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Abstract: In the field of educational data mining, the classification of students’ grades is a subject
that receives widespread attention. However, solving this problem based on machine learning
algorithms and deep learning algorithms is usually limited by large datasets. The privacy problem
of educational data platforms also limits the possibility of building an extensive dataset of students’
information and behavior by gathering small datasets and then carrying out the federated training
model. Therefore, the balance of educational data and the inconsistency of feature distribution
are the critical problems that need to be solved urgently in educational data mining. Federated
learning technology enables multiple participants to continue machine learning and deep learning
in protecting data privacy and meeting legal compliance requirements to solve the data island
problem. However, these methods are only applicable to the data environment with common
characteristics or common samples under the alliance. This results in domain transfer between nodes.
Therefore, in this paper, we propose a framework based on federated transfer learning for student
classification with privacy protection. This framework introduces the domain adaptation method
and extends the domain adaptation to the constraint of federated learning. Through the feature
extractor, this method matches the feature distribution of each party in the feature space. Then, labels
and domains are classified on each side, the model is trained, and the target model is updated by
gradient aggregation. The federated learning framework based on this method can effectively solve
the federated transfer learning on heterogeneous datasets. We evaluated the performance of the
proposed framework for student classification on the datasets of two courses. We simulated four
scenarios according to different situations in reality. Then, the results of only source domain training,
only target domain training, and federated migration training are compared. The experimental results
show that the heterogeneous federated transfer framework based on domain adaptation can solve
federated learning and knowledge transfer problems when there are little data at the data source and
can be used for students’ grades classification in small datasets.

Keywords: federated learning; transfer learning; students’ grades classification; domain adaptation;
educational data mining

1. Introduction

With the development of artificial intelligence, especially the emergence of neural
networks, artificial intelligence technology driven by big data has played its role in many
complex fields, such as automatic driving, medical care, and finance. People want this tech-
nology to be realized in all walks of life. However, the actual situation is very disappointing.
Except for a few limited fields, many industries have limited data and poor data quality,
which is insufficient to support the implementation of artificial intelligence technology [1].
Even if there are many data in more application fields, these data are distributed among
different data sources and marked unevenly. For example, there are 537,100 schools of
all levels and types in China, with 289 million students. These students’ data are stored
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in different schools and on various online education platforms. These data sources are
not connected to each other, and the data exist in the form of isolated islands. It is almost
impossible to integrate these data, or the cost required is enormous.

On the other hand, with the further development of big data, data privacy and security
have become a worldwide trend. Because of IoT devices’ increasing storage and computing
capabilities, it is common to save data and models on local devices [2]. Federated learning
is a new frontier field [1,3,4]. Google has launched a federated learning system [3–5], in
which a federated of distributed participants updates the global machine learning model
and their data are stored locally. Their framework requires all contributors to share the
same feature space. On the other hand, secure machine learning for partitioning data in
feature space is also studied [6–8], which finds that, in machine learning, each participant
can make joint modeling with the help of other parties’ data. However, all parties do not
need to share data resources. They can conduct federated data training and establish a
shared machine learning model when the data do not come out locally. Federated learning
enables multiple participants to continue machine learning and deep learning in protecting
data privacy and meeting legal compliance requirements to solve the data island problem.
Federated learning technology can be used among mobile terminals, wearable devices, and
different platforms to realize a training machine learning model that pays more attention to
privacy and efficiency. However, when one party collects a lot of unlabeled data, even when
the features are statistically different from those collected by the other party, domain shift
will arise [9]. This makes the model obtained by federated learning and training unable
to be extended to new equipment. For example, in the field of education, two different
online education platforms save local student data. One platform may collect more student
behavior logs, while the other platform saves students’ personal information.

In the field of educational data mining, the classification of students’ grades is usually
limited by the size of datasets and the number of data features. Moreover, because of
data privacy protection, each data platform cannot carry out practical federated training.
Therefore, it is an urgent problem to solve the imbalance of data and the inconsistency of
characteristics among data owners to train student models.

This paper proposes a framework based on federated transfer learning for students’
grades classification with privacy protection. In this paper, heterogeneous domain adaptive
technology is introduced into federated transfer learning, and knowledge transfer between
different nodes is solved by exchanging encryption parameters between data. In this
framework, each data owner uses the network of label classifier and domain classifier
for training and aligns the features of all parties in the new feature space for transfer
learning. Furthermore, according to the actual situation, we also simulate the following
four scenarios by constraining different characteristics and data scales:

• Scenario 1: Both Party A and Party B have the same feature distribution and data scales;
• Scenario 2: Party A and Party B have the same characteristics but different data scales;
• Scenario 3: Party A and Party B have different characteristics but the same data scales;
• Scenario 4: Both Party A and Party B have different feature distribution and data scales.

We conducted experiments on datasets from two middle schools in Portugal and
obtained the training results of student models in these four situations. Experimental
results show that both parties with different data feature spaces and inconsistent data scales
can effectively transfer knowledge under this framework. It can help the target data party
with missing data labels or fewer feature data to train and improve the generalization
ability of the model of main data participants.

