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Abstract: Image steganography is applied to hide some secret information. Occasionally, steganogra-
phy is used for malicious purposes to hide inappropriate information. In this paper, a new deep neural
network was proposed to detect context-aware steganography techniques. In the proposed scheme, a
high-boost filter was applied to alleviate the high-frequency while retaining the low-frequency details.
The high-boost image was processed by thirty SRM high-pass filters to obtain thirty high-boost
SRM filtered images. In the proposed CNN, two skip connections were used to collect information
from multiple connections simultaneously. A clipped ReLU layer was considered in spite of the
general ReLU layer. In constructing the CNN, a bottleneck approach was followed for an effective
convolution. Only a single global average pooling layer was used to retain the complete flow of
information. SVM was utilized instead of the softmax classifier to improve the detection accuracy. In
the experimental results, the proposed technique was better than the existing techniques in terms of
the detection accuracy and computational cost. The proposed scheme was verified on BOWS2 and
BOSSBase datasets for the HILL, S-UNIWARD, and WOW context-aware steganography algorithms.

Keywords: image steganography; image steganalysis; convolutional neural network; deep learn-
ing network

1. Introduction

Image steganography can be defined as a non-uniform operation unlike other conven-
tional operations such as high-pass filtering, contrast enhancement, etc. The secret contents
are embedded by changing the pixel values in random order, mostly unnoticeable due
to the context-aware approach. Statistical changes are unnoticeable because most of the
steganography algorithms increase the existing pixel values by only +1 or decrease by −1.
Steganalysis discloses the minute changes of image steganography. In this paper, steganal-
ysis was performed for three popular context-aware steganography algorithms-HILL [1],
S-UNIWARD [2], and WOW [3]. In Figure 1a, the cover image is shown and difference
array images (DI) of the cover image and the stego-image are shown in Figure 1b–d for
HILL, S-UNIWARD, and WOW, respectively, with 0.4 bits per pixel (bpp) payload.

Furthermore, an image was formed to see the nature of different steganography
algorithms. In Figure 2a, the cover image has four triangles. There is a difference of one
pixel intensity in each triangle. The difference array images (DI) of the cover and stego-
images after applying the HILL, S-UNIWARD, and WOW steganography algorithms with
payloads of 0.4 bpp are displayed in Figure 2. The artifacts of steganography can be seen
in the DI of the cover and HILL image (Figure 2b). The changes were more visible in the
minor and major diagonal edge areas than in other areas. However, the changes were more
visible in the DI of the S-UNIWARD image (Figure 2c) in comparison to the DI of the HILL
image (Figure 2b). The nature of WOW was different, as evident from Figure 2d, as only
the diagonal area was used for data embedding.
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to extract higher dimension features. Lyu and Farid [4] considered the magnitude and 
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images. These high-pass filters are commonly known as SRM filters. Tang et al. [12] pro-

posed the technique for WOW. Markov features can be extracted from the texture and 

edge area, especially for superior results. To reduce the size of the feature vector of the 

method [11], the maxSRM and maxSRMd2 techniques were proposed by Denemark et al. 
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Figure 1. Natural cover image and difference arrays of the cover and stego-image. (a) Cover image.
(b) DI of the cover and HILL stego-image. (c) DI of the S-UNIWARD stego-image. (d) DI of the WOW
stego-image.

It can be seen from Figures 1 and 2 that HILL changed the image pixels in a more
uniform manner than S-UNIWARD and WOW. However, changes by WOW were mostly
only in dense regions. HILL changes were not in a particular region, which makes the
detection of HILL more challenging than S-UNIWARD, followed by WOW. This claim has
been verified in the previous literature and in Section 3 of the experimental results.

