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Abstract: Deep learning has been applied to structural damage detection and achieved great success
in recent years, such as the popular structural damage detection methods based on structural vibration
response and convolutional neural networks (CNN). However, due to the limited number of vibration
response samples that can be acquired in practice for damage detection, the CNN-based models
may not be fully trained; thus, their performance for identifying different damage severity as well
as the damage locations may be reduced. To solve this issue, in this paper, we follow the strategy
of "divide-and-conquer" and propose a two-stage structural damage detection method. Specifically,
in the first stage, a 1D-CNN model is constructed to extract the damage features automatically and
identify the damage locations. In the second stage, a support vector machine (SVM) model and
wavelet packet decomposition technique are combined to further quantify the damage. Experiments
are conducted on an eight-level steel frame structure, and the accuracy of the experimental results
is greater than 99%, which demonstrates the superiority of the proposed method compared to the
state-of-the-art approaches.

Keywords: structural damage detection; convolutional neural networks; support vector machine;
multi-level damage classification

1. Introduction

Structural damage is inevitable and more likely to happen when a variety of mechan-
ical or environmental elements are present. Structural damage can decrease the life of a
structure and threaten people’s safety. Establishing a structural health monitoring (SHM)
system , which is also crucial for enhancing structural reliability and safety and lowering
maintenance costs, is an efficient solution to solve this issue [1]. SHM is a multidisciplinary
research field that includes experimental testing, system identification, data collecting and
management, and long-term environmental data measurement [2,3]. The most important
part of SHM is structural damage detection (SDD), which is a methodical, automated
process for detecting damage, locating it, and determining its severity [4].

SDD begins with visual inspection, but visual inspection has numerous limitations.
First, due to the generally high scale of civil construction, routine inspections are time-
consuming and laborious. Second, the inspector’s specific knowledge is required for visual
inspection. Third, load-bearing structures are frequently hidden behind flooring, ceilings,
and other decorative materials, making visual inspection impossible [5]. With the continued
advancement in the fields of structural health monitoring and structural damage detection,
numerous strategies have been employed to identify, locate, and quantify structural damage
to overcome the limitations of visual inspection [6–8].

Damage to a structure alters the structure’s mass and stiffness distribution, causing
changes in the inherent frequency and vibration pattern [9]. Many approaches based on
structural vibration response , which extract features from the vibration response and then
determine the corresponding damage state, have been presented [10]. Some traditional

Appl. Sci. 2022, 12, 10394. https://doi.org/10.3390/app122010394 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010394
https://doi.org/10.3390/app122010394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5412-1578
https://orcid.org/0000-0003-3583-6943
https://orcid.org/0000-0003-3738-926X
https://doi.org/10.3390/app122010394
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010394?type=check_update&version=2


Appl. Sci. 2022, 12, 10394 2 of 15

machine learning algorithms have been applied to this field, with support vector machine
(SVM) being one of the most classic. Lei et al. [11] proposed a method based on vibration
statistical indicators and SVM, employing variance, regression coefficients, and cross-
correlation function amplitude as feature vectors for SVM, and achieved good results on an
eight-level steel frame structure. An enhanced Hilbert–Huang transform (HHT) and SVM-
based structural damage detection technique is proposed by Diao et al. [12]. The structural
vibration function’s Hilbert spectral energy is obtained by decomposing the vibration
signal using improved empirical modal decomposition. Then, the structural damage
feature vector is constructed, and the damage location and severity are detected using SVM.
The method’s efficacy is evaluated on an experimental model of an offshore platform.

However, feature extractors based on traditional machine learning techniques require
significant domain expertise, whereas deep-learning-based methods can automatically
extract and select features from data, thus avoiding the need for the manual design of
feature extraction methods and reducing workload [13]. In the field of structural health
monitoring based on vibration response, one-dimensional convolutional neural networks
(1D-CNN) are very popular deep learning methods; 1D-CNN takes time series directly
as input and conducts one-dimensional convolution on the time axis. Ma et al. [14] used
1D-CNN to detect damage in a steel beam numerical model. According to their results, 1D-
CNN based on acceleration signals could detect 94.1% of the damage. Wang et al. [15] used
the time-frequency graph of the damaged signal after HHT transform and the marginal
spectrum of the signal as the input of CNN and optimized the parameters of CNN with
particle swarm optimization (PSO) to improve the model performance. Xiao et al. [16]
proposed an improved denoising auto-encoder-based neural network and optimized it by
using gray relation analysis. It is capable of automatically extracting high-level features
from the original signal by multi-layer extraction and can achieve high accuracy in noisy
environments. In addition, numerous works have demonstrated that 1D-CNN outperforms
traditional machine learning methods in structure damage detection.