The rest of this paper is organized as follows: In Section 2, we outline related work. In
Section 3, we present the details of the model proposed in this paper. Then, in Section 4, we
describe the experimental details. The analysis of the experimental results is in Section 5.
Finally, in Section 6, we summarize our work and present some ideas for future work.
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2. Related Work
2.1. Domain Adaptation

Domain adaptation is an active research topic in many fields of artificial intelligence,
including machine learning, natural language processing, and computer vision. The meth-
ods of early domain adaptation mainly focus on constructing domain-invariant features.
This can be achieved by the weight and selection mechanism of features [10,11] or by
learning the explicit feature transformation that aligns the distribution of source domain
and target domain [12–14]. In recent work, deep neural networks have been used to learn
powerful representation and perform unsupervised domain adaptation [15]. Revgrad [16]
uses a domain classification network, which aims to distinguish between source and target
embedding. The goal of the feature extraction network is to produce embedding that
maximizes the loss of domain classifiers and minimizes the loss of tag prediction. This is
achieved by negating the gradient from the domain classification network.

Driven by GAN [17], many transfer learning methods are based on the assumption
that a good feature representation contains almost no specific information about the original
domain of an instance. For example, Ganin et al. proposed a depth structure called Domain-
Adversarial Neural Network (DANN) for domain adaptation [16,18]. Its architecture
consists of a feature extractor, tag predictor, and domain classifier. DANN can be trained by
inserting a particular gradient reversal layer (GRL). After the training of the whole system,
the feature extractor learns the deep features of instances, and the output classifies the
prediction tags of unmarked target domain instances.

In the field of domain adaptation, some researchers have improved and applied do-
main adaptation technology. Cao et al. put forward an adaptive model with semantic
consistency (ADASC), which gradually and effectively aligns the distinguishing features
across domains using the class hierarchy relationship between domains [19]. Hu et al.
developed a framework DATSING based on transfer learning, which effectively utilized
the potential representation of cross-domain time series to enhance target domain predic-
tion [20]. Su et al. introduced the task of continuous domain adaptation in machine reading
comprehension [21].

There are some other related impressive works. Zeng et al.’ s work puts forward a
unified framework for adaptation in adversarial fields [15]. Shen et al. used Wasserstein
distance for domain adaptation [22]. Hoffman et al. adopted cycle-consistency loss to
ensure the consistency of structure and semantics [23]. Long et al. put forward the condi-
tion domain adversarial network, which uses the condition domain discriminator to assist
the adversarial adaptation [24]. Zhang et al. adopted the symmetrical design of source
classifier and target classifier [25]. Zhao et al. used a domain confrontation network to
solve the problem of multi-source transfer learning [26]. Yu et al. proposed a dynamic
adversarial adaptation network [27]. Chen et al. proposed a reinforcement learning (DARL)
framework combined with adversarial learning for partial domain adaptation [28]. The
DARL framework adopts the deep Q-learning method to learn the strategy by approxi-
mating the action value function, so that the agent can make a choice decision. In order
to minimize the domain differences in cross domain knowledge transfer, Chen et al. used
self similarity consistency (SSC) constraints to match the deep feature structures in the
source and target domains, rather than aligning the global distribution statistics across
domains [29]. Tran et al. proposed a generative adversary domain adaptive (GADA)
algorithm, which significantly improved the process of distinguishing feature extraction
by injecting additional classes and using the generated samples for training [30]. Guo et
al. proposed a new distribution calibration method by learning an adaptive weight matrix
between new samples and base classes, which built on the Hierarchical Optimal Transport
(H-OT) framework by minimizing the high-level OT distance between the new sample
and the base class to convey the adaptive weight information of the base class [31]. In the
multi-source domain adaptation task, Deng et al. proposed a two-layer optimization-based
robust object training (BORT2) [32]. BORT2 first learns a labeling function using source
and target data, and then trains a noise-robust model only on the pseudo-labeled target



Appl. Sci. 2022, 12, 10711 4 of 17

domain. Noise-robust models exploit feature uncertainty to detect label noise and mitigate
its negative effects.

To sum up, although there are many kinds of research in the field of domain adaptation
in recent years, this research is all based on typical scene training. Their data are stored on
the same server, which leads to incompatibility under the condition of federated learning.
Therefore, our research hopes to achieve domain adaptation under the framework of
federated learning.

2.2. Federated Learning

Google recently proposed the concept of federated learning [3–5]. Their main idea
is to build a machine learning model based on datasets distributed on multiple devices
while preventing data leakage. Recent improvements focus on overcoming statistical chal-
lenges [2,33] and improving the security of federated learning [34,35], and there are some
research efforts to make federated learning more personalized [36]. All of the above work
focuses on device federated learning, involving distributed mobile user interaction and
communication cost, unbalanced data distribution, and device reliability in large-scale
distribution are some of the main factors of optimization. To extend the concept of fed-
erated learning to cover collaborative learning scenarios among organizations, Yang et
al. expanded the original federated learning into the general idea of all decentralized
collaborative machine learning technologies for privacy protection [1]. They made a com-
prehensive overview of federated learning and federated transfer learning technologies. At
the same time, they further investigated the related security foundation and discussed the
relationship with other associated fields, such as multi-agent theory and privacy protection
data mining. Cheng et al. proposed a new lossless privacy protection algorithm secure-
boost, which is used to train high-quality tree enhancement models when the training
data are kept secret on multiple parties [7]. Chandra et al. proposed a new distributed
machine learning method, called splitfed. Due to network fragmentation, it provides a
higher level of privacy than federated learning. It is suitable for machine learning (ML) with
low computational resources, fast training, and analysis of private and sensitive data [37].
Mahmood et al. studied the feasibility of data and model poisoning attacks under the
blockchain based FL system built next to the Ethereum network and the traditional FL
system (no blockchain) [38]. They proposed a transparent incentive mechanism to fill the
knowledge gap, which can encourage good behavior among participating decentralized
nodes, avoid common problems, and provide knowledge for FL security literature by
studying the current FL system.

