to Formation Waypoint in Consistent Time

Once the formation waypoints were obtained, only local waypoints from the current
position of the UAVi to its formation waypoint needed to be designed so that the flight time
of each UAV was equal. In this section, a distributed UAV swarm flying method based on
time consistency is proposed, and local waypoints are designed under dynamic constraints
to achieve UAV swarm formation switching when flying at a constant speed.

(1) Dynamic constraints

Maximum turning angle constraint: when the UAV turns according to the waypoint,
the turning angle β (as shown in Figure 2) needs to be lower than the maximum turning
angle βmax:

β ≤ βmax (8)
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Minimum route length constraint [28]: assuming that the UAV was flying under the
available overload at the turn, the turning radius R was a fixed value. As shown in Figure 2,
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the turning angle of the UAV in this section of the route was β. For the UAV to make two
consecutive turns, the route of this section needed to be lower than the minimum track
length constraint ds:

ds = 2× R× tan
β

2
(9)

(2) Waypoint design

When a UAV flew to formation waypoint, we first took the UAV that was going to fly
the longest path as the time base, and then planned for other UAVs to fly around in the
horizontal plane so that the final time to reach the formation waypoint was consistent.

The longest path Cmax is:

Cmax = max(Ci) + dy (10)

where dy is the vertical flight distance margin to ensure that the vertical distance meets
the constraint of the minimum route length ds. The turning angle of this method is a fixed
value β = 90◦, so we set dy = 2× ds = 4× R, Ci as the route distance that the UAVi needed
to fly:

Ci = ∆xi + ∆yi + ∆ti ×V (11)

where ∆xi and ∆yi are the horizontal distance and vertical distance of UAVi from the
current position to the formation waypoint; V is the flight speed of the UAV; and ∆ti is
the waiting time of UAVi, which can be selected according to the actual project. If it was a
formation switch scenario, ∆ti = 0. If it was a formation assembly scenario, ∆ti was the
launch interval of UAVi from the first UAV.

The dynamic constraints of the flight plan needed to consider the maximum turning
angle constraint and the minimum route length constraint. The flight project was divided
into the following sections:

As shown in Figure 3, the flight project was composed of four right-angle turning
sections. The solid line is the planned route, which was sections 1©, 2©, 3©, 4©, and 5©. The
dashed line is the actual flight route considering the UAV turning process. The solid point
is the UAV waypoint. To make the flying distance the same, the length of the distances of
1©, 2©, 3©, 4©, and 5©were designed as:
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where L1x,i, L3x,i, and L5x,i are the horizontal distances of UAVi in segments 1©, 3©, 5©; and
L2y,i, L4y,i are the vertical distances of UAVi in segments 2© and 4©, respectively.

The local waypoints of the UAVi could be calculated according to the starting waypoint
and the distance lengths of 1©, 2©, 3©, 4©, and 5©:

Pi1(xi1, yi1) = Pi0(xi0 + L1x,i, yi0)
Pi2(xi2, yi2) = Pi1(xi1, yi1 + L2y,i)
Pi3(xi3, yi3) = Pi2(xi2 + L3x,i, yi2)
Pi4(xi4, yi4) = Pi3(xi3, yi3 − L4y,i)

(13)

At this point, all local route points could be obtained. The UAVs could arrive at the
formation waypoints at the same time, thus forming the expected formation.

In this section, a waypoint-based distributed ad hoc network formation-switching
control method, derived from the consistency theory, only needed to obtain the formation
waypoint from the position information of the UAVs, and then plan the local waypoint from
the current waypoint to the formation waypoint under dynamic constraints. The UAV only
needed to reach the online planned waypoint under the control of its flight control system. It
did not need to call the UAV’s control system to track flight parameters in real time, and only
required the design of four local waypoints. This method has a small amount of calculation,
is practical and straightforward, and is conducive to implementation in engineering. It can
also realize dynamic formation control of UAVs when some communication networks are
lost and the topology structure changes.

4. Waypoint-Based Formation Obstacle Avoidance Algorithm

The traditional formation obstacle avoidance method uses an artificial potential field
method for obstacle avoidance or an intelligent algorithm to search for waypoints. Still,
considering the real-time nature of obstacle avoidance and engineering applications, the
artificial potential field method needs to participate in the design of the control system.
When facing a high-dynamics UAV, it is challenging to update flight parameters in real
time, as it presents significant errors and low reliability. Using the intelligent algorithm to
plan trajectories, if high precision is required, planning the trajectory of a single UAV is still
too slow, and if there are many planned waypoints, it cannot meet the dynamic constraints
of the UAV.

