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Abstract: In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since
become a prominent variant in several Indian regions and 156 countries, including the United States
of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations
in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its
immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it
has sparked substantial scientific investigation into the development of effective vaccinations and
anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their
health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing
FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2
Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of
603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also
compared these compounds with the standard drug ceftriaxone, which was already suggested
as a beneficial drug in COVID-19 treatment; these compounds were compared with other FDA-
approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the
analysis, the identified phytocompounds acteoside (−7.3 kcal/mol) and verbascoside (−7.1 kcal/mol),
from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect
against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (−6.8 kcal/mol),
progeldanamycin (−6.4 kcal/mol), and rhodoxanthin (−7.5 kcal/mol), from the plant Houttuynia
cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone,
signals less inhibitory effect against MT-NTD and RBD with binding affinities of −6.3 kcal/mol and
−6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the
plants, which contain the screened phytocompounds. Our research could be used as a lead for future
drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the
Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.

Keywords: delta variant B.1.617.2; Clerodendrum serratum; Houttuynia cordata; Siddha; mutated NTD;
anti-viral drug

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in
December 2019 and has since spread to over 221 nations, leading the continuing outbreak
to be declared a worldwide medical emergency [1,2]. As of 17 December 2021, there have
been more than 271.96 million confirmed cases and about 5.33 million deaths reported
across almost 200 countries [3]. The treatment for individuals infected with SARS-CoV-2
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has garnered considerable attention. During COVID-19 outbreaks, significant numbers of
possible SARS-CoV-2 treatments were postulated, such as inhibiting viral RNA synthesis,
limiting virus replication, obstructing viral adherence to human cell surface receptors
and reducing the virus’s auto-assembly mechanism, all of which are the most effective
anti-coronaviral methods [4–7]. The World Health Organization (WHO) instituted the
SOLIDARITY study to investigate the four most viable COVID-19 treatment methods:
remdesivir, chloroquine and hydroxy-chloroquine, lopinavir plus ritonavir, as well as
lopinavir plus ritonavir and interferon-β [3]. It is crucial to note that each of these four
SARS-CoV-2 treatments targets one of the three coronavirus nonstructural proteins (NSPs):
Mpro, RdRp, and PLpro [8–11]. SARS-CoV-2 has evolved, with multiple variations, which
quickly established the dominant lineage B.1.617 [12,13]. B.1.617.1 was the first ascertained
sublineage, accompanied by B.1.617.2, both of which have a similar L452R spike receptor-
binding motif mutation [12–17].

The variation B.1.617.2 has been identified as a variant of concern (VOC) worldwide
due to its apparent enhanced transmissibility, which has led to a rapid wave of infection
devastating the Indian subcontinent [18,19]. This alteration was previously linked to
enhanced disease transmission and a slight sensitivity to neutralizing antibodies. Since
then, the delta variation B.1.617.2 has triumphed over the kappa variant B.1.617.1 and
other lineages [20]. Following the discovery of the delta variant B.1.617.2, India reported
a significant increase in COVID-19 cases, with the majority of cases and fatalities totaling
over half a million by 6 May 2021, and over 6000 on 9 June 2021, which spread to at least
90 countries [21,22]. By 16 December 2020, countries such as the United States of America
(37.0%), the United Kingdom (11.0%), Turkey (8.0%), Germany (5.0%), and Denmark
(5.0%) had detected the delta variant with travel history from India [23]. Many nations
implemented travel restrictions to and from India in reaction to the exceptionally high
number of COVID-19 cases in India in order to stop the spread of the new strains [24,25].

The Indian delta variant B.1.617.2 infectivity, human-to-human transmission, patho-
genesis, and immune evasion have mostly been demonstrated to be affected by naturally
evolved mutations in the receptor-binding domain (RBD) [26,27]. The RBD mutations
L452R, T478K, and E484Q were especially found in lineage B.1.617.2 and were described
as the strains’ hallmark alterations [28,29]. The mutations L452R, T478K, E484Q, D614G,
and P681R in the spike protein, including inside the receptor-binding domain, were also
reported as a globally circulating lineage [30,31]. Although found within the RBD and
insensitive to several monoclonal antibodies (mAbs), the L452R, T478K, and E484Q alter-
ations are of special significance [32,33]. These mutations have shown an upsurge in viral
transmissibility from 18.6% to 24%. While compared to the Wuhan-originated or wild-type
SARS-CoV-2, the neutralizing ability towards B.1.617.2 was shown to be 5.8 times lower in
recent research [34,35]. Likewise, spike mutations in the N-terminal domain (NTD) of the
lineage B.1.617.2 increase immune evasion capacity [36,37].

Secondly, a shred of rising evidence has demonstrated that the NTD is a viable target
for therapeutic and vaccination strategies [38,39]. In addition, recent research revealed
that numerous neutralizing antibodies adhered to the S1-NTD exclusively, preventing its
communication with the host cells [40,41]. Li et al. reported that the alteration N234Q was
unusually resistant to nullifying antibodies; conversely, N165Q grew increasingly suscep-
tible. Based on this scientific evidence and information, new drugs can be developed by
interacting with the S1-NTD [42]. The continued spread of the highly transmissible SARS-
CoV-2 delta strain underscores the necessity of getting vaccinated against COVID-19 [43,44].
However, current research reported that with two doses of the Pfizer/BioNTech vaccination
the real efficacy slightly lowered from 93.4% to 87.9% against B.1.1.7 and B.1.617.2, accord-
ing to a negative case-control study carried out in England [45]. The AstraZeneca vaccine
efficacy was substantially reduced from 66.1% to 59.8% against B.1.617.2 [46]. The emer-
gence of viral variations that may evade the immunological response given by vaccinations
has created a different problem [47]. As a result, discovering a treatment for SARS-CoV-2
infections is still necessary. The presented study suggests that repurposing and exploiting
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naturally occurring chemicals employing in silico techniques might be promising treat-
ments for COVID-19, achieved within a short timeframe and at a reasonable price [48–56].