In addition, the time required for computing is also an important factor. Federated
learning (FL) is largely affected by the heterogeneity of clients. The training speed of clients
is inconsistent. In order to reduce the impact of slow clients, Cox et al. proposed a new
FL algorithm using model freezing and unloading, which uses a simple, fast, and scalable
scheduling algorithm to periodically organize model unloading between clients [39]. To re-
duce the communication and computation delays of model parameters, Liu et al. proposed
a new iterative algorithm and minimized the total model parameter communication and
computation delays by optimizing the number of local iterations and edge iterations [40].

Recent research has focused on transferring knowledge from decentralized nodes to
new nodes with different data domains. Liu et al. introduced new technology and frame-
work called federated transfer learning (FTL) to improve the statistical model under the
data alliance. The alliance allows knowledge sharing without compromising users’ privacy
and allows supplementary knowledge to be transmitted in the network [8]. Therefore,
the target domain can build a more flexible and robust model using rich tags from the
source domain. Peng et al. put forward a principled method to solve the federated domain
adaptation problem, which aims to make the representations learned between different
nodes consistent with the data distribution of target nodes [41].

However, we do not think Peng’s method extends to the constraint of federated learn-
ing. It cannot be applied to the general environment of federated learning. Therefore, in this
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paper, we combine domain adaptation with secure federated learning and propose a new
federated transfer learning framework based on domain adaptation to solve knowledge
transfer in federated transfer learning.

3. Method

In this section, we introduce the details of our proposed method. The network we use
is a deep neural network. The network structure we propose is a deep neural network with
three layers whose structure is shown in Figure 1. The input data are passed through a
feature extractor to match the feature distribution of each party in the feature space. Then,
the labels and domains are classified on each side, the model is trained, and the target
model is updated by gradient aggregation.

Figure 1. Structure diagram of a neural network in the experiment.

3.1. Problem Definition

In the actual educational data mining, we often encounter the situation of small data
scale and lack of data features and need to manually mark them. However, due to the data
privacy protection, in many cases, the data owners can not carry out collaborative training.
To solve this problem, we simulated a federated training scenario between Party A and
Party B.

Consider two data owners, a source domain DA = {(xA
i , yA

i , zA)n
i=1} where xA

i ∈ Rn,
yA

i ∈ {0, 1} is the ith label and zA = 1 is the domain label, and a target domain DB =

{(xB
i , zB)n′

i=1} where xB
i ∈ Rn′ , zB = 0 is the domain label. n, n′ represents the number of

samples of the source domain and target domain, respectively. The total number of samples
is N = n + n′.

In our definition, Party A and Party B represent two platforms with educational data.
Among them, Party A has complete data, label information, and class labels. Party A is the
leading party in federated learning and the owner of the source domain data in federated
transfer learning. Party B only has some data and class labels and has no data labels.
Play the role of the customer in federal migration learning. Party A and Party B use the
knowledge gained from federal migration learning to build a model and predict their users.

Our goal is to establish a transfer learning model, accurately predict the category of
students of Party B, and improve the classification effect of Party A. At the same time, their
data will not be exposed. In this paper, domain adaptation is introduced into federated
migration learning, which minimizes and maximizes the classification errors of the source
domain, and then exchanges knowledge between the source domain and the target domain.
Then, this federated learning problem can be formulated as follows:

minimize
w∈RN

L1(w, D) =
1
N

N

∑
i=1

f (w; xi, yi) (1)
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maximize
w∈RN

L2(w, D) =
N

∑
i=1

γ(w; xi, zi) (2)

where w is the parameter of the model, f represents the loss function of the label classifier,
and γ represents the loss function of the domain classifier.

Our goal is to exchange only intermediate parameters to achieve the following goals
on privacy protection:

minimize
w∈RN

L = L1(w, D)−L2(w, D) (3)

3.2. Approach Statement

We assume that there are two data owners PartyA&B training model A and model
B. Firstly, the model needs feature extraction to generate two implicit representations
uA

i = ’A
(

xA
i
)

and uB
i = ’B

(
xB

i
)
, where uA ∈ RNA×d and uB ∈ RNB×d, and d represent the

dimensions of the hidden layer. ϕ(x; w, b) = 1
1+exp(−wTx) is the feature transformation

function, where matrix-vector pair (w, b) ∈ RN × R. The neural network ϕA and ϕB
transform their features, and project the features of PartyA and PartyB into a common
feature subspace, where they can exchange knowledge.