In applications of SHM, different users have different requirements. For example,
a house owner only needs to know the location of damage to his house to contact the
maintenance staff, while the maintenance staff needs to know more details about the
damage, including the location and severity of the damage to make better repairs. There-
fore, it makes sense to design a multi-stage structural damage detection method to save
computational costs.

To enhance both the model performance for detecting the damage location and the
damage severity, in this paper, we propose a two- stage structural damage detection method
in which the selection of a classifier for each stage is very important. We choose 1D-CNN
to detect the damage location because 1D-CNN has been widely adopted in the field of
SDD with good results. It was also discovered in [17] that 1D-CNN is more accurate for
identifying the damage location than the damage severity. This is because the variety of
structural vibration responses on different damage locations is much larger than that of
the damage severity. In addition, there is a very small difference between the vibration
response corresponding to different damage severity at the same location. In this case, a
CNN-based model may need more complex structures and more training data. Therefore,
after detecting the damage location, we can choose another method that may produce better
results with fewer samples and classes to detect the damage severity instead of detecting
the damage location and severity at the same time.

SVM is a strong classification machine for small-scale sample learning problems. It
is a sparse kernel decision machine that avoids computing posterior probabilities when
building its learning model. SVM has been extensively used for classification, regression,
novelty detection tasks, and feature reduction [18]. Compared with 1D-CNN, SVM is
more suitable for damage severity identification, and the computational cost and required
training samples of SVM are less than those of 1D-CNN.

In summary, the novelty and the main contributions of this paper are as follows:
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• We propose a new two-stage structural damage detection method which follows the
strategy of “divide-and-conquer” to solve the problem of insufficient training data
and enhance the model performance for multi-level structural damage detection.

• Our method fully combines the advantages of 1D-CNN and SVM, reducing computa-
tional costs and eliminating the need to rely on expertise to design complex feature
extraction methods.

• We verify the proposed model on an eight-level steel frame structure. The experimental
results show that the proposed method outperforms the state-of-the-art methods in
terms of both damage location detection and damage severity detection.

2. Methods

The framework of the proposed two-stage structural damage detection method based
on 1D-CNN and SVM is shown in Figure 1. After data preprocessing, the samples are
identified using a two-stage approach. In the first stage, the samples are classified according
to the damage location using 1D-CNN. In the second stage, the frequency domain features
of the samples are extracted using wavelet packet decomposition. Then, the feature vectors
are learned using support vector machine, and the damage severity of the samples can
be obtained.

Figure 1. An overview of our proposed framework.

2.1. 1D-CNN

In this work, 1D-CNN is adopted as the classifier for the first stage. Using 1D-CNN
to extract features from time series is a natural way. Compared with the traditional
approaches, 1D-CNN directly takes a one-dimension time series as input, without the
need to understand the physical meaning contained in the time series. Therefore, we can
construct a 1D-CNN model to automatically extract rich features from structural vibration
response and then classify the structural damage locations. The basic 1D-CNN model
includes three parts: convolutional layer, pooling layer, and fully connected layer. The
1D-CNN in practical applications contains more components to improve the model’s
performance. The 1D-CNN model constructed in this work includes convolutional layers,
pooling layers, global average pooling layers, dropout layers, fully connected layers, and
softmax output layers.

2.1.1. Convolutional Layer

The convolutional layer uses a time window sliding along the time axis direction of
the time series to obtain a set of subsequences and then multiplies each subsequence with
the kernel element-by-element to obtain the convolution result, as shown in Equation (1).
The convolutional layer has three characteristics: sparse weights, parameter sharing, and
equal variation [19]. These properties significantly reduce the model’s memory cost and
improve the model’s ability to extract data features automatically.

y(k) =
N

∑
i=0

h(k− i)u(i), (1)
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where h represents the subsequence, u (i) represents the kernel, y represents the output
signal, k represents the index of the subsequence, and N represents the length of the kernel.