Previously, most of the techniques relied upon the texture operator based features
and Markov features. Difference arrays and residual arrays of the image are considered
to extract higher dimension features. Lyu and Farid [4] considered the magnitude and
phase statistics in the frequency domain to detect Outguess [5] and F5 [6] steganography
techniques. Li et al. [7] extracted the Markov and texture features to classify the cover and
stego-images. The high dimensional feature vector of size 22,153 is used for HUGO [8]
steganography detection. Penvy et al. [9] utilized the second-order Markov features from
difference arrays in eight directions for the detection of the least significant bit (LSB)
matching steganography. Hou et al. [10] extracted the Markov features in the DFT and DCT
domains to detect seven different steganography techniques. Fridrich and Kodovsky [11]
extracted the 34,671 features using the Markov model using thirty high-pass filtered images.
These high-pass filters are commonly known as SRM filters. Tang et al. [12] proposed the
technique for WOW. Markov features can be extracted from the texture and edge area,
especially for superior results. To reduce the size of the feature vector of the method [11],
the maxSRM and maxSRMd2 techniques were proposed by Denemark et al. [13]. The
technique was applied to S-UNIWARD, S-UNIGARD, and WOW. Xu et al. [14] suggested
the local correlation pattern to identify HUGO, LSB matching revisited LSBMR [15], and
the S-UNIWARD techniques. Li et al. [16] first applied the high-pass filter and then
extracted the texture features. PCA was applied twice to reduce the feature dimension and
improve the accuracy. Li’s technique was verified on the WOW and HUGO steganography
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methods. Li et al. [17] proposed the variant of the local binary pattern (LBP) using adaptive
thresholding. Second-order Markov and TLBP features were combined for better results.
Li’s technique was applied to S-UNIWARD, HILL, CMD-HILL [18], and MiPOD [19]. Li’s
work was extended by Wang et al. [20] by modifying the rotation invariant uniform pattern
(RIU) mapping using a feature separation study. The features were also aggregated with the
SRM frequency domain features. This technique was applied to detect S-UNIWARD, HILL,
and MiPOD stego-images. Ge et al. [21] extracted the TLBP and Markov features from
residual arrays of non-negative matrix factorization, high-pass filters, and derivative filters
to detect HILL, CMD-HILL, and MiPOD stego-images. Markov features were found to be
effective in most of the manual feature extraction schemes. Due to its effectiveness, most
of the schemes utilized the Markov model and improved the results by using a different
type of residual array, combined with the texture features as discussed above. In parallel,
many techniques have evolved that are based on convolutional neural networks. Currently,
most of the techniques utilize deep learning networks not only for steganalysis as well in
many other applications. However, this paradigm shift requires efficient hardware that
is easily available in the current era. Qian et al. [22,23], for the first time, used the CNN
to identify WOW, HUGO, and S-UNIWARD steganography techniques. In CNN, various
types of layers such as the convolutional layer, ReLU layer, batch normalization layer,
and pooling layer are used. Images were operated with one 5 × 5 high-pass filter before
processing to the CNN. However, the results are not superior in comparison to the manual
feature extraction techniques. Xu et al. [24] also used the single filter for preprocessing.
Xu et al. introduced the absolute layer and utilized the tanh activation function to detect
the S-UNIWARD and HILL technique. Wu et al. [25,26] continued to utilize the same single
high-pass filter [22] and apply the proposed CNN on multiple residual arrays to identify
HILL, MiPOD, S-UNIWARD, and WOW stego-images. The SRM filters [11] based on the
Markov model were also found to be helpful in the CNN network. Ye et al. [27] considered
the residual of thirty SRM filter [11] images in the CNN, a truncated linear unit (TLU)
instead of ReLU and the selection channels. The results of Ye’s technique were better than
previous methods on HILL, S-UNIWARD, and WOW. Boroumand et al. [28] proposed the
popular steganalysis residual network (SRNet) to detect HILL, J-UNIWARD, S-UNIWARD,
UED-JC [29], and WOW. Three types of block arrangements were used in the network
using residual connections and a pooling layer. Statistical moments from the trained
network were extracted to detect the cover and HILL, MiPOD, S-UNIWARD, and WOW
stego-images. In Yedroudj et al. [30], a CNN with thirty SRM filters were used in the non-
trainable layer. CNN is highly influenced by deep networks [24,27]. The results are shown
for S-UNIWARD and WOW. Wu et al. [31] introduced the shared batch normalization layer
and utilized twenty SRM filters. Zhang et al. [32] preprocessed the image using thirty
SRM filters. In CNN, bottleneck and spatial pyramid pooling were introduced for the
better detection of HILL, S-UNIWARD, and WOW stego-images. Xiang et al. [33] claimed
better results on S-UNIWARD and WOW by changing the arrangements of the layers.
The preprocessing was performed using thirty SRM filters. Wang et al. [34] applied the
transfer learning approach by using the weights from a low embedding stego-image trained
network. Wang et al. considered the spatial and frequency domain together to identify
S-UNIWARD and WOW stego-images while the preprocessing was performed using thirty
SRM filters.
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Figure 2. Computer-generated cover image and difference arrays of the cover and stego-image.
(a) Cover image. (b) DI of cover and HILL stego-image. (c) DI of S-UNIWARD stego-image. (d) DI of
WOW stego-image.