Then, the source domain data of feature space is classified by the prediction layer,
and the correct labels are separated as far as possible. The prediction function ψ(uB

i ) =
ψ(uA

1 , yA
1 ...uA

NA
, yA

NA
, uB

j ),

where ψ(a) =

[
exp(ai)

∑
|a|
j=1 exp(aj)

]|a|
i=1

. Thus, we obtain the first optimization goal:

argmin
Θx ,Θy

L1 =
1
n

T

∑
i=1

`1

(
yA

i , ψ
(

uB
i

))
(4)

where Θx, Θy are training parameters of layers ϕA, ψ. `1 is classification loss, using the
negative log-probability of the correct labels.

The network also needs a regularization term, that is, a metric criterion so that the
source domain and the target domain in the feature space are as close as possible. We use
H-divergence to measure [42–44]:

d̂H(S, T) =2

(
1−min

η∈H

[
1
n

n

∑
i=1

I[η(xi) = 0]

+
1
n′

N

∑
i=n+1

I[η(xi) = 1]

]) (5)

whereH is a hypothetical class, binary classifiers η : X → {0, 1}.
According to formula (5), the empirical H-divergence between the source domain and

the target domain can be calculated by the following formula:

d̂H
(

DA, DB
)
=2

(
1−min

η∈H

[
1
n

n

∑
i=1

I
[
η
(

ω
(

uB
i

))
= 0

]
+

1
n′

N

∑
i=n+1

I
[
η
(

ω
(

uB
i

))
= 1

]]) (6)

It is usually difficult to calculate d̂H
(

DA, DB). According to the inspiration of Ben-
David’s research [42,43], we can define the approximate solution of the classification
problem of the source domain and target domain, that is, domain classifier. It classifies
data in feature space and tries to distinguish which domain the data comes from. Domain
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classifier ω(uB
j ) =

1
1+exp(−uB

j )
, and we can make the feature distribution of the data in the

source domain and the target domain as close as possible by approximately calculating the
empirical H-divergence between the two samples. We can obtain the second optimization
target:

argmax
Θy ,Θz

L2 =− 1
n

n

∑
i=1

`2

(
zA

i , ω
(

uB
i

)
= 0

)
− 1

n′
N

∑
i=n+1

`2

(
zA

i , ω
(

uB
i

)
= 1

) (7)

where Θy, Θz are training parameters of layers ψ, ω. zi is the domain classification label. `2
is the loss of domain classification layer, and the loss of feature alignment is calculated by
cross entropy.

The final objective function is:

argmin
Θx ,Θy ,Θz

L =
1
n

n

∑
i=1

`1

(
yA

i , ψ
(

uB
i

))
+ λ

(
1
n

n

∑
i=1

`2

(
zA

i , ω
(

uB
i

)
= 0

)
+

1
n′

N

∑
i=n+1

`2

(
zA

i , ω
(

uB
i

)
= 1

))
(8)

where λ is the weight parameters. For i ∈ {A, B}, the stochastic gradients can be computed
as the following:

gi
x =

∂Li
1

∂Θx
i
− λ

∂Li
2

∂Θx
i

(9)

gi
y =

∂Li
1

∂Θy
i

(10)

gi
z =

∂Li
2

∂Θz
i

(11)

3.3. Federated Domain Adaptation

In order to realize secure computation without exchanging data, additively homomor-
phic encryption is adopted. We define a number x, which becomes JxK after additively
homomorphic encryption. According to the properties of homomorphic encryption, for
any two numbers x and y, JxK + JyK = x + y and x× JyK = JxK× JyK is valid. However,
the loss function and gradient can not be directly calculated by additively homomorphic
encryption. In order to solve this problem, we use the second-order Taylor approximation
for the logistic loss

`(y, ϕ) ≈ `(y, 0)− 1
2

yϕ +
1
8

y2 ϕ2 (12)

and the gradient is
∂`

∂ϕ
= −1

2
y +

1
4

y2 ϕ (13)

In this way, we obtain the encrypted loss and gradient.

JL1K =
1
n

n

∑
i=1

(
J`1(yA

i , 0)K− 1
2

yA
i Jψ

(
uB

i

)
K

+
1
8

yA
i

2
Jψ
(

uB
i

)′
ψ
(

uB
i

)
K
) (14)
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JL2K =−
1
n

n

∑
i=1

(
J`2(zA

i , 0)K− 1
2

zA
i Jω

(
uB

i

)
K

+
1
8

zA
i

2
Jω
(

uB
i

)′
ω
(

uB
i

)
K
)

− 1
n′

n′

∑
i=n+1

(
J`2(zA

i , 0)K− 1
2

zA
i Jω

(
uB

i

)
K

+
1
8

zA
i

2
Jω
(

uB
i

)′
ω
(

uB
i

)
K
)

(15)

J
∂Li

1
∂Θi

K =
1
n

n

∑
i=1

ψ
(
uB

i
)′

ψ
(
uB

i
)

∂uB
i

J
(

1
8

yA
i

2
ψ
(

uB
i

)′
ψ
(

uB
i

))
K

∂uB
i

∂Θi

+
1
n

n

∑
i=1

J
1
2

yA
i ψ
(

uB
i

)
K

∂ψ
(
uB

i
)