ReLU [20] is chosen as the activation function in the convolutional layer, which has less
computational overhead and faster computation than activation functions such as Sigmoid.
The formula of ReLU is as in Equation (2). When the input x of ReLU is non-negative, the
output result is x. When x is less than 0, the output result is 0.

ReLU(x) =
{

x, x ≥ 0
0, x < 0

(2)

2.1.2. Pooling Layer

The pooling layer can reduce the output feature dimension of the convolutional layer
by downsampling [21]. In this paper, the max pooling method is used to reduce the feature
dimension, which takes the maximum value in the neighborhood as the representation
of the neighborhood. In this paper, we utilize global average pooling to compress the
high-dimensional feature vector output from the convolutional layer to one dimension
vector as the input of the subsequent model. Global average pooling aggregates the feature
information of each dimension, which is more robust to the noise in the feature vector [22].

2.1.3. Droput Layer

Dropout is an effective tool for solving the overfitting problem [23]. Dropout operation
is applied to the output of the global average pooling layer. Dropout is based on randomly
masking some units during training and enabling them during validation, which can
effectively improve the performance of CNN.

2.1.4. Full Connected Layer

After several layers of convolution and pooling, all information needs to be integrated
from the hidden feature space using the fully connected layer to complete the damage
detecting task.

2.2. SVM

SVM is a very effective machine learning technique widely used in classification,
regression, anomaly detection, and other learning tasks [24,25]. Given the training samples
and labels xi ∈ Rn, yi ∈ {−1,+1}, i = 1, . . . , m, SVM can solve the following optimiza-
tion problem:

min
w,b,ξi

1
2
‖w‖2 + C

m

∑
i=1

ξi

s.t. yi

(
wTxi + b

)
> 1− ξi,

ξi > 0, i = 1, 2, . . . , m,

(3)

where w represents the weight and y is the sample label, ξi is the relaxation variable, C is
the penalty coefficient, m is the number of samples, and b is the bias. SVM finds a linear
partitioned hyperplane with maximum margin in a high-dimensional space. By solving
this optimization problem for w, b, and ξi, the optimal hyperplane which can be used to
classify samples is obtained. This optimization problem can be solved with the help of
the Lagrange multiplier method or quadratic programming. However, this optimization
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problem is usually complicated and needs to be solved with the help of the dual problem.
The dual form is given by Equation (4).

max
α

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjxi
Txj

s.t.
m

∑
i=1

αiyi = 0,

0 ≤ αi ≤ C i = 1, 2, . . . , m,

(4)

where αi represents the Lagrange multiplier. After solving the dual problem, the solution
of the original problem can be obtained:

w =
m

∑
i=1

αiyixi, (5)

b = yj −
m

∑
i=1

αiyixT
i xj (6)

SVM can be extended to a nonlinear classifier by introducing kernel functions. There
are many commonly used kernel functions such as linear, polynomial, sigmoid, and radial
basis function (RBF) [26]. Among them, the RBF function is the most widely used kernel
function [27] because it has a solid ability to distinguish the non-linearly separable data.
The formula of the RBF function is shown in Equation (7).

K
(
xi, xj

)
= exp

(
−
∥∥xi − xj

∥∥2

2δ2

)
, δ > 0, (7)

where δ is the hyperparameter.

2.3. Wavelet Packet Decomposition

Wavelet packet decomposition combines wavelet transform and multi-resolution
approximation. More detailed features are extracted as the signal is subdivided step-
by-step [28]. After performing a wavelet packet decomposition of level N, 2N different
waveform signals DNj, (j = 1, 2, . . . , 2N − 1) with low to high frequencies are generated.
The energy of each band signal can be calculated by Equation (8).

ENj =
∫ ∣∣DNj(t)

∣∣2dt =
n

∑
k=1

∣∣∣djk

∣∣∣2, (8)

where djk is the amplitude of the k point of the reconstructed signal DNj, and n is the
number of discrete points. The energy of each frequency band can be calculated from
Equation (8), and the feature vector SN can be constructed from these energy values as in
Equation (9).

SN = [EN0, EN1, . . . , ENj, . . . , EN(2N−1)] (9)

SN can be normalized by the min-max normalization method to obtain the new feature
vector S

′
N .