It can be concluded from previous literature that SRM high-pass filters, residual
connections, and different arrangements of layers can alleviate the detection accuracy of
CNN. In this paper, several effective steps were taken to improve the network efficacy. The
major steps of the suggested technique are given below:

• The proposed technique highlights the high-frequency elements using a high-boost
filter in the first non-trainable convolutional layer. It improves the detection accuracy
by more than one percent.

• Thirty high-pass filtered images were generated using SRM filters in the second non-
trainable convolutional layer to give prominence to the noise of the stego-image
effectively.

• A single pooling layer in the last part of the CNN was used to sustain the complete
statistical traces from each layer.

• A clipped ReLU layer was introduced for customized thresholding to obtain more
statistical information.

• The SVM classifier was utilized instead of the softmax classifier to increase the detec-
tion performance. The SVM classifier outperforms in many applications.

• Experimental results of the proposed technique were compared with SRNet, Ye-Net,
Yedroudj-Net, and Zhu-Net. The experimental results are displayed for the HILL,
S-UNIWARD, and WOW steganography algorithms with payloads of 0.2, 0.3, and
0.4 bits per pixel.

• In the detailed experimental analysis, the proposed technique was proven to be better
than the existing techniques with a higher detection accuracy.

In the next section, the proposed technique is discussed. The experimental analysis is
discussed in Section 3. The conclusions are presented in Section 4.
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2. The Proposed Scheme

Image steganalysis is required to restrict the misuse of steganography techniques. The
detection of steganography is more challenging than other types of image manipulations
such as image enhancement, median filtering, and so on, due to its non-uniform and
minute modifications in pixel intensity. A new robust scheme was proposed for detecting
the steganography in the image. Effective measures were applied to improve the existing
steganalysis techniques. Unlike previous techniques, a high-boost filter was applied to re-
veal crucial statistical information. A high-boost filter [35,36] highlights the high-frequency
components without compromising low-frequency components. A high-boost filter Hk can
be defined as follows. In here, CHP is any high-pass filter and k is a constant.

Hk = C0 + kCHP

Hk =

 0 0 0
0 1 0
0 0 0

+ k

 0 −1 0
−1 4 −1
0 −1 0



Hk =

 0 −k 0
−k 4k + 1 −k
0 −k 0


In Figure 3a, a pristine cover image is shown. The SRM filtered image after applying

the S SRM filter on a pristine image (Figure 3a) is displayed in Figure 3b. In Figure 3c,
a high-boost filtered image is displayed using a high boost filter H1 on a pristine image
(Figure 3a). Furthermore, the S SRM filter was applied to the high-boost filtered image
(Figure 3c) and the resultant image is displayed in Figure 3d. The coarseness of Figure 3d
helped in increasing the detection accuracy of the proposed technique. A total of thirty
SRM filters was applied to enhance the statistical information. The SRM filters have several
kernel weights that provide additional statistical information in multiple directions.