Siddha and Ayurvedic medicine, which originated in Tamil Nadu, South India, are
two of the oldest traditional remedies [57–59]. The government of India has recommended
Kabasura kudineer choornam for combating a COVID-19 viral infection. Since the lungs
are the primary organ of kapha, Kabasura kudineer choornam is a polyherbal Siddha
composition that includes 15 herbs suggested to manage typical respiratory illnesses, such
as colds, coughs, breathing difficulties, and the flu [60–62]. In silico investigations re-
vealed that the Kabasura kudineer formulation had anti-inflammatory, antipyretic, and
antibacterial properties; as well, it poses a better ability to bind to the SARS-CoV-2 spike pro-
tein [63,64]. Likewise, Houttuynia cordata (H. cordata) played a vital role in herbal therapy for
the SARS outbreak in Southern China in 2003 [65]. Furthermore, it acts effectively against
chikungunya, human noroviruses, human herpes viruses, the dengue virus, influenza, the
pseudorabies virus, and murine coronaviruses [66,67]. Das et al. discovered H. Cordata
phytocompounds to be a potential inhibitor for Mpro and PLpro, thereby preventing
the replication of SARS-CoV-2 [68]. Similarly, the dried flower bud Syzygium aromaticum
(S. aromaticum), a plant indicated by the English name “clove,” acts effectively against
COVID-19 [69]. Spices such as cloves are used in three forms: whole dried buds, powdered
cloves, or extracted as an essential oil. According to earlier literature research, additional
noteworthy qualities include the ability to treat colds, cough, asthma, and upper respi-
ratory diseases, as well as anti-cancer, anti-inflammatory, and antimutagenic activity [70].
Tallei et al. reported that the phytocompounds hesperidin, nabiximols, pectolinarin, epi-
gallocatechin gallate, and rhoifolin from Citrus spp. are effective against the Mpro and
the spike glycoprotein trimmer (S-Protein) of SARS-CoV-2, which inhibits proliferation
of the virus [71]. According to Khazdair et al., Nigella sativa (N. sativa) has protective
effects on obstructive lung disorders, and this herb might be helpful in the treatment
of COVID-19 [72].

The phytocompounds of N. sativa impede viral entrance and reproduction within the
host cell by interfering with its binding to ACE2 receptors [73,74]. Interestingly, Shree et al.
stated that three phytoconstituents from Ocimum basilicum (O. basilicum) vicenin, sorientin
4′-O-glucoside 2”-O-p-hydroxy-benzoagte, and ursolic acid inhibited the Mpro of SARS-
CoV2 [75]. Likewise, consuming Piper nigrum (black pepper) (P. nigrum) or piperine
may help limit viral growth [76,77]. The Ministry of AYUSH, Government of India, also
described that black pepper might have an anti-SARS-CoV-2 role [78]. Metastasio et al.
concluded from their study that short-term kratom usage might reduce pain associated
with COVID-19 infection without causing physical or psychological withdrawal symptoms
when the kratom was halted [79]. Therefore, considering the therapeutic importance of
Kabasura kudineer, H. cordata, S. aromaticum, Citrus spp., N. sativa, O. basilicum, P. nigrum,
and Mitragyna speciosa Korthi (M. speciosa Korthi) and their strong ethnopharmacological
background, the present study is primarily intended to perform molecular docking studies
with these crucial phytocompounds acting against the S-protein of the SARS-CoV-2 Indian
delta variant B.1.617.2.

We performed the molecular docking studies using Autodock Vina with Pyrx v0.8
platform [80], Pymol v2.5 [81], Ligplot+ v2.2.4 [82], and Discovery Studio Visualizer
v21.1.0.20298 (www.accelerys.com) (accessed on 4 November 2021). We also performed
a drug-likeness, adsorption, digestion, metabolism, excretion, toxicity (ADMET), toxicity
class, and lethal dosage study of the shortlisted phytocompounds using the Molinspiration
server, ADMETlab 2.0 [83], and ProTox-II to evaluate the pharmacokinetics and medicinal
chemistry ease of the screened bioactive phytocompounds [84].

www.accelerys.com
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2. Materials and Methods
2.1. Phytocompounds from Kabasura Kudineer Choornam and Herbal Plants

The phytocompounds from the Siddha classical formulations Kabasura kudineer
choornam (15 ingredients of herbs Zingiber officinale (Z. officinale), Piper longum (P. longum),
S. aromaticum, Tragia involucrate Linn. (T. involucrate L.), Anacyclus pyrethrum (A. pyrethrum),
Hygrophilla auriculata (H. auriculata), Terminalia chebula (T. chebula), Adathoda vasica (A. vasica),
Coleus amboinicus (C. amboinicus), Saussurea lappa (S. lappa), Tinospora cordifolia (T. cordifolia),
Clerodendrum serratum (C. serratum), Andrographis paniculate (A. paniculata), Sida acuta
(S. acuta), Cyperus rotundus (C. rotundus) [85,86]), H. cordata, S. aromaticum, Citrus spp.,
N. sativa, O. basilicum, P. nigrum Linn, and M. speciosa Korthi were subjected to an evaluation
of their interactions with the S-protein of the Indian delta variant B.1.617.2.

2.2. Target Preparation and Ligand Library

The cryo-electron microscopy structure of the S-Protein, a subunit vaccine candidate
for COVID-19 PDB: 7E7B [87], was downloaded from the protein data bank and edited to
remove unnecessarily bounded ligands and water molecules using the Discovery Studio
Visualizer v19.1.0.18287 (www.accelerys.com) (accessed on 4 November 2021) and saved
in PDB format. The major phytoconstituents present in Kabasura kudineer choornam
and the other selected herbs were retrieved in SDF file format, and some compounds
in 2D structures were also obtained from the PubChem database. A 3D structure was
delineated for each of the obtained 2D structures and optimized with a force field based
on Chemistry at Harvard Macromolecular Mechanics (CHARMM) parameterization us-
ing ACD/Chemsketch vC05E41 (Advanced Chemistry Development, Inc., Toronto, ON,
Canada). The 3D structures were saved in the SDF file format, and all the obtained phyto-
compounds were then converted into PDB file format using OPEN BABEL software [88].

2.3. Mutated NTD Model

In this study, the NTD domain from PDB: 7E7B was mutated with Asn165Gln and
Asn234Gln. No significant conformational change was observed in the structure of the mu-
tant NTD model. Structural evaluation with RAMPAGE showed similar residue numbers
in the most favored region (96.81%). Structural alignment and superimposition of wild type
(WT-NTD) and mutant type (MT-NTD) (Asn165Gln and Asn234Gln) were performed with
the 3D-SS server (http://cluster.physics.iisc.ernet.in/3dss/) (accessed on 26 October 2021)
to calculate the disparity in the mutated sites. The superimposed structure was visualized
in the Discovery Studio Visualizer v19.1.0.18287 software.

2.4. Molecular Docking

After preparing the phytocompounds as ligands and the receptor RBD and MT-NTD
from 7E7B as targets, PyRx was implied with the Autodock Vina option using the new
scoring function [89]. It analyzes the docking propensity and interfaces between the ligands,
RBD, and mutated NTD. The prepared targets and ligands were converted into a PDBQT
file format. For our docking analysis, we applied the specific search anchoring function
of the PyRxVirtual Screening tool. The grid box properties were set as size_x = 31.43 Å,
y = 46.11 Å, and size_z = 32.15 Å for the NTD molecular docking and size_x = 36.38 Å,
size_y = 67.04 Å, and size_z = 32.08 Å was set for the RBD molecular docking and then
docked. The ligands were screened out for a binding affinity of ≤6.0 kcal/mol. The
significant interaction between the ligands and the receptors’ binding site was acquired
in 2D and 3D formats by importing the docked results into the LigPlot+, PyMol, and
Discovery Studio Visualizer v19.1.0.18287 (www.accelerys.com) (accessed on 4 November
2021). In the autodock vina scoring function,

www.accelerys.com
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C = ∑
i < j

ftitj (rij)

where C is sum of intermolecular and intramolecular distance; ∑ is the overall pairs of
atoms; ftitj is symmetric set of interaction functions; and rij is interatomic distance.