S
′
N = [E

′
N0, E

′
N1, . . . , E

′
Nj, . . . , E

′

N(2N−1)] (10)

Figure 2 shows an example of decomposition with 4-layer wavelet packets from the
experimental data in this work.
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Figure 2. The feature vectors obtained by wavelet packet decomposition under the different damage
cases. The 4 damage case are represented by D1–D4.

3. Experiments
3.1. Dataset

In this paper, the vibration response signals were collected through an eight-layer
steel frame structure; each layer was 35 cm long and 25 cm wide, with a height of 20 cm
between the two layers. Anchor bolts were used to fasten the bottom of the frame to the
ground, while double-row bolts were used to join the beam to the columns. The diagram
of the frame is shown in Figure 3. White noise excitation was applied at the third layer of
the frame, and eight acceleration sensors were installed at each level along the direction of
external excitation to record the acceleration response. The white noise generator model
was RIGOL DG-1022, an electromagnetic exciter was used as the actuator, and the type
of white noise was pre-defined (Ex1-Ex10). The model structure’s steel material had an
elasticity modulus of E = 2.0 × 1011 Pa and a density of ρ = 7.8 × 103 kg/m3. Each
column member was made of a 200× 30× 3 mm steel plate in a undamaged condition.
The damage to the steel frame structure was achieved by reducing the stiffness of the
steel plates (i.e., replacing the current plate with thinner ones: 200× 30× 2.5 mm). In the
vibration experiments, the duration of each recording was 32 s, the sampling frequency
was 128 Hz, and a record contained 4096 data points for one sensor. Ten damage states
were set up for the experiments, and the damage locations and severity for the ten damage
cases are shown in Table 1.

F(t)

20cm 35cm

25cm

Measure Point

Figure 3. Eight-layer steel frame diagram.
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Table 1. Description of different damage cases

Case Location Decreased Stiffness (%)

UD - 0
D1 3 8.3
D2 3 16.7
D3 5 8.3
D4 5 16.7
D5 7 8.3
D6 7 16.7
D7 3 & 5 8.3 (both layers)
D8 3 & 7 8.3 (both layers)
D9 5 & 7 8.3 (both layers)

In Table 1, UD is the undamaged state, D1–D6 are the cases of single-layer damage, and
D7-D9 are the cases of two-layer damage. Ten different white noise excitations (Ex1-Ex10)
were applied for each damage case. For each noise effect, one record was gathered. A
total of 100 data were collected under 10 kinds of damage and 10 kinds of noise. Each
record contains the vibration response of eight sensors, with a sampling time of 32 s and a
sampling frequency of 128 Hz, for a total of 32,768 data points. Figure 4 shows the structural
vibration response for the UD and D1 cases.

Figure 4. Examples of two kinds of damage data.

3.2. Data Preprocessing

A data preprocessing operation was needed to change the original data into a more
suitable form that meets the requirements of the model. In this work, preprocessing
contains four parts: (1) eliminate offset; (2) min–max normalization; (3) data slicing; and
(4) splitting the training and validation sets.
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3.2.1. Offset Elimination

During vibration testing, sensors or acquisition devices are likely to offset due to their
performance problems or environmental disturbances (e.g., temperature, power supply,
etc.). The offset will directly affect the accuracy of signal analysis and should be eliminated.
In this paper, the elimination of offset was achieved by subtracting the mean value from
the samples. For the time series X = {x1, x2, . . . , xn}, the formula for eliminating the offset
is as follows:

X̂ = X− 1
n

n

∑
i=1

xi (11)

3.2.2. Data Normalization

From Figure 4, it can be found that there are differences in the vibration magnitudes
of different samples. To eliminate the differences in the magnitudes of different samples
and improve the classification performance [29], a min–max normalization method [30]
expressed by Equation (12) was used to normalize all sample magnitudes to the range of 0
to 1.

X̂ =
X−min (X)

max (X)−min (X)
(12)

3.2.3. Data Slicing

In order to make full use of the data, this paper adopts a slicing approach to enhance
the data information. For example, one original time series contained vibration responses
recorded by eight sensors, and each vibration response contained 4096 data points. The
slice length Ns and the sliding step s were chosen to divide the sample into multiple slices,
and each slice had the same class label as the original time series. Thus, by varying Ns and
s, different numbers of training samples can be obtained, and this method is particularly
effective in the case of insufficient data samples. In this work, we set Ns = 1024, s = 100,
and the data was expanded from 100 to 3000 using data slicing. Figure 5 shows the detailed
method of data slicing.