In this paper, the intelligent path search algorithm was used to search for obstacle
avoidance channels through which UAVs could pass, and the UAV swarm was divided
into multiple smaller formations according to the number of UAVs that could pass through
the avoidance channel.

4.1. Consensus-Based Design for UAV Swarm Formation Control Protocol

Obstacle-avoidance principles include the A* algorithm and the smallest enclosing
convex polygon of a set of points (SECP) decision principle.

(1) A* algorithm

The A* algorithm [29,30] is the most effective direct search method for solving the
shortest path in a static road network. We only needed to search for the formation channel
between the obstacle circles, and there was no need to search for high-precision track points,
so we could use the traditional A* algorithm:

f (o) = g(o) + h(o) (14)

where f (n) is the cost estimate from the initial state to the target state via state n; g(n) is
the actual cost from the initial state to state n in the state space; and h(n) is the estimated
cost of the best path from state to the target state. The shortest path could be determined
by searching from the starting point according to the valuation function in Equation (14) to
the ending point.
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(2) SECP determination method

Given a plane point set A = {(xi, yi)|xi, yi ∈ R}, we determined the smallest enclosing
convex polygon of a set of points Ai (SECP): we connected the points two by two to form a
line segment set S =

{
(Ai, Aj)

∣∣Ai, Aj ∈ A, i 6= j
}

. If all the other line segments were on the
side of the line where a line segment Sconvex was located, then the line segment Sconvex where
this line (e.g., the dotted line in Figure 4) lay was a side of the required convex polygon
SECP.
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4.2. Formation Obstacle Avoidance Algorithm

To obtain multiple formation passage paths, firstly, it was necessary to determine the
entry points and the exit points according to the SECP determination method; secondly,
to determine the formation obstacle avoidance path in combination with the A* search
method; and finally, to determine the obstacle avoidance waypoint of the UAV swarm. The
algorithm flow is shown in Figure 5; the specific steps were as follows:
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Step 1. Determine entry and exit points.
As shown in Figure 6, we connected the center points of circles two by two to get

the connecting line set CirSeg ={CirSegmentk|k = 1, 2 · · · , Nk}, and obtained the entry and
exit line segments according to the SECP determination method, and further obtained the
in-point set EnPoint and the out-point set ExPoint. The specific process of the algorithm
was as follows Algorithm 1:



Appl. Sci. 2022, 12, 535 9 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 24 
 

 

Figure 5. Principle flow chart of obstacle avoidance algorithm. 

Step1. Determine entry and exit points. 

As shown in Figure 6, we connected the center points of circles two by two to get the 

connecting line set =CirSeg { | 1,2 , }kCirSegment k Nk= , and obtained the entry and exit 

line segments according to the SECP determination method, and further obtained the in-

point set EnPoint  and the out-point set ExPoint . The specific process of the algorithm 

was as follows Algorithm 1: 

 

Figure 6. Determination of entry and exit points. 

Algorithm 1. Get the entry points and exit points 

Input: O : Obstacle collection S : Obstacle avoidance area 

Output: { | 1,2 }jExPoint ExitPoint j= =  { | 1,2 }iEnPoint EntryPoint i= =  

1: CirSeg   connect the two-point in { | 1, , }o omR R m n= =  

2: MidLine   connect the maximum and minimum of point omR  in y -direction 

3: for 1k =  to Nk  do 

4:     kCirLine  kCirSegment  

5:     if {CirSeg }kCirSegment−  in the same side of kCirLine  then 

6:        kCirSegment SCEP  (e.g., SCEP  in Error! Reference source not found.) 

7:        PathSegement   { }
k k

CirSegment CirSegment O−  

Figure 6. Determination of entry and exit points.