2.5. Evaluation of Ligands Drug Likeness and Toxicity

The screened ligands were evaluated for draggability, physicochemical properties, tox-
icity, toxicity classes, and lethal dose using the Molinspiration server (www.molinspiration.
com/cgi-bin/properties) (accessed on 4 November 2021). The druggability properties were
analyzed based on the molar weights (MW), total polar surface area (TPSA), lipophilicity
(log P), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) to identify
Lipinski’s rule of the drug-like compounds. In addition, the simplified molecular-input
line-entry system (SMILES) was downloaded from the PubChem Database to calculate
the ADMET properties with toxicity class. The ADMET properties were calculated by
implementing ADMETlab 2.0 [83] and ProTox-II with default parameters [84].

3. Results

The cryo-electron microscopy structure of the S-Protein trimer, a subunit vaccine
candidate for COVID-19 PDB: 7E7B [87], is depicted in Figure 1a, containing chain A,
chain B and chain C. Chain A was separated from PDB, and the 7E7B S-Protein trimmer
contains the three major units: NTD (14–305), RBD (329–521), and S2 subunit (522–1147),
as described in Figure 1b. The structure of the MT-NTD and the mutation in the RBD are
pictured in Figure 1c.

The MT-NTD structure was compared with the WT-NTD, and the structural variation
and coordination were evaluated. The WT-NTD (Figure 2a) and MT-NTD (Figure 2b)
were validated using the Ramachandran plot. For the WT-NTD and MT-NTD, 98.92%
residues were present in the most favored region, and no significant changes were noted
between the WT-NTD and MT-NTD. The RMSD and sequence identity were compared
for the superimposed structure of the MT-NTD with WT-NTD. The RMSD and sequence
identity of the MT-NTD was 0.004 Å, and 99.68%, while the WT-NTD was set as a fixed
molecule. Furthermore, the stamp score was noted as 9.799 for the MT-NTD out of 10.
The superimposed WT-NTD and MT-NTD structures’ stamp sequence alignment is shown
in Figure S1 (Supplementary File). The change in two amino acids did not produce
any considerable alteration in the overall structural conformation of the protein in terms
of the smaller RMSD and sequence identity. The superimposition of binding residues
for the WT-NTD (Asn165, Asn234) and MT-NTD (Gln165, Gln234) models are shown
in Figure 2c, respectively.

We used 603 phytocompounds in the screening process, obtained from the 22 well-
annotated herbal plants included with the Kabasura kudineer choornam (Figure 3a). After
processed molecular docking, the ligands with a higher binding affinity (≤6.0 kcal/mol)
were screened from the docked results (Figure 3b).

The effects of phytocompounds from the plants H. cordata, Citrus spp., N. sativa,
O. basilicum, P. nigrum, M. speciosa Korthi, and Kabasura kudineer, including 15 herbs,
were analyzed to understand the binding efficacy against the targets N-domain and RBD
domain. The docked phytocompounds with the binding affinity ≤−6.0 kcal/mol were
predicted and listed separately for the MT-NTD and RBD. The phytocompounds from
H. cordata, S. aromaticum, M. speciosa Korth, C. serratum, H. auriculata, Andrographis panic-
ulata (A. paniculata), M. cerviana, T. involucrata, and T. cordifolia effectively inhibited the
mutated N-Domain.

www.molinspiration.com/cgi-bin/properties
www.molinspiration.com/cgi-bin/properties
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(PDB: 7E7B) of B.1.67.2. A vaccine candidate constitutes Chain A, B, and C. (B) The structure of S-
protein chain A contains NTD, RBD, and S2 subunit. (C) The structure of MT-NTD domain and RBD 
with its mutation as Indian delta variant B.1.617.2 S-Protein (Green—MT-NTD domain; purple—S2 
subunit; yellow—RBD; the mutated residues of MT-NTD and RBD domains’ crucial residues are 
highlighted as Corey–Pauling–Koltun (CPK) surface structure). 

Figure 1. The structure of the study protein PDB:7E7B. (A) The structure of SARS-CoV-2 S-protein
(PDB: 7E7B) of B.1.67.2. A vaccine candidate constitutes Chain A, B, and C. (B) The structure of
S-protein chain A contains NTD, RBD, and S2 subunit. (C) The structure of MT-NTD domain and RBD
with its mutation as Indian delta variant B.1.617.2 S-Protein (Green—MT-NTD domain; purple—S2
subunit; yellow—RBD; the mutated residues of MT-NTD and RBD domains’ crucial residues are
highlighted as Corey–Pauling–Koltun (CPK) surface structure).
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(B) NTD-mutated S-protein structure (C) The superimposed structure of WT-NTD and MT-NTD
(Green—WT-NTD; red—MT-NTD; green and blue (CPK surface)—normal and mutated residues.
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Figure 3. Depiction of the total number of plants, phytocompounds, and the phytocompounds with
≤−6.0kcal/mol binding energy. (A) The total number of plants and phytocompounds utilized in
molecular docking study. (B) The number of phytocompounds with the ≤−6.0 kcal/mol binding
energy for the further screening process.

The chemical properties, including the molecular formula, molecular weight, and
PubChem ID for the phytocompounds acted significantly against the NTD and RBD
(binding affinity ≤ −6.0 kcal/mol), listed in Tables S1–S4 (Supplementary File S1). The
phytocompounds that beneficially interacted with the mutated NTD domain, its binding
affinity, and LigPlot interactions are listed in Table 1 and Figure S2 (Supplementary File S1).
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Table 1. Binding affinity, RMSD, and interacting residues of the screened phytocompounds against
mutated NTD domain.

Plant Phytocompounds Binding
Affinity

RMSD
(Å)

H/C-H Bond
Interaction

Bond
Length

Hydrophobic
Interaction

Alkyl
Interaction

Pi-Sigma/
Cation
Stacked
Interaction

B.1.617.2. S-Protein—N-Domain (Mutant Type)