∂uB
i

∂uB
i

∂Θi

(16)

J
∂Li

2
∂Θi

K =− 1
n

n

∑
i=1

ω
(
uB

i
)′

ω
(
uB

i
)

∂uB
i

J
(

1
8

zA
i

2
ω
(

uB
i

)′
ω
(

uB
i

))
K

∂uB
i

∂Θi

− 1
n

n

∑
i=1

J
1
2

zA
i ω
(

uB
i

)
K

∂ω
(
uB

i
)

∂uB
i

∂uB
i

∂Θi

− 1
n′

n

∑
i=1

ω
(
uB

i
)′

ω
(
uB

i
)

∂uB
i

J
(

1
8

zA
i

2
ω
(

uB
i

)′
ω
(

uB
i

))
K

∂uB
i

∂Θi

− 1
n′

n

∑
i=1

J
1
2

zA
i ω
(

uB
i

)
K

∂ω
(
uB

i
)

∂uB
i

∂uB
i

∂Θi

(17)

Then, update the parameters according to the gradient direction

Θx ← Θx − ηgx (18)

Θy ← Θy − ηgy (19)

Θz ← Θz − ηλgz (20)

where η is the learning rate. With these parameters, we now design a federated Domain
Adaptation network for solving the Domain Adaptation problem.As shown in Figure 2.
First, Party A and Party B send public keys to each other, then initialize parameters
Θx, Θy, Θz, calculate implicit representations uA and uB, and then calculate, encrypt, and
exchange intermediate results g and L.

To prevent exposure of the gradients of A and B, A and B further mask each gradient
with encrypted random values. Then, they send the gradient and loss of the mask to each
other and locally decrypt these values. Once the loss convergence condition is met, Party
A can send a termination signal to Party B. Otherwise, they will unmask the gradients,
update the model parameters with their gradients, and then continue the next iteration.
Algorithm 1 summarizes the process.
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Figure 2. System Architecture of Federated Domain Adaptation.

Algorithm 1 Federated domain adaptation

Input: learning rate: η, adaptation parameter: λ
Output: Model parameters Θx, Θy, Θz Initialization:Patty A&B initialize Θx, Θy, Θz

while Convergence conditions is not met do
for all each iteration k = 1, 2, 3... do

Part A&B compute: uA
i , uB

i
A&B create a random mask: mA, mB

A compute and encrypt: LA, gA
x + mA, gA

y + mA, gA
z + mA and send to B

B compute and encrypt: gB
x + mB, gB

y + mB, gB
z + mB and send to A

A&B decrypt gradients and exchange, unmask and update model locally
Θx ← Θx − ηgx
Θy ← Θy − ηgy
Θz ← Θz − ηλgz

end for
end while
return Θx, Θy, Θz

3.4. Security Analysis

In this section, we aim to determine whether one party participating in federal training
can learn the other party’s data from the parameter set Hk exchanged during training.
Previous studies mainly introduced the leakage of the whole set of model parameters
or gradient in the training process [45–47]. However, in our framework, the model’s
parameters are confidential, and only the intermediate results in the tag prediction layer
may reveal information.

Theorem 1. According to our definition, the federated transfer learning framework based on domain
heterogeneous adaptation is secure, provided that the underlying encryption parameter sharing
scheme is secure.
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Proof. In our framework, the model’s parameters are confidential, and only the interme-
diate results in the label classifier layer may reveal information. In the domain classifier
layer, each party can only receive the information of the domain but not the information
of the data. Let Sj be the set of data points sampled in the t-th iteration and ij be the i-th
sample in the j-th iteration. Hij refers to the contribution of the i-th sample to other parties.
In the j + 1-th iteration, we can obtain the weight update of the label classifier according to
Equation (19):

Θy
j+1 = Θy

j − ηj

 1
NSj

∑
ij∈Sj

(
−1

2
yij +

1
4

y2
ij

Hij

) (21)

where Hij = ϕ(xij)Θ
y
j . For any participant k with unpublished datasets Dk and training pa-

rameters Θy
k following our defined framework, there is an infinite solution of {xk

ij
}i∈Sj,j=0,1···

that produces the same contribution set {Hk
ij
}j=0,1···. That is to say, no matter the number

of iterations, the data of participant k cannot be uniquely determined from its exchanged in-
formation {Hk

ij
}j=0,1···. This definition of security is consistent with the previous definition

of security proposed in privacy protection and secure multiple computation of machine
learning [48]. Under this definition, when some prior knowledge about data are known,
the other party may exclude some alternative solutions but cannot infer accurate original
data. This model provides a flexible trade-off between privacy and efficiency.

Theorem 2. According to our definition, the federated transfer learning framework based on domain
heterogeneous adaptation is secure, provided that the homomorphic encryption scheme used is secure.

Proof. In our scheme, all the learning and training data are encrypted by a homomorphic
encryption mechanism. The parameters and intermediate data of the model are encrypted
in the whole federated learning process. In each iteration, both sides will create a new
random encryption mask m. This randomness and confidentiality also ensure the security
of the whole training and learning process. Therefore, as long as the encryption scheme is
secure, the federated learning framework we defined is also secure.