S=

−1 2 −1
2 −4 2
−1 2 −1

H1=

 0 −4 0
−4 17 −4
0 −4 0


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To show the effectiveness of the high-boost filter, the probability plots for normal
distribution are displayed for the cumulative variance of the cover and stego-images
in Figure 4. Ten thousand images of BOWS2 [37] were considered after resizing to the
dimensions of 256 × 256 pixels. In Figure 4a–c, the plots are shown for the S-UNIWARD
steganography technique used with payloads of 0.2 bpp, 0.3 bpp and 0.4 bpp, respectively,
and in Figure 4d–f, the WOW steganography technique is considered. A similar behavior
was also followed by HILL. DNF is the variance of the non-filtered cover image and stego-
image. DHB is the variance of the high-boost filtered cover image and high-boost filtered
stego-image. The normal distribution data of DHB had much greater disparity than DNF.
This disparity helps in improving the detection of the cover and stego-images.
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Furthermore, in Table 1, the percentage increase in the modified pixels after applying
high-boost filtering is displayed. First, the number of modified pixels was calculated using
the cover and stego-images. Second, the number of modified pixels was calculated using a
high-boost filtered cover and high-boost filtered stego-image. As can be seen, there was
more than a 50% increase in modified pixels for WOW with ρ = {0.2, 0.3, 0.4}. There was
an increase in the modified pixels of 40.58% for S-UNIWARD and 45.43% for HILL with
ρ = 0.2 bpp. Table 1 also proves the effectiveness of the high-boost filter.

The overall behavior of the HILL, S-UNIWARD, and WOW steganography techniques
are displayed in Figure 5 according to their payloads. Ten thousand images of BOWS2 were
considered after resizing to dimensions of 256 × 256 pixels to plot the entropy covariance
plot. In Figure 5a, the plot is displayed for the cover and HILL stego-images of with various
payloads of 0.1 bpp, 0.2 bpp 0.3 bpp, and 0.4 bpp. Entropy covariance plots of S-UNIWARD
and WOW algorithms are displayed in Figure 5b,c, respectively. The model of plots is
alike for the S-UNIWARD, WOW, and HILL steganography techniques. However, the gap
between the cover and stego-images varied according to the payload. Thus, a common
convolutional neural network can be suggested to identify between the cover and HILL,
S-UNIWARD, and WOW different stego-images.
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Table 1. Percentage increase of the pixels modified after high-boost filtering.

Payload (bpp) HILL S-UNIWARD WOW

0.2 45.43 40.58 53.33

0.3 46.95 39.87 53.79

0.4 48.61 41.27 54.49

The proposed convolutional neural network block diagram is displayed in Figure 6
after considering the previous literature and the above discussion. In most of the previous
CNN based techniques [27,30–34], the SRM filters [11] were used as preprocessing layers
in the CNN. In this paper, two preprocessing layers were used for revealing the stego-noise
effectively. One high-boost kernel with dimensions of 3 × 3 was considered in the first
non-trainable preprocessing layer to capture the stego-noise. In the second non-trainable
preprocessing layer, thirty SRM filters with dimensions of 5 × 5 were taken. Furthermore,
the bottleneck approach applied in each convolutional layer block as in [32] gave better
results than the conventional approach. The abstract diagram of the bottleneck approach is
displayed in Figure 7. In blocks 1–14, either 18 kernels or nine kernels were used. Unlike
the previous CNN, the number of kernels was a lot less. The lower number of kernels
reduced the computation cost drastically. In the experimental analysis, some experiments
were performed by using a higher number of kernels but there was no advantage in the
detection accuracy. Therefore, a fewer number of kernels were considered. Weight was
initialized using the Glorot and Bengio [38] method. In every fourteen blocks, the order
of the layer was as follows: convolution layer with 3 × 3 filter, convolution layer with
1 × 1 filter, bath normalization layer, and clipped rectifier linear unit layer [39]. Two skip
connections were also used after block 5 and block 10 for better detection. No pooling
layer was used until block 14 in the network. One global average pooling layer [30,40]
was considered after fourteen blocks. The consideration of only one GAP layer ensures
the maximum flow of statistical information between the blocks. The RMSprop optimizer
was utilized in CNN training. The number of epochs was considered as a hundred with
a mini-batch size of twenty. Furthermore, features were extracted from the GAP layer
using the activation function. The features of both classes (i.e., cover and stego-images)
were classified using an SVM classifier with a Gaussian kernel as the function. Sequential
minimal optimization [41] was used for fast and optimized convergence.
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In most of the earlier networks, the ReLU layer was utilized for thresholding. The
negative elements were replaced with zero in the conventional ReLU layer. The ReLU can
be better understood by the following function:

R(i) =
{

i, i ≥ 0
0, i < 0

However, in clipped ReLU (CReLU), negative elements were replaced with zero, the
elements higher than the clipping ceiling value (threshold T) were replaced with the
clipping ceiling value, and other elements remained intact. The CReLU can be defined by
the following function:

R(i) =


0, i < 0
i, 0 ≤ i < T
T, i ≥ T

The threshold value has a crucial effect on network optimization. The threshold value
was considered after exhaustive experimental analysis. The HILL steganography technique
was considered to decide the threshold value as the detection of the HILL steganography
technique is more difficult than S-UNIWARD and WOW. Stego-images with payloads of
0.2 bpp and 0.3 bpp were taken to decide the threshold value. In Figure 8, the effect of the
ReLU and clipped ReLU layer is displayed on network kernels. After network training, the
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behavior of network kernels was different for ReLU and CReLU. Sixteen kernels of layer 9
were used to display the images after a kernel operation in the Figure 8a image for both
ReLU and CReLU.
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3. Experimental Analysis

Image steganography is performed to hide some secret information. In some cases,
steganography is misused. In this paper, the image steganalysis technique was proposed
to restrict the misuse of image steganography. The proposed technique was verified
for multiple cases. Two popular datasets BOSSBase [42] and BOWS2 [37] were used for
detailed experimental study. Both datasets had ten thousand images with the dimen-
sions of 512 × 512 pixels. The dimension of the images was changed to dimensions of
256 × 256 pixels using interpolation. Experimental analysis was performed on the di-
mensions of 256 × 256 pixels. The proposed technique was compared with the popular
state-of-the-art techniques SRNet [28], Ye-Net [27], Yedroudj-Net [30], and Zhu-Net [32].
The detailed experimental analysis was performed by considering three cases of image
dataset combination.

Case I: The BOSSBase dataset was considered in Case I. Stego-images were created
using three steganography algorithms—HILL, S-UNIWARD, and WOW. Four thousand
images were considered for training, one thousand for validation, and five thousand for
testing from both the classes, cover, and stego. Multiple pairs were formed according to the
different payloads and steganography algorithms.

Case II: The BOWS2 and BOSSBase image datasets were considered in Case II. In
comparison to Case I, a higher number of images were considered in Case II for better
results. Fourteen thousand images were considered for training the network, one thousand
images for validation, and five thousand images for testing the trained network. An equal
number of images were taken from the BOWS2 and BOSSBase datasets. The same number
of stego-images was also created according to the steganography algorithm and payload.

Case III: Like Case II, both datasets were considered. One hundred and twenty-five
thousand cover images were created after applying data augmentation on both datasets.
A hundred thousand images were used for training, five thousand for validation, and
fifteen thousand for testing. Corresponding stego-images were also created according to
the steganography algorithm and payload.

The HILL, S-UNIWARD, and WOW stego-images with embedding payloads of 0.2,
0.3, and 0.4 bpp were considered in the experimental results. The results are displayed in
terms of the classification accuracy in percentage. In Table 2, the effect of the high-boost
filter and clipped ReLU (CReLU) is displayed while considering Case I and the softmax
classifier. In most of the previous literature, SRM filters were applied as pre-processing
or in non-trainable layers to improve the detection of stego-noise. Therefore, SRM filters
were considered in each result. In the first row, the results are displayed using SRM filters
and ReLU layers on the proposed network while not including a high-boost non-trainable
layer. In the second row, the results are displayed using SRM filters and CReLU layers
while not including the high-boost non-trainable layer. In the third row, the results are
displayed using ReLU layers in the proposed network. In the fourth row, the results are
displayed using the proposed network. The softmax classifier was used for classification in
the four scenarios.