Standard
Drug Ceftriaxone −6.3 1.625

ASP88, ASN87,
GLN115,
ASN156* ASP198,
GLY199, GLY232,
GLN234*,

2.57, 2.23,
2.10, 2.54,
2.03, 2.76,
2.28. 2.93

ASN196, ILE197 ILE233 -

H. cordata

Cholest-4,14-dien-
15,20-diol-3,16-
dione

−6 2.414 ASN196,
GLN234 5.03, 4.72

ASP88, ASP198,
GLY199, GLY232,
ILE233, ILE235

LEU54,
ILE197 -

Dihydrocelastrol −6.6 1.41 ASP53, ASN196,
GLN234, ILE235

4.56, 3.63,
4.74, 4.38

ASN87, ASP88,
LYS195, ILE233

LEU54,
ILE197

Isoquercitrin −6.4 2.445
ASN196, ILE233,
GLN234, ILE235,
ASN87*

4.40, 5.36,
4.45, 5.41

LEU54, PHE86,
ILE197, ASP198,
GLY199, THR236

ASP88

Naltrindole −6.3 2.726
ASN87, ILE197,
ASP198, ILE233,
ILE235, THR236

GLN234,
ASN1196,
LEU54,
PRO272

ASP88

Pirenperone −8.7 1.395 ILE233 -

ASN87, ASP88,
ASN196, GLT199,
GLY232, GLN234,
PRO272

ILE197 LEU54

Quercitrin −6.3 1.588
ASN87, ASP88,
ASN196,
GLN234, ILE235

4.54, 3.67,
4.74, 4.47,
5.69, 3.46

LEU54, PHE86,
ASP198, GLY199,
ILE233

- -

Rhodoxanthin −6.8 2.258 ASP198 -

THR114, GLN115,
GLU132, GLN165,
CYS166, THR167,
ASN196, ILE197,
GLY199, GLY232,
ILE233, GLN234

- -

Sesamin −9.1 0.046 ASN196*,
ILE197*, ASP198 -

ASP88, ILE233,
GLN234, ILE235,
PRO272

LEU54

Usambarensine −6.8 1.9 ASN196,
ASP198*, ILE233* 4.57 ASP88, GLY199,

GLN234, ILE235 LEU54 ASP197,
ASP198

S. aromaticum

Biflorin −6 1.436
ASP88, ASN196,
GLN234, ILE235
GLN234*

PHE86, ILE197,
ASP198, GLY199,
TYR200, ILE233,
THR236

GLN234 -

Crategolic acid −6.4 1.764 ASN196,
GLN234 3.96, 4.57

LEU54, ASP88,
ILE197, ASP198,
GLY199, ILE235,
PRO272

Oleanolic acid −6.2 2.01 ASN87*, ILE235

ASP53, LEU54,
PHE86, ASP88,
ASN196, ILE197,
GLN234, THR236

- -

Rhamnetin −6 1.785 ASN87, ASP88,
GLY199

3.29, 6.01,
3.40

PHE86, ASN196,
ASP198, GLY232,
ILE233, GLN234,
ILE235
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Table 1. Cont.

Plant Phytocompounds Binding
Affinity

RMSD
(Å)

H/C-H Bond
Interaction

Bond
Length

Hydrophobic
Interaction

Alkyl
Interaction

Pi-Sigma/
Cation
Stacked
Interaction

M. speciosa
Korthi

Chlorogenic acid −6.1 2.307 PHE86, ASN196,
ILE235

4.34, 2.65,
5.55

LEU54, ASP88,
ASN87, ILE197,
ASP198, GLY199,
TYR200, GLY232,
ILE233, GLN234,
THR236

Isoquercitrin −6.4 2.484
ASN196, ILE233,
GLN234, ILE235,
ASN87*

6.26*, 4.25,
4.43, 5.59,
4.47

LEU54, PHE86,
ILE197, ASP198,
GLY199, THR236

- ASP88

Rutin −6.1 2.149

ASN196,
ASN196*,
ASP198,
GLN234*, ILE235

3.79, 4.05*,
3.85, 3.67*,
5.01

PHE86, ASN87,
ASP88, GLY199,
GLY232, ILE233,
THR236

LEU54,
ILE197 -

Kabasura kudineer

C. serratum

Acteoside −7.3 2.804

PHE86, ASN87,
ASP88, ASN196,
ASP198, GLY199,
ILE233, GLN234

4.45, 6.04,
3.09, 4.34,
3.47, 5.84,
3.78

LEU54, LYS195,
THR236 ILE197

Serratagenic acid −6.8 2.404 ASP88, GLN234 4.33, 4.54 - - -

Verbascoside −7.1 1.904

ASN87, ASP88*,
ASN196, ASP198,
GLY199, ILE233,
GLN234

6.07, 3.99,
3.49, 4.04,
5.37, 4.73

GLN52, PRO85,
ILE235

LEU54,
PRO272 THR236

H. auriculata

Apigenin
7-O-glucoside −6.5 2.588

ASN87, ASN196,
GLY199,
GLN234, ILE235

5.13, 3.54,
3.65, 3.42,
3.95, 4.52

PHE86, ASP88,
ILE233 ASP198

Cucurbitacin B −6.2 2.838 GLN234, GLY199 3.34, 4.84

PHE86, ASN87,
ASP88, THR108,
THR114, ILE197,
ASP198, ILE233,
ILE235, THR236

- -

A. paniculata Neoandrographolide −6.3 1.466
ASN87, ASN196,
GLN234, ILE235,
PRO272*

3.79, 4.2,
5.13, 4.25,
5.55

GLN52, ASP53,
LEU54, PHE86,
THR236

ASP88

M. cerviana

Orientin −6.2 1.189
ASN87*, ASP88,
ASN196, ILE233,
GLN234, ILE235

4.32, 421,
5.42, 4.98,
3.95

PHE86, ASN87,
ASP198, GLY199,
GLY232, THR236

ILE197 -

Vitexin −6.2 1.562

ASN87, ASP88,
ASN196,
GLN234,
GLN234*,
ILE235, ASP198

5.44, 3.01,
3.24, 3.52,
4.21

- - -

T. involucrate L. Rutin −6.4 1.702
ASP88*, ASN196,
ASP198, GLY199,
ILE233, GLN234

4.39, 2.93,
4.48, 4.79

PHE86, ASN87,
GLY89, ILE231,
GLY232, ILE235,
PRO272

LEU54,
ILE197

T. cordifolia Tinosporide −6.1 2.551
ASN87*, ASP198,
GLY199, ILE233.
ILE235*

4.50, 3.59,
5.90

PHE86, ASP88,
ASN196, TYR200,
GLN234

THR236

Note: * indicates the carbon-hydrogen bond.

The screened phytocompounds binding affinity and its LigPlot interactions for the RBD
domain are listed in Table 2 and Figure S3 (Supplementary File S1). The pharmacological
activity of the resulting active compounds acts against the NTD and RBD is listed in Table 3,
and the predicted drug-likeness and toxicity classes are presented in Tables 4 and 5.
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Table 2. Binding affinity, RMSD, and interacting residues of the screened phytocompounds against
RBD domain.