Figure 5. The illustration of data slicing.



Appl. Sci. 2022, 12, 10394 9 of 15

3.2.4. Dataset Splitting

To validate the performance of the proposed model, the dataset is usually partitioned
into training and test sets. During the model’s training, only data from the training set is
used to train it, and when testing the model’s performance, the model is cross-validated
using data from the test set that the model has never seen before. The process of k-fold
cross-validation is one of the widespread cross-validation methods. The original sample
is randomly partitioned into k equal sized subsamples in k-fold cross-validation, a single
subsample from the k subsamples is retained as test data for evaluating model effectiveness,
and the remaining k− 1 subsamples are used as training data. The cross-validation process
is then repeated k times, with each of the k subsamples supplied as test data exactly once.
In this paper, k was set to five.

3.3. Baselines

We compared our model with the following baseline models:

• SVM: The feature vector was obtained by four-layer wavelet packet decomposition,
and then SVM was used to identify both the damage location and the damage severity.

• 1D-CNN: Using 1D-CNN to identify both damage location and damage severity, the
structure of 1D-CNN was the same as the 1D-CNN used in the method proposed in
this paper.

• 1D-CNN and1D-CNN: After identifying the damage location using a 1D-CNN, the
damage severity was identified using another 1D-CNN. The structure of the two
1D-CNNs were consistent with the 1D-CNN in the method proposed in this paper.

3.4. CNN Configurations

The structure and details of the specific parameters of the 1D-CNN used in this paper
are shown in Table 2.

Table 2. Configuration of the 1D-CNN used in this paper.

Layer Output Shape Parameter Activation Variables

Input 1024 × 8 None None 0
Convolution 1-D 1021 × 8 Kernel number: 4; Kernel size: 8 × 8; ReLU 264
Convolution 1-D 1014 × 16 Kernel number: 8; Kernel size: 16 × 8; ReLU 1040
Max Pooling 1-D 507 × 16 Kernel number: 2; None 0
Convolution 1-D 500 × 16 Kernel number: 8; Kernel size: 16 × 8; ReLU 2064
Global Average

Pooling 1-D 16 None None 0

Dropout 16 None None 0
Dense 7 None Softmax 119

Total parameters 3487

3.5. Experimental Results

The proposed model was trained on a server equipped with an Intel Xeon Silver 420
(10) @ 2.194GHz CPU and an Nvidia Tesla V100 (32GB) GPU. The model was developed
using the Python (version 3.7.13) programming language with the Python modules Keras
(version 2.2.4) and Pycaret (version 2.3.10). We used Keras to build the 1D-CNN model and
Pycaret to build the SVM model.

We adopted five-fold cross-validation to train and validate the models. The experi-
mental results of the proposed method compared with other baseline methods are given in
Table 3. From Table 3, we can see that the model performance of only using SVM combined
with four-layer wavelet packet decomposition was the worst, with an average accuracy of
75.7%. This might be because the complexity of the problem to detect the damage locations
and damage severity simultaneously exceeds/ed the learning ability of the model, and the
informative features for classification were not well extracted. We can also find that the
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method using 1D-CNN worked better than the method using only SVM, which verifies the
powerful feature extraction ability of 1D-CNN in this task.

Moreover, the two-stage approach 1D-CNN and 1D-CNN worked better than the
other directly identification approach, which verifies the effectiveness of the idea of “divide-
and-conquer”. In addition, the method using 1D-CNN and SVM achieved the best results,
slightly higher than that of 1D-CNN and 1D-CNN. The specific experimental results of
the two-stage methods are shown in Table 4. Since the 1D-CNN was used to identify
the damage locations in the first stage in both two methods, their accuracies of detecting
damage locations were very close, while in the second stage, the SVM was able to maintain
a stable accuracy of 100%, which is better than that of 1D-CNN, indicating that SVM can
achieve better results on the case of the small number of samples. In addition, deep learning-
based methods need sufficient training samples; otherwise, they fall into an overfitting
state and lower the generalization performance of the model.

Table 3. The 5-fold cross-validation results of the 4 methods on the test set.