Algorithm 1. Get the entry points and exit points

Input: O: Obstacle collection S: Obstacle avoidance area

Output: ExPoint =
{

ExitPointj

∣∣∣j = 1, 2 · · ·
}

EnPoint = {EntryPointi|i = 1, 2 · · · }
1: CirSeg← connect the two-point in Ro = {Rom|m = 1, · · · , n}
2: MidLine← connect the maximum and minimum of point Rom in y-direction
3: for k = 1 to Nk do
4: CirLinek←CirSegmentk
5: if {CirSeg − CirSegmentk} in the same side of CirLinek then
6: CirSegmentk ∈ SCEP (e.g., SCEP in Figure 6)
7: PathSegement← {CirSegmentk − CirSegmentk ∩O}
8: if PathSegement on the left side of MidLine then
9: EnPoint← the middle point of PathSegement (e.g., A in Figure 6)
10: else ExPoint← the middle point of PathSegement (e.g., B in Figure 6)
11: end if
12: end if
13: end for
14: return EnPoint, ExPoint

Step 2. Determine formation avoidance path.
As shown in Figure 7, we combined the entry and exit points set EnPoint ExPoint

from Algorithm 1 and the processed channel segment CirSeg (e.g., M in Figure 7) to find
the obstacle avoidance path set AvoidPath with the A* method. The specific process of the
algorithm was as follows Algorithm 2:
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Algorithm 2. Get the avoidance path

Input: O, S, ExPoint, EnPoint
Output: AvoidPath =

{
AvoidPath(i→j),q

∣∣∣q = 1, 2, · · · , Nq
}

1: for k = 1 to Nk do
2: if CirSegmentk ∩O then erase CirSegmentk
3: else if CirSegmentk ∩ {CirSeg− CirSegmentk} then erase CirSegmentk
4: end if
5: end for
6: use O and S initialize A* map
7: for i = 1 to Ni do
8: for j = 1 to Nj do
9: search Pathi→j from EntryPointi to ExitPointj by A* (e.g., S in Figure 7)
10: for k = 1 to Nk do
11: if Pathi→j ∩ CirSegmentk then
12: Pathsegement← {Csegmentk − Csegmentk ∩O}
13: AvoidPath(i→j),q← the middle point of Pathsegement
14: end if
15: end for
16: end for
17: end for
18: return AvoidPath (e.g., the blue line in Figure 7)

Step 3. Determining the UAV formation obstacle avoidance waypoint.
As shown in Figure 8, we extended AvoidPath to the boundary of the obstacle avoid-

ance area (e.g., P in Figure 8), deleted the formation obstacle avoidance path that did not
meet the UAV dynamic constraints, and calculated the number of UAVs that the path of
the ith entry point could pass through:
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L(i→j),q − 2× dsa f e

d

⌋
+ 1) q = 1, 2, · · · , Nq (15)

ni = maxni→j j = 1, 2, · · · , Nj
jmax= argmax(ni)

Npass =
Ni
∑

i=1
ni

(16)

where d is the vertical interval distance of the UAV, dsa f e is the safe distance of the UAV,
L(i→j),q is the length of the qth formation channel segment from the ith formation path to



Appl. Sci. 2022, 12, 535 11 of 23

jth formation path, nj is the number of UAV that can be passed by the jth formation path,
ω is the scaling scale, and 0 < ω ≤ 1 is to adjust the number of UAVs through the channels.

Then, we calculated the obstacle avoidance waypoint PathPoint of UAVi based on
AvoidPath obtained from ni and Algorithm 2; the specific process was as follows
Algorithm 3:

Algorithm 3. Get fly path point

Input: O, S, X(0), AvoidPath, v
Output: PathPoint = {PathPointuavi|uavi = 1, · · · , N}
1: extent AvoidPathi→j to S ’s boundary (e.g., P in Figure 8)
2: if AvoidPathi→j do not satisfy constraints Rres and ds then erase
3: end if
4: calculate ni by Equation (15)
5: CirLinek←CirSegmentk
6: split UAV swarm into Ni sub-forms
7: PathPoint← calculate PathPointuavi based AvoidPath(i→jmax),q
8: if Npass ≤ N then
9: PathPoint←

{
N − Npass

}
UAV fly around the obstacle area

10: end if
11: for uavi = 1 to N
12: Tuavi = |PathPointuavi|/v
13: end for
14: PathPoint← use formation conversion algorithm with Tuavi and PathPoint
15: return PathPoint

5. Handling Exceptions

This paper dealt with two kinds of abnormal situations: flight abnormity and com-
munication abnormalities during the formation flight of distributed ad hoc network UAV
swarm. The processing methods of each category were shown in Figure 9, and the detailed
processing methods were shown below.
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5.1. Flight Abnormity

For the abnormal situation in which the tracking error was too large, the above-
mentioned distributed ad hoc network online formation switch algorithm could be used
for dynamic adjustment, and had the characteristics of not being related to the initial
position of the UAV. In response to the falling of the UAV during the flight, the remaining
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UAVs switched formation online using the formation switch algorithm; that is, formation
reconstruction.