Plant Phytocompounds Binding
Affinity

RMSD H/C-H Bond
Interaction

Bond
Length

Hydrophobic
Interaction

Alkyl
Interaction

Pi-Sigma/
Cation
Stacked

(Å) Interaction

B.1.617.2. S-Protein—RBD-Domain

Standard
Drug Ceftriaxone −6.5 1.625

ARG457, LYS458,
GLU471*,
GLN474, CYS480

3.45, 5.86;
3.40, 4.14,
3.52, 3.59,
3.60

ARG454, GLU465,
ASP567, SER469,
TYR473, PRO479,
GLY482, PRO491

CYS480 ARG457

H. cordata

Canthaxanthin −7.2 1.543 - -

ARG403, TYR449,
GLU484, GLN493,
SER494, TYR495,
GLY496, THR500,
ASN501, GLY502,
TYR505

- PHE490

Cholest-4,14-dien-
15,20-diol-3,16-
dione

−6 2.764 SER494 4.08

LEU452, GLU484,
GLY485, CYS488,
TYR489, LEU492,
GLN493

- PHE490

Fluorometholone
17-acetate −6.1 3.672 PHE490, GLN493 4.54, 5.00

LEU452, PHE456,
GLU484, TYR489,
SER494

- LEU492

Kanzonol V −6.8 2.182 GLU484, TYR449 4.54, 4.55
LEU452, LEU455,
PHE490, LEU492,
GLN493, SER494

- PHE456,
TYR489

Progeldanamycin −6.4 2.392 TYR449, SER494 3.45, 2.62 ASN450, PHE490,
LEU492, GLN493 - LEU452

Rhodoxanthin −7.5 1.856 - -

ARG346, SER349,
TYR351, ASN450,
LEU455, PHE456,
GLU484, GLY485,
PHE486, LEU492,
GLN493, SER494

LEU452,
TYR489,
PHE490

-

Stigmastane-3,6-
dione,
(5.alpha)

−6.8 3.213 GLN493, SER494 4.98, 4.04
TYR351, LEU452,
THR470, GLU484,
LEU492

PHE490 -

S. aromaticum Rhamnetin −6.1 2.981 ARG346, SER349,
TRP353, SER349

4.12, 3.78,
4.73

PHE347, ARG355,
LEU452, ARG466

TYR351,
ALA352 ALA348

M. speciosa
Korthi

Beta-Sitosterol −6 1.586 GLY485 3.45
GLU484, PHE486,
ASN487, LEU492,
GLN493, SER494

LEU452,
TYR489,
PHE490

-

Stigmasterol −6 3.456 - - LEU455, GLN484,
LEU492, GLN493

LEU452,
PHE456,
TYR489, PHE490

PHE490

Kabasura kudineer

T. cordifolia Berberine −6.1 2.725 PHE490,
GLN493, SER494

4.73, 4.32,
4.15

TYR449, TYR489,
LEU492 LEU452 -

C. serratum Clerodermic acid −5.8 4.924 GLU484 3.64, 4.37
TYR449, LEU452,
THR470, LEU492,
GLN493, SER494

- PHE490

C. speciosus Diosgenin −6.9 1.058 SER349 4.28

ARG346, PHE347,
ALA348, ASN450,
TRP353, ASN354,
ARG355, ARG466,
ILE468

ALA352,
LEU452 -

Note: * indicates the carbon–hydrogen bond.
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Table 3. The pharmacological activity of the active compounds against S-Protein (mutated NTD and
RBD) of Indian delta variant B.1.617.2.

Plant Name Active Compounds Plants Parts Pharmacological Properties References

H. cordata

Canthaxanthin,
Cholest-4,14-dien-15,20-
diol-3,16-dione,
Dihydrocelastrol,
Fluorometholone
17-acetate, Isoquercitrin,
Kanzonol V, Naltrindole,
Pirenperone,
Progeldanamycin,
Quercitrin, Rhodoxanthin,
Sesamin,
Stigmastane-3,6-dione,
(5.alpha), Usambarensine

Whole Plant

Cough, pneumonia, bronchitis, dysentery, dropsy,
leukorrhea, uteritis, eczema, herpes simplex, acne,
chronic sinusitis, stomach ulcer, infection, control
wrinkle, chapped skin, septic, febrifuge, heatstroke,
malaria, lung disorder, tonsillitis, skin ulcer,
diarrhea, dysentery arthritis, appendicitis, snake
bite, stomach disorder, sinusitis, heart disorders,
severe acute respiratory Syndrome (SARS),
chikungunya, herpes simplex viruses, dengue virus
serotype 2 (DEN-2), infuenza neuraminidase,
pseudorabies herpes virus (prv), human
noroviruses (hunovs), murine coronavirus and
dengue virus infection, innate immune modulation
activities, and inhibits the replication of SARS-CoV.

[65,90–98]

S. aromaticum Biflorin, Crategolic acid,
Oleanolic acid, Rhamnetin Cloves buds (Oil)

Coughs, colds, asthma, respiratory and digestive
disorders, sinusitis, modulatory effects of cell
membrane permeability, acts against food borne
gram-positive bacteria, promotion of Go/G1 cell
cycle arrest, induction of apoptosis, anti-diabetic
activity, antioxidant, antitumor, cardio protective,
antifungal, and acts effectively against SARS-CoV-2.

[70,99–109]

M. speciosa Korthi

Chlorogenic acid,
Isoquercitrin, Rutin,
Beta-Sitosterol,
Stigmasterol

Leaves

Tiredness and muscle fatigue, diarrhea, coughing,
muscle pain, anti-diabetic, wound, hypertension,
drug addiction, anti-inflammation, antinociceptive,
anti-oxidant, antimicrobial activity, and reduction
of muscle pain against SARS-CoV-2.

[79,110–115]

Kabasura kudineer

C. serratum
Acteoside, Clerodermic
acid, Serratagenic acid,
Verbascoside

Root
Respiratory disease, fever, anti-inflammatory,
anticancer, antinociceptive, liver disorders,
anti-allergic, and acts as anti-oxidant.

[63,64,116,117]

H. auriculata Apigenin 7-O-glucoside Root

Anasarca, urinogenital tract disorder, hyperdipsia,
vesical calculi, flatulence, diarrhea, leukorrhea,
gonorrhea, gastrointestinal disorder, anti-tumor,
arthritis, painful micturition, menorrhagia, and
treats blood infection.

[63,64,118,119]

T. cordifolia Berberine, Tinosporide Stem

Immuno-modulation, pneumonia, asthma, cough,
swelling lungs, colic, constipation, tetanus, anthrax,
pox, fracture, antispasmodic, and
antipyretic activity.

[63,64,75,120,121]

C. speciosus Diosgenin Root

Pneumonia, constipation, skin diseases, fever,
asthma, bronchitis, inflammation, anaemia, dropsy,
cough, urinary diseases, jaundice, improves insulin
secretion, hypolipidemic, adaptogenic, anticancer,
and hepatoprotective activity.

[63,64,122–125]

A. paniculata Neoandrographolide Whole plant
Colds, sinusitis, influenza, immunostimulant,
anti-viral against hepatitis B, HIV, and respiratory
syncytial virus.

[63,64,126,127]

M. cerviana Orientin, Vitexin Whole plant

Anti-inflammatory, anti-oxidant, antimicrobial,
antidiabetic, hepatoprotective, photo-protective,
uterine stimulant, antiseptic, antipyretic, and
immunostimulant activity.

[63,64,128,129]

T. involucrata Rutin Root
High fever, inflammation, wounds, eczema, scabies,
skin infections, bronchitis pain, and
antimicrobial activity.