4. Experiments

In this section, we mainly introduce the usage of our proposed framework and verify
it by constraining different features, quantity, and the correlation between features on the
datasets of two courses.

4.1. Datasets and Experimental Settings

The data used in the experiment come from the students’ achievements in secondary
education in two Portuguese schools. Data attributes include student achievement, de-
mographic, social, and school-related characteristics collected using school reports and
questionnaires. The two datasets provide the performance of two different subjects: mathe-
matics and Portuguese. There are 396 students in the mathematics dataset and 650 students
in the Portuguese dataset. We selected 16 attributes, which are described in Table 1. Stu-
dents are classified in a binary system, and the G3 grades provide the classification labels
of students. Students with scores greater than ten are classified into one category, while
others are classified.

In our experiments, we set the depth of DNN layers as three in the model architecture.
The learning rates are set to 0.0001, and batch size is set to 128. To avoid overfitting, we
apply dropout on the DNN layers with a drop rate of 0.3.
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Table 1. Preprocessed student-related variables and their descriptions

No. Attribute Description (Domain)

1 address student’s home address type (binary: “U”—urban or “R”—rural)
2 famsize family size (binary: “LE3”—less or equal to 3 or “GT3”—greater than 3)
3 Medu mother’s education (numeric: 0—none, 1—primary education (4th grade), 2—5th to 9th grade,

3—secondary education or 4—higher education)
4 Fedu father’s education (numeric: 0—none, 1—primary education (4th grade), 2—5th to 9th grade,

3—secondary education or 4—higher education)
5 studytime weekly study time (numeric: 1—<2 h, 2—2 to 5 h, 3—5 to 10 h, or 4—>10 h)
6 paid extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
7 activities extra-curricular activities (binary: yes or no)
8 higher wants to take higher education (binary: yes or no)
9 internet Internet access at home (binary: yes or no)
10 romantic with a romantic relationship (binary: yes or no)
11 famrel quality of family relationships (numeric: from 1—very bad to 5—excellent)
12 freetime free time after school (numeric: from 1—very low to 5—very high)
13 goout going out with friends (numeric: from 1—very low to 5—very high)
14 Dalc workday alcohol consumption (numeric: from 1—very low to 5—very high)
15 Walc weekend alcohol consumption (numeric: from 1—very low to 5—very high)
16 absences number of school absences (numeric: from 0 to 93)
17 G1 first period grade (numeric: from 0 to 20)
18 G2 second period grade (numeric: from 0 to 20)
19 G3 final grade (numeric: from 0 to 20, output target)

4.2. Privacy Protection

In order to ensure the privacy of the framework, the experiment simulates the dis-
tributed training scenario of multiple nodes, and the data of Party A and Party B are stored
separately in each node to participate in the federated learning. In order to promote secure
computing between the two parties, a semi-honest third-party server is introduced, and
it is assumed that it does not collude with other participants. After learning and training,
each participant can only hold model parameters associated with their characteristics.
Therefore, when reasoning, both parties need to work together to generate the output. The
third-party server does not obtain the data of all parties but only distributes the secret key
and exchanges the encryption parameters.

4.3. Design

In the experiment, according to the datasets size and data feature distribution of Party
A and Party B, four scenarios were established to simulate the actual situation. They are
as follows:

• Scenario 1: Both Party A and Party B have the same feature distribution and data scales;
• Scenario 2: Party A and Party B have the same characteristics but different data scales;
• Scenario 3: Party A and Party B have different characteristics but the same data scales;
• Scenario 4: Both Party A and Party B have different feature distribution and data scales.

To correspond to these four scenarios, we processed the data and selected some data
and attributes. In addition, in the scene with different feature distribution, the correlation
analysis of attributes is carried out to ensure that the correlation with domain invariant
features does not exceed the threshold. We carry out a factor analysis on the features
contained in the datasets. The calculated factor scores are shown in Table 2, indicating eight
principal components in total.
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Table 2. Results of factor analysis

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8

address −0.0174 −0.04261 −0.02972 0.55018 −0.03883 0.02952 0.06146 −0.11739
famsize 0.05361 −0.12259 0.00306 0.04264 −0.02741 −0.00522 0.5934 0.0815
pstatus 0.02567 −0.12743 0.09857 0.03471 −0.06984 −0.02377 −0.4038 0.25312
medu 0.02069 0.43536 −0.04774 0.01269 0.05549 −0.01142 −0.02168 0.02357
fedu 0.021 0.48458 −0.12044 −0.05813 −0.02211 −0.00722 −0.08667 −0.01257

traveltime 0.06977 −0.07899 0.08823 −0.42754 0.05173 −0.00324 0.09923 0.11188
studytime −0.15099 −0.12672 0.32608 −0.05097 0.07369 0.01751 0.07721 0.21671

failures 0.03835 −0.14285 −0.09268 0.02918 0.30349 0.11095 −0.12298 −0.1072
schoolsup 0.00016 −0.03632 −0.01282 0.00861 −0.05149 −0.02255 0.00063 0.06034

famsup −0.0004 0.05622 0.4013 −0.08219 0.13135 0.15243 −0.18615 −0.20652
paid 0.10079 −0.07894 0.53166 0.02635 −0.04372 −0.03044 0.02374 −0.10245