5.2. Communication Abnormalities

Communication abnormalities mainly considered three situations. First, the excessive
communication delay included two cases, which were the entire UAV swarm’s delay and
some members’ delay of the UAV swarm. Second, the communication was completely
disconnected; that is, the other UAV communication links in the UAV swarm were com-
pletely disconnected and could not be restored. Third, the communication was partially
interrupted; that is, the UAV communication link of other parts of the UAV swarm was
temporarily disconnected, and it could be restored after some time.

If the communication of some UAVs was completely disconnected, this could be
regarded as the situation of UAV formation to reconstruct the formation. If there was a delay
in communication, the offset error could be eliminated according to the online formation-
switching algorithm. If the communication of some UAVs was temporarily interrupted,
multiple iterative formation flights could be performed based on the distributed ad hoc
network online formation-switching algorithm.

6. Simulation Analysis

In this paper, 12 UAVs were used for formation assembly, switching, and formation
flight simulation under abnormal flight and communication environments, and 8 UAVs
were used for formation obstacle avoidance simulation. In the simulation experiment, the
algorithm was programmed in the C++ language, the platform tool was Microsoft Visual
Studio 2016, and the hardware environment was a PC with an inter-core i5-4210 CPU,
2.60 GHz dual-core processor, and 8 GB memory.

6.1. Formation Assembly and Formation Switching

The 12 UAVs took off in succession. After each UAV passed the assembly point A,
the formation-switching algorithm began to take over the UAV, planning the trajectory of
the UAV; the formation was assembled into an inverted V-shape; and then the formation-
switching algorithm was enabled again to change the swarm into a V-shaped formation, as
shown in Figure 10. The simulation parameters that had to be set are shown in Table 1. The
simulation results of formation assembly and formation switching in the horizontal plane
are shown in Figures 11 and 12.
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Table 1. Simulation parameters.

UAV Swarm Attributes Parameter Value

Number of UAVs n 12
Launch interval 5 s
UAV speed V 30 m/s

Maximum turning angle constraint βmax 90◦

Turning radius R 300 m
Minimum track length constraint ds 600 m

Assembly point A (0 m, 2000 m)
Communication topology Fully Connected

Assembled formation Inverted V-Shape
Switch formation V-Shape

Formation interval in x direction 100 m
Half vertex angle of V-shaped 45◦

Formation-switching distance D Adaptive (met the minimum switching distance)
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The assembly formation was V-shaped, the formation switching was changed from
V-shaped to column formation, the vertical formation interval in the y-direction was 100 m,
and other parameters remain unchanged. The simulation is shown in Figures 13 and 14.
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It can be seen in Figures 12 and 14 that when the communication topology of UAV
swarm was fully connected, formation aggregation and formation switching could make
the distance between each UAV meet the desired requirements after a formation interval
correction; namely, the communication event was k = 0. If the communication topology
was partially interrupted, the formation interval had to be corrected again. This method
could simply and quickly converge to the final expected formation interval value. It can
be seen in Figures 11 and 13 that this formation method could quickly plan the route
to the formation waypoints under the constraints of the UAV dynamics, and has a high
engineering application value.

6.2. Formation Obstacle Avoidance

The obstacle avoidance area was rectangular, and the relevant parameters are shown
in Table 2. Eight UAVs formed a column formation to enter the obstacle avoidance area.
The obstacle information is shown in Table 3. The initial position information of UAVs
is shown in Table 4. The maximum turning angle constraint was 90◦, and the minimum
direct flight distance constraint was calculated according to Equation (9). The UAV swarm
passed through the obstacle and was reconstructed into a V-shape. Other parameters of
UAV swarm are shown in Table 1. The horizontal plane simulation results are shown
in Figure 15.
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Table 2. Obstacle avoidance area parameters.