[63,64,121,130]
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Table 4. Identification of drug-likeness and toxicity analysis for selected compounds inhibits mutated N-domain in S-Protein.

Phytocompounds Drug-Likeness Toxicity Analysis

Plant Name Compound Name miLogP TPSA Natoms nON nOHNH No. of
Violations

Intestinal
Absorption

Oral Toxicity
(−log kg/mol)

Hepato
Toxicity

Carcino
Genicity

Immuno
Toxicity

Muta
Genicity

Cyto
Toxicity

LD50
(mg/kg) TC

B.1.617.2. S-Protein—NTD Mutant Type

Standard
Drug Ceftriaxone −1.68 214.98 36 15 5 2 0.9477 1.486 0.55(mod) 0.51(mod) 0.99(-) 0.68(mild) 0.66(mild) 10,000 VI

H. cordata

Cholest-4,14-dien-
15,20-diol-3,16-
dione

4.87 74.60 31 4 2 0 0.9931 4.137 0.87(-) 0.62(mild) 0.70 (+) 0.77(-) 0.66(-) 5000 V

Dihydrocelastrol 6.15 77.75 33 4 3 1 0.9905 2.415 0.63(mild) 0.51(mod) 0.73 (+) 0.88(-) 0.84(-) 1000 IV
Isoquercitrin −0.36 210.50 33 12 8 2 0.6468 3.076 0.82(-) 0.85(-) 0.66(mild) 0.76(-) 0.69(mild) 5000 V
Naltrindole 3.80 68.72 31 5 3 0 0.9848 4.214 0.89(-) 0.58(mod) 0.96(-) 0.57(mod) 0.55(mod) 402 IV
Pirenperone 3.49 54.69 29 5 0 0 0.9896 2.368 0.78(-) 0.63(mild) 0.99(-) 0.54(mod) 0.68(mild) 1000 IV
Quercitrin 1.68 131.35 22 7 5 0 0.9833 2.559 0.69(mild) 0.68(mild) 0.87(-) 0.51(mod) 0.99(-) 159 III
Rhodoxanthin 9.29 34.14 42 2 0 2 0.9902 2.26 0.63(mild) 0.61(mild) 0.60(mild) 0.90(-) 0.83(-) 10,000 VI
Sesamin 3.69 55.40 26 6 0 0 0.9871 0.967 0.81(-) 0.65(mild) 0.84(+) 0.60(mild) 0.94(-) 1500 III
Usambarensine 6.17 47.71 33 4 2 1 0.9970 2.689 0.91(-) 0.71(-) 0.86(+) 0.50(mod) 0.66(mild) 370 IV

S. aromaticum

Biflorin −0.70 160.81 25 9 6 1 0.9009 2.995 0.81(-) 0.78(-) 0.81(-) 0.51(mod) 0.83(-) 562 IV
Crategolic acid 5.81 77.75 34 4 3 1 0.9643 2.316 0.65(mild) 0.63(mild) 0.61(mild) 0.87(-) 0.89(-) 2000 IV
Oleanolic acid 6.72 57.53 33 3 2 1 0.9853 2.034 0.52(mod) 0.57(mod) 0.79(+) 0.85(-) 0.99(-) 2000 IV
Rhamnetin 2.22 120.36 23 7 4 0 0.9840 2.542 0.73(mild) 0.59(mod) 0.55(mod) 0.69(mild) 0.91(-) 5000 V

M. speciosa
Korthi Chlorogenic acid −0.45 164.74 25 9 6 1 0.3251 2.277 0.72(-) 0.68(mild) 0.99(+) 0.93(-) 0.80(-) 5000 V

Kabasura kudineer

C. serratum
Acteoside −0.45 245.29 44 15 9 3 0.81(-) 0.81(-) 0.99(+) 0.87(-) 0.77(-) 5000 V
Serratagenic acid 5.43 94.83 35 5 3 1 0.9853 2.233 0.69(mild) 0.55(mod) 0.79(+) 0.90(-) 0.91(-) 6176 VI
Verbascoside −0.45 245.29 44 15 9 3 0.6642 2.694 0.81(-) 0.81(-) 0.99(+) 0.87(-) 0.77(-) 5000 V

H. auriculata Cucurbitacin B 2.83 138.20 40 8 3 1 0.9895 4.041 0.87(-) 0.50(mod) 0.90(+) 0.72(-) 0.66(mild) 14 II
A. paniculata Neoandrographolide 1.17 125.69 34 8 4 0 0.8124 3.165 0.92(-) 0.88(-) 0.97(+) 0.69(mod) 0.70(+) 5 I

M. cerviana
Orientin 0.03 201.27 32 11 8 2 0.8864 3.207 0.81(-) 0.72(-) 0.52(mod) 0.52(mod) 0.87(-) 1213 IV
Vitexin 0.52 181.04 31 10 7 1 0.8984 2.724 0.81(-) 0.72(-) 0.82(-) 0.52(mod) 0.87(-) 832 IV

T. cordifolia Tinosporide 2.02 98.51 27 7 1 0 0.9589 2.775 0.82(-) 0.6(mild) 0.96(+) 0.72(-) 0.53(mod) 280 III

Note: TC—Toxicity Class; Class I: fatal if swallowed (LD50 ≤ 5); Class II: fatal if swallowed (5 < LD50 ≤ 50); Class III: toxic if swallowed (50 < LD50 ≤ 300); Class IV: harmful if
swallowed (300 < LD50 ≤ 2000); Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000); Class VI: non-toxic (LD50 > 5000).
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Table 5. Identification of drug-likeness and toxicity analysis for selected compounds inhibits RBD-domain in S-Protein.

Phytocompounds Drug-Likeness Toxicity Analysis

Plant Name Compound Name miLogP TPSA Natoms nON nOHNH No. of
Violations

Intestinal
Absorption

Oral Toxicity
(−log kg/mol)

Hepato
Toxicity

Carcino
Genicity

Immuno
Toxicity

Muta
Genicity

Cyto
Toxicity

LD50
(mg/kg) TC

B.1.617.2. S-Protein—RBD Domain

H. cordata

Canthaxanthin 9.29 34.14 42 2 0 2 0.8350 3.016 0.63(mod) 0.68(mod) 0.92(-) 0.98(-) 0.85(-) 10,000 VI
Cholest-4,14-dien-
15,20-diol-3,16-
dione

4.87 74.60 31 4 2 0 0.9931 4.137 0.87(-) 0.62(mild) 0.70(+) 0.77(-) 0.66(-) 5000 V

Fluorometholone
17-acetate 3.09 80.67 30 5 1 0 0.6371 3.218 0.86(-) 0.61(mod) 0.99(-) 0.94(-) 0.71(mild) 4000 V

Kanzonol V 7.05 62.83 28 4 2 1 0.6530 2.860 0.73(mild) 0.59(mod) 0.98(-) 0.56(mod) 0.84(-) 2500 V
Progeldanamycin 2.47 108.25 34 7 4 0 0.5100 3.001 0.63(mod) 0.59(mod) 0.99(-) 0.719(mild) 0.70(mild) 1000 IV
Quercetin 1.68 131.35 22 7 5 0 0.4381 2.636 0.69(mod) 0.68(mod) 0.87(-) 0.51(+) 0.99(-) 159 III
Rhodoxanthin 9.29 34.14 42 2 0 2 0.8190 2.660 0.63(mod) 0.61(mod) 0.60(mod) 0.90(-) 0.83(-) 10,000 VI
Stigmastane-3,6-
dione,
(5.alpha.)