activities −0.03136 0.1021 −0.13864 −0.13376 0.04747 0.03055 −0.0209 0.65063
nursery −0.08674 0.0782 0.11152 −0.06779 0.08835 0.17989 0.38605 −0.06069
higher 0.01206 0.08649 0.15443 −0.06712 −0.32819 −0.05169 0.12033 0.10186

internet 0.05957 −0.02626 0.1502 0.3249 0.20655 −0.07449 −0.08887 0.20321
romantic −0.09428 0.0183 0.07294 −0.05578 0.56248 0.02087 0.06626 0.09132

famrel −0.10208 −0.07048 0.06892 0.0183 −0.02425 0.53352 0.11173 0.06412
freetime 0.12496 −0.01853 −0.04392 0.11156 −0.00742 0.41924 0.00499 0.15355

goout 0.26257 −0.03328 0.041 0.12816 0.00752 0.16957 0.05586 0.19743
dalc 0.37671 0.02768 0.07301 −0.05661 −0.04551 −0.04509 0.01312 −0.05814
walc 0.40238 0.01466 0.03822 −0.04011 −0.06415 −0.08516 −0.00015 −0.01715

health −0.04072 0.13569 −0.01753 −0.18946 0.03589 0.44102 −0.10537 −0.31336
absences 0.05341 0.08776 −0.01319 −0.01697 0.38273 −0.17025 0.07009 0.01427

Given the scenarios with consistent feature distribution, we selected eight variables
that contributed the most to the principal components as the input features of the model,
namely walc, fedu, paid, address, romantic, famrel, famsize, and activities. The source
domain still adopts the eight features selected from previous scenarios for scenarios with
inconsistent features, while the target domain adopts the new eight features. They are dalc,
absences, medu, goout, higher, freetime, studytime and internet. We visualize these two
groups of features, use PCA to reduce the dimension to three-dimensional space, and check
the distribution of data points. Figure 3 respectively shows the distribution of the features
of the source domain and the target domain in the three-dimensional space. To ensure the
domain invariant features in the transfer process, we also conducted a pairwise correlation
analysis on a total of 16 features and tested the significance of the correlation results. The
results are shown in Table 3.

Figure 3. Visualization results of features of the source domain and target domain in three-
dimensional space.
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Table 3. Results of significance test of pairwise correlation

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

(1) address 1

(2) famsize −0.104 1
−0.302

(3) fedu −0.009 0.112 1
−0.931 −0.268

(4) paid −0.096 0.014 0.091 1
−0.343 −0.888 −0.366

(5) activities −0.125 0.026 0.104 0.101 1
−0.214 −0.798 −0.305 −0.32

(6) romantic −0.085 0.098 0 0.017 0.058 1
−0.401 −0.331 −0.996 −0.864 −0.57

(7) famrel 0.236 * −0.155 −0.101 0.153 0.024 −0.103 1
−0.018 −0.123 −0.318 −0.129 −0.812 −0.306

(8) walc 0.078 −0.177 0.066 0.03 −0.098 0.220 * −0.15 1
−0.441 −0.078 −0.516 −0.768 −0.334 −0.028 −0.137

(9) medu −0.165 −0.096 0.023 −0.134 −0.013 0.026 0.079 0.056 1
−0.1 −0.34 −0.82 −0.184 −0.899 −0.8 −0.437 −0.578

(10) studytime −0.071 0.005 0.11 0 0.106 −0.024 0.054 0.039 0.092 1
−0.482 −0.96 −0.278 −1 −0.294 −0.81 −0.596 −0.699 −0.363

(11) higher −0.05 0.208 * 0.015 −0.19 0.014 0.067 −0.159 −0.164 0.253 * 0.1 1
−0.62 −0.038 −0.883 −0.058 −0.887 −0.508 −0.114 −0.102 −0.011 −0.321

(12) internet −0.05 0.094 0.151 −0.058 −0.017 0.189 −0.009 −0.206 * 0.11 0.115 0.148 1
−0.623 −0.353 −0.134 −0.569 −0.864 −0.06 −0.931 −0.04 −0.278 −0.256 −0.141

(13) freetime −0.024 −0.029 −0.008 0.104 0.075 −0.05 −0.019 −0.034 0.032 −0.278 * −0.198 * −0.064 1
−0.815 −0.771 −0.935 −0.304 −0.461 −0.623 −0.855 −0.736 −0.752 −0.005 −0.048 −0.528

(14) goout −0.136 0.069 −0.142 0.102 −0.029 −0.083 −0.015 −0.114 0.07 −0.08 0.182 −0.055 0.153 1
−0.177 −0.493 −0.159 −0.312 −0.776 −0.413 −0.88 −0.26 −0.49 −0.43 −0.07 −0.585 −0.129

(15) dalc −0.025 −0.166 0.015 −0.017 −0.056 −0.093 −0.138 0.081 0.036 0.014 0.055 −0.038 0.093 0.228 * 1
−0.804 −0.098 −0.88 −0.869 −0.583 −0.356 −0.172 −0.423 −0.719 −0.892 −0.587 −0.71 −0.358 −0.022

(16) absences 0.019 0.045 0.049 0.142 0.069 −0.164 0.036 −0.189 −0.004 0.065 −0.043 −0.157 −0.225 * 0.104 0.05 1
−0.848 −0.653 −0.626 −0.158 −0.496 −0.104 −0.723 −0.059 −0.965 −0.52 −0.674 −0.118 −0.024 −0.301 −0.624

1* shows that the correlation between the two variables is significant.