Obstacle Avoidance Area Properties Parameter Value

Rectangle center point (7000 m, 5000 m)
Rectangular area length 10,000 m
Rectangular area width 10,000 m

Table 3. Obstacle parameters.

Obstacle Index X/m Y/m Radius/m

1 3000 7000 500
2 4000 3000 500
3 6500 5000 500
4 11,000 3000 900
5 11,000 6000 600

Table 4. Initial position of UAV.

UAV Index X/m Y/m

1 1000 3000
2 1000 6500
3 1000 3500
4 1000 6000
5 1000 4000
6 1000 5500
7 1000 4500
8 1000 5000
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We reset obstacles for simulation, and the obstacle information is shown in Table 5.
Other parameters remain unchanged; the horizontal plane simulation results are shown
in Figure 16.
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Table 5. Obstacle parameters—scene 2.

Obstacle Index X/m Y/m Radius/m

1 3000 5000 700
2 6000 14,000 1000
3 6500 5000 700
4 7000 8500 1300
5 11,000 4000 900
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As can be seen in Figures 15 and 16, the UAV swarm could be intelligently divided
into multiple smaller formations to pass obstacles or fly around to avoid obstacles. Finally,
it could be reconstructed into the expected formation. The simulations showed that the
algorithm could quickly and flexibly plan the cooperative obstacle avoidance path and had
the ability of online formation to avoid obstacles.

6.3. Handle Exceptions
6.3.1. Flight Abnormity

Suppose the number of UAV swarm was 12, and the assembly formation was an
inverted V-shaped formation. After the formation assembly, four UAVs were randomly
dropped or lost. Then, the remaining eight UAVs were reconstructed into a column
formation. Other simulation parameters were still as shown in Table 1, and the simulation
results are shown in Figures 17 and 18:
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Figure 18. Formation reconstruction process.

It can be seen in Figures 17 and 18 that after the UAV flight abnormally fell, then the
required formation could be reconstructed according to this plan.

6.3.2. Communication Abnormity

In actual flight, the communication topology may be temporarily interrupted. At this
time, a communication event, k = 0, is insufficient to meet the expected formation, and
formation interval distance correction is required again.

In this simulation, a formation switch was performed from an inverted V-shape to
a V-shape. It was assumed that in the initial communication event, namely k = 0, the
communication failure rate reached 18%, and in the second communication event, namely
k = 1, the communication failure rate reached 9%. Other parameters were as shown in
Table 1, and the results are shown in Figures 19 and 20.
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Figure 20. Formation change process under abnormal communication.

It can be seen in Figures 19 and 20 that in the case in which some UAVs and other UAVs
were lost in the communication network, the first formation interval distance correction
could not obtain the desired formation. In the second correction, the communication
network still had local faults, but eventually formed the expected formation. So, the
formation-switching algorithm was effective in dealing with communication abnormity.

6.4. Simulation Comparison
6.4.1. Formation-Switching Method

The formation-switching control method proposed in this paper mainly dealt with the
communication abnormalities of the UAVs during the flight. Therefore, the classic consis-
tency control method [31], which could handle changes in the communication topology,
was selected to compare to illustrate the effectiveness of the algorithm.

We selected six UAVs for simulation, and used the simulation scenario in Section 6.3.2
to set the consistency control step to meet the minimum algorithm stability requirement,
which was 0.2 s. The simulation of the classical consistency control method is shown in
Figure 21, and the method proposed in this paper is shown in Figure 22.



Appl. Sci. 2022, 12, 535 19 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 24 
 

 

Figure 21. Formation switching of the classical consistency control method. 

 

Figure 22. Formation switching. 

The algorithm performance during the simulation process was recorded, as shown 

in Table 6. 

Table 6. Simulation comparison. 

Method 
Classical Consistency 

Control Method 
Proposed Method 

Number of communication 

requests 
200 times 2 times 

Average solution time per 

communication 
125 ms 53 ms 

Total running time of the 

algorithm 
1521 ms 131 ms 

Figure 21. Formation switching of the classical consistency control method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 24 
 

 

Figure 21. Formation switching of the classical consistency control method. 

 

Figure 22. Formation switching. 

The algorithm performance during the simulation process was recorded, as shown 

in Table 6. 

Table 6. Simulation comparison. 