7.76 34.14 31 2 0 1 0.8690 2.962 0.78(mild) 0.62(mod) 0.99(-) 0.93(-) 0.58(mod) 775 IV

Rhamnetin 2.22 120.36 23 7 4 0 0.5620 2.739 0.73(mild) 0.59(mod) 0.55(mod) 0.69(mod) 0.91(-) 5000 V
Mitragyna
speciosa Korthi

Beta-Sitosterol 8.62 20.23 30 1 1 1 0.9241 3.181 0.87(-) 0.60(mod) 0.99(+) 0.98(-) 0.94(-) 890 IV
Stigmasterol 7.87 20.23 30 1 1 1 0.9241 3.251 0.87(-) 0.60(mod) 0.99(+) 0.98(-) 0.94(-) 890 IV

Kabasura kudineer

T. cordifolia Berberine 0.20 40.82 25 5 0 0 0.4693 2.785 0.82(-) 0.56(mod) 0.99(-) 0.62(mod) 0.96(-) 200 III
C. serratum Clerodermic acid 2.73 63.60 24 4 1 0 0.7051 3.101 0.82(-) 0.55(mod) 0.81(-) 0.89(-) 0.80(-) 3300 V
C. speciosus Diosgenin 5.93 38.70 30 3 1 1 0.7820 3.364 0.69(mod) 0.55(mod) 0.99(-) 0.96(-) 0.99(-) 8000 VI

Note: TC—Toxicity Class; Class I: fatal if swallowed (LD50 ≤ 5); Class II: fatal if swallowed (5 < LD50 ≤ 50); Class III: toxic if swallowed (50 < LD50 ≤ 300); Class IV: harmful if
swallowed (300 < LD50 ≤ 2000); Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000); Class VI: non-toxic (LD50 > 5000).
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We finally identified the compounds acteoside and verbascoside from C. serratum as
acting effectively against the mutated NTD (Figure 4D–I,K,L). The acteoside demonstrated
more beneficial interactions with PHE86, ASN87, ASP88, ASN196, ASP198, GLY199, ILE233,
and GLN234 via hydrogen bonds with a binding affinity of −7.3 kcal/mol. It also holds
alkyl interactions with the ILE197. It is surrounded by hydrophobic residues (LEU54,
LYS195, THR236). The toxicity class was also identified as V. The verbascoside interacts with
ASN87, ASP88*, ASN196, ASP198, GLY199, ILE233, and GLN234 via carbon–hydrogen*
bond with a binding affinity of −7.1 kcal/mol. It also held pi-alkyl interaction with
LEU54 and PRO272, as well as pi-sigma bonding with THR236, and was surrounded
by the hydrophobic residues (GLN52, PRO85, and ILE235). The predicted toxicity class
of verbascoside was V. The standard drug ceftriaxone interacted with ASP88, ASN87,
GLN115, ASN156*, ASP198, GLY199, GLY232, GLN234*, and ILE233 by hydrogen, carbon–
hydrogen, and pi-alkyl bonds. It was also surrounded by hydrophobic residues ASN196
and ILE197, and the predicted toxicity class was VI. Even though the standard drug
ceftriaxone interacted with the crucial residues GLN234* by carbon–hydrogen bond, the
binding affinity was −6.3 kcal/mol.

Moreover, the compounds kanzonol V, progeldanamycin, and rhodoxanthin from
H. cordata excellently inhibit the RBD domain compared with the other tested phytocom-
pounds (Figure 5D–L,N–P). Kanzonol V strongly interacted with GLU484 and TYR449 by
hydrogen bond and showed pi-alkyl interactions with PHE456 and TYR489. Kanzonol V is
surrounded by hydrophobic residues LEU452, LEU455, PHE490, and LEU492. The binding
affinity is −6.8 kcal/mol. It belonged to the toxicity classes of V. Progeldanamycin has
hydrogen bond interactions with TYR449, and SER494, as well as pi-sigma interaction with
LEU452, and is also surrounded by the hydrophobic residues ASN450, PHE490, LEU492,
and GLN493. The observed binding affinity is −6.4 kcal/mol with the toxicity class IV.
Rhodoxanthin shows pi-alkyl interactions with LEU452, TYR489, and PHE490 and was
surrounded by the hydrophobic residues ARG346, SER349, TYR351, ASN450, LEU455,
PHE456, GLU484, GLY485, PHE486, LEU492, GLN493, and SER494 with the binding affin-
ity of −7.5 kcal/mol. The toxicity class was noticed as VI. However, the ceftriaxone did not
interact with the specifically defined residues L452R, T478K, and E484Q in the Indian delta
variant, and the binding affinity was observed as −6.5 kcal/mol.
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Figure 4. The docking pose of the mutated NTD with the most effective phytocompounds is based
on the binding affinity and interacting residues (A,D,G). The docking poses with ceftriaxone, aceteo-
side, and verbascoside, respectively (B,E,H). The hydrophobicity of the interacting residues (brown
(↑ hydrophobicity)-blue (↓ hydrophobicity), (C,F,I). The type of bonds involved in interacting phyto-
compounds with the mutated NTD residues (J–L). The Ligplot interaction for the phytocompounds
docked with the mutated NTD residues.
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4. Discussion

The altered viral subset will become predominant in the context of environmental
switches. In the face of such problems in treatment planning, there is now strong necessity
for alternative therapy. Natural substances, which have been used globally for many years
due to their chemical variety, species diversity, and drug-like features, may be recognized in
this category. In this line, we aimed to assess the anti-COVID-19 capability of Siddha poly-
herbal formulation and plant extracts containing different phytocompounds that have been
previously reported to have antiviral properties [54,55]. The SARS-spike CoV-2 protein has
undergone mutations and is heavily glycosylated; hence, the biological relevance of viral
alterations must be investigated promptly [40,131]. Li et al. examined over 80 variations
and 26 glycosylation site variations to identify the severity of disease transmission and
sensitivity from recovered patients. The mutated residue N234Q was significantly resistant
to neutralizing antibodies, whereas N165Q became more susceptible [48]. Similarly, the In-
dian delta variant B.1.617.2. carries five particular mutations: L452R, T478K, E484Q, D614G,
and P681R [12,20,132]. It controls viral fitness by increasing the ACE2 receptor binding affin-
ity, increasing infectivity, and deactivating the antibodies. These mutations in the Indian
delta variant increased the spike’s stability, viral infectivity, and stronger cell attachment,
thereby promoting viral replication, transmissibility, and pathogenicity [12,29,133,134].
These discoveries could help with vaccine and therapeutic antibody development [40].