SVM 1D-CNN 1D-CNN&1D-CNN 1D-CNN&SVM

Fold 1 0.75 0.9718 0.9833 0.9966
Fold 2 0.6964 0.9364 0.9921 1.0
Fold 3 0.7143 0.9833 0.9845 0.9983
Fold 4 0.8036 0.9718 0.9743 1.0
Fold 5 0.8214 0.9645 0.9874 0.9989

Table 4. Comparison of 1D-CNN and 1D-CNN with 1D-CNN and SVM in two-stage classifica-
tion performance.

1D-CNN&1D-CNN 1D-CNN&SVM

Location Severity Location Severity

Fold 1 0.9989 0.9743 0.9984 1.0
Fold 2 1.0 0.9734 1.0 1.0
Fold 3 0.9968 0.9876 0.9991 1.0
Fold 4 0.9937 0.9804 1.0 1.0
Fold 5 1.0 0.9856 0.9994 1.0

Figure 6a,b show the confusion matrix of the 1D-CNN and 1D-CNN&SVM methods. It
can be seen that when only 1D-CNN was used to identify the damage location and damage
severity, the error was mainly concentrated on the case of different damage severity at the
same damage location, such as three samples of D1 were identified as D2 and eight samples
of D5 were identified as D4. The remaining six D9 samples were incorrectly identified as
D6 (note that D9 represents the existence of damage in the fifth and seventh layers, and D6
represents the existence of damage in the seventh layer only), and the model only identified
one of the damage locations. In contrast, in the case of using 1D-CNN and SVM, there were
no erroneous samples within the confusion matrix, and the two-stage method based on
1D-CNN and SVM improved the performance of the model.

3.6. Further Comparison and Results Visualization

In this work, the training and testing speeds of each method were evaluated under the
environment as mentioned in Section 3.5 and shown in Table 5. From Table 5, we can see
that training the SVM model took much less time than that of the 1D-CNN model because
training 1D-CNN requires more parameters and epochs. The time required for testing the
SVM model and testing 1D-CNN model were both small, but the SVM model was still 33%
faster than 1D-CNN. The training time required for the two-stage model 1D-CNN and
SVM was 38.5 s, which was 10% faster than that of 1D-CNN and 1D-CNN which needed
43.2 s, and the testing time required for both methods was 1.2 s and 1.5 s, respectively.
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(a) 1D-CNN (b) 1D-CNN&SVM

Figure 6. Confusion matrixes of 1D-CNN and 1D-CNN and SVM methods.

Table 5. The time required for training and testing of the 4 methods.

SVM 1D-CNN 1D-CNN&1D-CNN 1D-CNN&SVM

Train 9.1 s 31.5 s 43.2 s 38.5 s
Test 0.6 s 0.9 s 1.5 s 1.2 s

We further adopted t-distributed stochastic neighbor embedding (T-SNE) to visualize
the classification results with the proposed model. T-SNE is a nonlinear dimensionality
reduction method that can reduce high-dimensional data to two or three dimensions for
visualization [31]. The T-SNE results of the test samples before and after classification are
shown in Figure 7a,b, respectively. Different colors represent different types of damage,
and it can be found that the sample distribution was chaotic and nearly indistinguishable
before classification; however, after classification, samples of different damage types were
clustered together separately, indicating that the method proposed in this paper has a
strong classification ability for structural vibration response samples.

(a) Before classification.

Figure 7. Cont.
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(b) After classification.

Figure 7. Visualization results of the test samples before and after classification.

4. Discussion

The health of buildings is significant for the safety of human life. Damage detection by
structural damage response is a relatively popular method in SHM. With the development
of machine learning and deep learning, more and more methods are being applied to
this field. Machine learning requires fewer training samples and low computational
cost but requires manually designed complex feature extraction methods. Deep learning
can automatically extract feature, but has a high computational cost and requires more
training samples.

We propose a two-stage structural damage response method based on 1D-CNN and
SVM by analyzing the vibration damage response of an eight-layer steel framework. The
1D-CNN is used in the first stage to detect the damage location, and the SVM is used in
the second stage to detect the damage severity, which fully combines the advantages of
1D-CNN and SVM to achieve better damage detection with less computational cost and
simpler feature extraction methods and is meaningful for the application of SHM.