It can be seen from Figure 3 that the feature spaces of the source domain and the
target domain are inconsistent, so the two datasets are heterogeneous in features, which
guarantees our hypothesis. At the same time, to ensure the transfer of valuable knowledge
in the transfer process, the correlation between features is analyzed. From Table 3, there is
a specific correlation between the features. The first row of each feature in Table 3 repre-
sents the Pearson correlation coefficient between variables, and the second row represents
the p-value of the significance hypothesis. From the significance test results, there are
significantly associated features between the two domains, which ensures the extraction
of domain invariant features in the process of domain transfer and the effectiveness of
transfer learning.

For the scenario with the same data scale, both the source domain and the target
domain used the data of 200 students. In the case of an inconsistent data scale, the source
domain uses the data of 200 students, and the target domain uses the data of 80 students.

From the results, we can see that both the source domain and the target domain can
make classification predictions when they are not trained. The accuracy is 0.5, which
accords with the common sense of binary classification. The accuracy of the domain
classifier in each scene is between 0.5 and 0.6, which indicates that the machine can not
accurately distinguish the features of the source domain or the target domain, displaying
that knowledge has transferred.

5. Results and Discussion

In the experiment, we use the logistic regression model to classify the students’ aca-
demic performance in binary, the network structure is shown in Figure 1, and we use the
federated transfer learning framework based on heterogeneous domain adaptation defined
by this paper.

In each scenario, we conducted three pieces of training, namely, training only for the
source domain, training only for the target domain, and transfer training. We give the
classification accuracy of the source domain and target domain under each training mode
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and give the classification accuracy of the domain under the transfer training mode. The
results are shown in Table 4.

Table 4. Training accuracy results of datasets

Source Only Training Target Only Training Domain Adaptation training
Source Target Source Target Source Target Domain

Scenario 1 0.9045 0.5175 0.545 0.8775 0.92 0.87 0.6
Scenario 2 0.9045 0.505 0.5 0.5 0.9035 0.875 0.55
Scenario 3 0.75 0.5045 0.5 0.55 0.8455 0.905 0.545
Scenario 4 0.75 0.5 0.45 0.475 0.8035 0.85 0.6

We can find that, in Scenarios 2–4, the results of target-only training are generally a
little worse than source-only training due to the difference in the data size of the source
and target domains and the different contributions of the included features to the principal
components. Moreover, in Scenario 1, after using domain adaptation training, the accuracy
results are not much different from the results of individual training in each domain,
which indicates that using domain adaptation training will not improve the model effect in
this case. In Scenario 2, after using domain adaptation, the classification accuracy of the
target domain is greatly enhanced. In Scenario 3, both the source domain’s classification
accuracy and the target domain have dramatically increased. However, in Scenario 4, the
classification accuracy of the source domain and the target domain increased less than that
of Scenario 3.

The result analysis shows that the domain adaptation model has little effect when the
feature distribution and scale of the source domain and the target domain are consistent.
However, when one party’s data scale is small, it can benefit from federated learning.
Especially when the feature distribution of both parties is inconsistent, both parties can
learn new knowledge from each other and improve the classification accuracy. In Scenario 4,
although we project the source and target domains into a common feature subspace, since
the source and target domains have different feature distributions and data scales, the
training knowledge on the source domain is directly applied to the target domain, and the
resulting effect will be inferior to Scenario 2 and Scenario 3.

From the experimental results, the federated transfer learning framework designed
by us can effectively solve the problem of federated learning with small unilateral data
and missing unilateral features in students’ grades classification, and all participants can
obtain new knowledge from each other while maintaining privacy. Experiments show
that applying a federated learning framework can solve the problem of data islands in
educational data mining, which can be used for reference in the field of intelligent education.

The study has potential limitations. Since the experimental part of this paper only ver-
ifies the data exchange between two different education platforms, and the data differences
generated by different education platforms may be large, how to transfer privacy protection
knowledge between more online education platforms still needs further exploration.

6. Conclusions

This paper proposes a framework based on federated transfer learning for students’
grades classification with privacy protection. By introducing feature extractors and domain
classifiers, the framework matches the feature distribution of all parties in collaborative
learning in some feature spaces. It uses homomorphic encryption and random masking to
ensure data privacy during transmission. The experimental results show that both parties
with different data feature spaces and inconsistent data scales can effectively transfer
knowledge under this framework. It can help the target data parties with missing data
labels, or fewer feature data train the students’ grades classification model and improve the
generalization ability and classification effect of the students’ grades classification model of
the primary data participants.
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In future work, we will further study privacy protection in the framework. This
includes studying privacy protection in the federated learning framework in the presence
of malicious participants, and more efficient feature extraction methods. We are committed
to expanding federated learning technology to more fields and exploring more effective fed-
erated learning methods. These methods can include studying and further improving this
method’s communication efficiency and effectiveness in more complex and asynchronous
federated learning systems.
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