Drugs derived from medicinal plants have traditionally been widely utilized to treat
diseases [135–138]. However, effective medication is strongly advocated at this key stage
of COVID-19 and its variant infection [1]. Plants are rich in phytocompounds, which could
efficiently counteract with COVID-19 [139,140]. Hence, the MT-NTD and RBD domains in
the SARS-CoV-2 were docked using 603 phytochemicals in this investigation. Many of the
phytocompounds found in plants had high protein-binding abilities. After applying the
threshold criteria of ≤−6.0 kcal/mol to 603 compounds, 27 and 13 phytocompounds for
the MT-NTD and RBD, respectively, were screened.

Phytocompounds with a binding affinity of ≤−6.0 kcal/mol were chosen because
they showed promising inhibition with crucial residues N234Q, N165Q, L452R, T478K, and
E484Q against the MT-NTD and RBD. Typically, the threshold is chosen by correlating it
to known inhibitors that have been previously published and biologically verified. In this
regard, we selected ceftriaxone, a standard drug that evidenced higher binding affinity
toward both the NTD and RBD than the FDA-approved anti-viral drugs lopinavir [141],
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remdesivir [142], chloroquine [143], umifenovir [144], favipiravir [145], ribavirin [146],
hydroxychloroquine [147], sofosbuvir [148], and oseltamivir [4]. However, ceftriaxone
shows less binding affinity at −6.3 kcal/mol and −6.5 kcal/mol towards the MT-NTD and
RBD domains. Likewise, there is no interaction with the specified residues accounting for
the targeted MT-NTD and RBD of the S-Protein of the Indian delta variant B.1.617.2.

The root of C. serratum is reported to treat respiratory disease, fever, inflammation,
cancer, nociceptive, liver disorders, and allergic condition, as well as to act as an anti-
oxidant [63,64,116,117]. Acteoside and verbascoside from C. serratum act well against
the MT-NTD. Acteoside holds eight hydrogen bonds, one alkyl, and three hydrophobic
interactions with −7.3 kcal/mol of binding affinity. Moreover, verbascoside shows seven
hydrogen bonds, two alkyl bonds, one pi-sigma bond, and three hydrophobic interactions
with the binding affinity of −7.1 kcal/mol. These two phytocompounds have specifically
interacted with the mutated residues GLN234. Kallingal et al. reported that acteoside from
Tectona grandis acts effectively against SARS-CoV-2 proteases [149]. Shawky et al. reported
that verbascoside from Cichorium intybus, Olea europaea, and Marrubium vulgare acts as a
potent anti-COVID-19 compound [150]. H. cordata is implemented to treat many diseases
related to the lungs, especially against viruses such the pseudorabies herpes virus (PrV),
human noroviruses (HuNoVs), murine coronaviruses, and the dengue virus infection;
regulate innate immune modulation activities positively, and also inhibit the replication
of SARS-CoV [65,91–98].

Nevertheless, the ceftriaxone constitutes less binding affinity −6.5 kcal/mol, and
it does not interact with the targeted residues L452R, T478K, and E484Q in the RBD.
The compounds kanzonol V (−6.8 kcal/mol), progeldanamycin (−6.4 kcal/mol), and
rhodoxanthin (−7.5 kcal/mol) from H. cordata act effectively against the target residues
in the RBD of the Indian delta variant B.1.617.2 with better binding affinity. Even though
kanzonol and rhodoxanthin violated one or two Lipinski rules, they beneficially treated
bacterial and fungal infections, as previously reported [151]. Additionally, the toxicity class
is satisfactorily categorized as V and VI for kanzonol V and rhodoxanthin. Progeldanamycin
is not violating any rules, and its toxicity class is described as VI. In addition, Benet et al.
explained that violation of two or more Lipinski rules for the natural products and their
derivatives is acceptable. However, the FDA-approved oral drugs under the category
Class 1 (acarbose, cyanocobalamin, everolimus, ivermectin, etc.) are believed to have high
solubility properties and high permeability, also violating the Lipinski rule [152].

Moreover, the maximum number of phytocompounds from H. cordata and Kabasura
kudineer act significantly well against the NTD and RBD domain of the Indian delta variant
B.1.617.2 S-protein. AYUSH has recommended many treatments towards COVID-19 pre-
vention, which are implemented as preventative and symptomatic therapy in COVID-19
management [153,154]. Nevertheless, no Siddha formulation was prescribed for COVID-19
containing H. cordata, including Kabasura kudineer and Ayush kwath, which has already
been recommended by the Indian government [60,155]. According to the current investiga-
tion, the formulations and phytocompounds examined in this study showed considerably
greater binding efficacy against the MT-NTD and RBD in the S-Protein of the Indian delta
variant B.1.617.2. In silico studies suggested that the resulting phytocompounds may
operate as efficient inhibitors of the Indian delta variant B.1.617.2 by binding to the spike
glycoprotein, which may be investigated further in vitro to develop improved herbal for-
mulations and anti-viral drugs. Furthermore, SARS-CoV-2 has been proven to have a
greater affinity for pharyngeal epithelial cells [55]. Since these extracts can be delivered
to the pharyngeal regions through appropriate oral formulations, they will be effective to
control the infection rates.
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5. Conclusions

During the COVID-19 disease outbreak caused by SARS-CoV-19 and its variants the
disease transmission heightened due to a lack of targeted medications and vaccines. Even
though vaccines have been identified, their efficacy against the Indian delta variant B.1.617.2
has dramatically decreased, forcing researchers to look for novel anti-viral formulations. In
this regard, we analyzed 603 compounds from 22 plants. We identified five compounds:
acteoside, verbascoside, kanzonol V, progeldanamycin, and rhodoxanthin, which acted
significantly against the Indian delta variant B.1.617.2 compared with ceftriaxone, which is
the most beneficial drug in COVID 19 treatment. Though the Siddha formulation contains
C. serratum (L.) Moon, there is no Siddha formulation containing H. cordata. Hence, this
study contributes to the evidence for developing pharmaceutical formulations and anti-
viral drugs that act specifically against the Indian delta variant B.1.617.2.
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10.3390/app12020665/s1, Figure S1: The sequence alignment for the wild- and mutated-type NTD
in S-Protein; Figure S2: The LigPlot interaction for the mutated NTD domain and the screened phy-
tocompounds based on the binding affinity ≤−6.0 kcal/mol; Figure S3: The LigPlot interaction for
the RBD domain and the screened phytocompounds based on the binding affinity ≤−6.0 kcal/mol.
Table S1: The molecular properties of screened phytocompounds with the ≤−6.0 kcal/mol binding
energy against mutated NTD Domain; Table S2: The molecular properties of screened phytocom-
pounds with the ≤−6.0 kcal/mol binding energy against RBD Domain; Table S3: The binding affinity,
interacting residues, and bond length for the screened phytocompounds against the mutated NTD in
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phytocompounds against the RBD in the S-Protein.
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