Method 
Classical Consistency 

Control Method 
Proposed Method 

Number of communication 

requests 
200 times 2 times 

Average solution time per 

communication 
125 ms 53 ms 

Total running time of the 

algorithm 
1521 ms 131 ms 

Figure 22. Formation switching.

The algorithm performance during the simulation process was recorded, as shown
in Table 6.

Table 6. Simulation comparison.

Method Classical Consistency
Control Method Proposed Method

Number of communication requests 200 times 2 times
Average solution time per

communication 125 ms 53 ms

Total running time of the algorithm 1521 ms 131 ms

The simulation results showed that when the step length was 0.5 s, in the case of
abnormal communication, the classic consistent formation control method needed to
communicate with neighboring UAVs 200 times before the formation could be changed
from an inverted V to a V-shape. The route-based formation-switching method proposed
in this paper only needed two communications to obtain the required formation waypoints,
which greatly reduced the pressure on the airborne communication system.
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In addition, the classic consensus algorithm obtained the coordinated route of the
UAV by controlling the deflection angle of the track. The average solution time per commu-
nication took a longer time, and required high control system performance, which could
not guarantee the real-time performance of online formation flying. The solution proposed
in this paper was time-consuming, and only required the UAV to perform direct flight
and turning maneuvers. It was easy to control during the flight and easy to implement in
engineering. However, the disadvantage was that the planned path distance was relatively
long.

6.4.2. Formation Obstacle Avoidance Method

The sparse A * algorithm [30] was selected and compared with the formation obstacle
avoidance algorithm proposed in this paper to illustrate the effectiveness of the algorithm.
The simulation scenario used scenario 2 as given in Section 6.2. The sparse A* simulation
results are shown in Figure 23.
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Figure 23. The sparse A * algorithm for formation obstacle avoidance.

In order to analyze the complexity of the two algorithms, the number of UAVs in the
formation was increased successively, and the two algorithms were used to simulate the
formation obstacle avoidance simulation. The relationship between the algorithm running
time and the number of drones was obtained as shown in Figure 24.
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We concluded from Figures 16 and 24 that the sparse A* algorithm was basically the
same as the obstacle avoidance path planned by the algorithm in this paper, but the running
time of the sparse A* algorithm was much longer than that of the algorithm in this paper,
and it doubled with the increase in the number of UAV formations. However, the obstacle
avoidance algorithm proposed in this paper based on geometry had a shorter running time
and did not change significantly with the increase in the number of UAVs. It could meet
online real-time trajectory planning, and has strong engineering applicability.

7. Conclusions

This paper proposed a method of fixed-wing UAV swarm formation control based
on distributed ad hoc networks. This method included the formation switching of UAVs,
formation obstacle avoidance, and handling of abnormal conditions during flight.

Simulation results showed that in formation switching, the ad hoc network, high-
dynamics, fixed-wing UAV could form formation switching only by position information.
The method was not sensitive to the initial position information of the UAV, which could
eliminate errors during flight, and handle temporarily interrupted communication topolo-
gies and UAV drop, as well as other abnormal flight situations. In formation obstacle
avoidance, the UAVs could be clustered into multiple subformations to pass through the
obstacle avoidance area, and could be reconstructed as required formation. The formation
technology was designed based on the waypoints, which was versatile, simple, and reliable,
and is easy to realize in engineering.

Compared with the classic consistent formation control algorithm and obstacle avoid-
ance algorithm, it was shown that the formation technology method proposed in this paper
had lower complexity and higher timeliness, and is suitable for online formation flying of
highly dynamic UAVs in an ad hoc network. However, the route planned by the method
did not consider optimality, and it was only suitable for high-speed and constant-speed
formation missions. For obstacle avoidance algorithms, the obstacle model is too simple,
and there may be scenarios for obstacle avoidance that are not covered by the algorithm.
Next, we will consider the optimal route planning problem and extend the algorithm to
three-dimensional flight scenes to increase its practicability.

8. Patents

Suo, W.B., Zhang, D., and Wang, M.Y. “A distributed unmanned aerial vehicle flying
around formation method based on time consistency”, C.N. Patent, 202010226440.4, issued
10 July 2020.

Zhang, D., Suo, W.B., and Wang, M.Y. “A distributed unmanned aerial vehicle dynamic
formation switching method based on waypoints”, C.N. Patent, 202010226439.1, issued 10
July 2020.
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