In this paper, we compare our proposed method with several other methods. From
Table 3, it can be found that, in general, the two-stage damage detection methods work
better than the single-stage damage detection method. Among the single-stage damage
detection methods, 1D-CNN is much better than SVM. On the one hand, it is because 1D-
CNN has an extremely strong feature extraction ability, and on the other hand, it is because
we have not designed a feature extraction method for SVM that combines expertise, but
directly uses wavelet packet decomposition as the feature extraction method, resulting in a
large difference between the two effects. In Lei et al. [11], the authors achieved extremely
high accuracy by using variance, regression coefficients, and cross-correlation function
amplitude as features, followed by SVM for classification. This suggests that better results
can be achieved with SVM if the designed feature extraction method is good enough, but
this requires strong expertise, and the designed feature extraction method may not be
applicable to other structures. In contrast, 1D-CNN only uses a simpler structure, which
is good at automatically extracting features and achieving a high accuracy rate and is
applicable to a variety of structures.

Among the two-stage methods, the proposed method in this paper is slightly better
than 1D-CNN and 1D-CNN. It can be seen from Table 4 that the two methods are close to
each other in detecting the damage location because the first stage of both methods is same.
The main difference is in the second stage of damage severity detection. To further probe
the reason, we compared the confusion matrix of 1D-CNN with 1D-CNN and SVM. From
Figure 6a, we can find that the samples incorrectly identified by 1D-CNN were all samples
with the same damage location and different damage severity. On the one hand, this is
because the change of damage response caused by the change of damage severity was
small, and on the other hand, it is because the number of samples with different damage
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severity at the same damage location was small, which was not enough for 1D-CNN to learn
sufficient information. While SVM uses the wavelet packet decomposition of the damage
response as the feature vector, which is a classification problem with high-dimensional
small samples, and is well suited to be solved by using SVM, 1D-CNN and SVM have
indeed achieved better results.

There are not many studies on multi-level damage detection. Shao et al. [32] proposed
a multilevel damage classification method based on Lamb wave and transfer learning. They
divided the damage detection into three levels, which detected the existence, location, and
size of damage. In future work, we will consider adding a stage to detect the existence of
damage. Their method used 1D-CNN for damage detection at all three levels, and although
their method achieved high accuracy, it also takes more time to train. They also realized
this problem, so they used the transfer learning method to share part of the structure and
weights of the 1D-CNN in all three levels, which makes the training faster and saves more
time. If they consider using SVM to detect the size of the damage, they may be able to save
more time while ensuring the accuracy is not reduced.

Our study also has many limitations. In real-world applications, the location and
severity of damage are continuous, whereas the experiments in this paper have only
limited classes of damage locations and severity and use a classification model rather than
a regression model, which makes the method in this paper unable to predict the type of
damage outside the dataset.

In future work, we intend to replace the classification model by employing a regression
model and designing more types of damage locations and damage severity so that the
model can accurately discriminate between types of damage outside the dataset.

5. Conclusions

In this paper, a two-stage structural damage detection method based on 1D-CNN and
SVM is proposed. It is still challenging to detect the damage of a structure accurately based
on the vibration response of the structure. To solve the problem that traditional machine
learning methods need to design feature extraction methods by manually combining
expert knowledge, this paper uses 1D-CNN to automatically extract rich features from
vibration responses. To solve the problem that the number of samples with different
severity of damage at the same damage location is small and 1D-CNN cannot distinguish
these samples well, this paper uses SVM combined with wavelet packet decomposition to
achieve the accurate identification of these samples. Experiments were conducted on an
eight-layer steel frame, and damage responses were collected for ten damage cases. After
preprocessing operations such as offset elimination, normalization, and slicing, the damage
locations corresponding to the samples were first determined by 1D-CNN, and then the
damage severity corresponding to the samples was determined by SVM. In the comparison
experiments with other methods, the method proposed in this paper achieved the best
results, taking into account the operation speed and recognition effect.

However, the method in this paper still has some limitations, as it can only determine
predefined damage cases and cannot determine continuous damage locations or damage
severity. In future research, we intend to use deep learning-based regression methods to
predict continuous damage and combine expert knowledge to improve detection perfor-
mance. In addition, the data are provided by other labs, and we do not have permission to
share the data. The code is released at https://github.com/jch12138/two-stage-structure-
damage-detection (accessed on 30 August 2022).
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