Table 2. Performance analysis of a high-boost filter and CReLU layer.

S. No. Steganography Technique/
Payload (bpp)

HILL S-UNIWARD WOW

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

1 SRM + ReLU 60.33 67.09 69.69 68.05 76.27 82.35 73.46 80.48 84.75

2 SRM + CReLU 61.24 67.90 70.82 69.02 77.04 81.61 74.13 81.79 85.43

3 HB + SRM + ReLU 61.93 69.14 71.68 69.51 77.97 82.85 75.03 82.45 86.38

4 HB + SRM + CReLU 62.49 68.59 72.26 70.00 78.68 84.11 76.02 83.36 87.74

Usually, a softmax classifier is utilized in CNN. In experimental analysis, some other
classifiers have also been tried. The SVM classifier has been proven to be better than many
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classifiers. It was also found in the experimental analysis that the SVM classifier performed
better than the softmax classifier in most of the scenarios, as can be seen in Table 3. The
sequential minimal optimization was used for fast and optimized convergence.

Table 3. Performance analysis of the softmax and SVM classifier.

S. No. Steganography Technique/
Payload (bpp)

HILL S-UNIWARD WOW

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

1 Softmax Classifier 62.49 68.59 72.26 70.00 78.68 84.11 76.02 83.36 87.74

2 SVM classifier 63.25 69.91 73.07 69.54 79.88 84.79 77.02 83.95 87.26

In Table 4, the results are displayed for Case I using the proposed technique. The
results were also compared with other popular techniques such as SRNet [28], Ye-Net [27],
Yedroudj-Net [30], and Zhu-Net [32]. The detection accuracy of the proposed technique
and other techniques was the highest for WOW, followed by the S-UNIWARD and HILL
steganography algorithms. The proposed technique results are more impressive than
other techniques except for S-UNIWARD with 0.2 bpp and HILL with 0.4 bpp. In the
two scenarios, the detection accuracy of Zhu-Net was better than the proposed method.
The proposed method gave 77.02, 83.95, and 87.26% detection accuracies for WOW with
payloads of 0.2 bpp, 03 bpp, and 0.4 bpp, respectively.

Table 4. The performance assessment while considering Case I.

Steganography Technique/
Payload (bpp)

HILL S-UNIWARD WOW

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

SRNet 55.51 63.64 67.62 64.97 73.88 79.34 72.52 79.41 83.59

Ye-Net 54.31 59.40 63.85 60.20 68.01 74.83 69.39 72.97 78.65

Yedroudj-Net 54.09 58.72 67.98 59.74 69.29 74.97 69.96 75.52 81.07

Zhu-Net 61.74 66.61 74.56 70.23 78.12 82.81 74.37 78.41 86.23

Proposed Method 63.25 69.91 73.07 69.54 79.88 84.79 77.02 83.95 87.26

For better results, additional numbers of images were considered for training the
network. In Case II, fourteen thousand images were taken for CNN training. There was
a substantial enhancement in detection accuracy, as can be seen in Table 5. The proposed
technique gave 64.49%, 74.10%, and 77.13% detection accuracies for HILL with the 0.2, 0.3,
and 0.4 bpp payloads, respectively. The proposed technique gives 75.06%, 83.64%, and
86.85% for S-UNIWARD with 0.2, 0.3, and 0.4 bpp payloads, respectively. The proposed
technique gave 81.50%, 88.81%, and 91.78% for WOW with the 0.2, 0.3, and 0.4 bpp payloads,
respectively. Zhu-Net provided better results by a slight margin for HILL ρ = 0.4 bpp and
WOW ρ = 0.4 bpp.

Table 5. Performance assessment while considering Case II.

Steganography Technique/
Payload (bpp)

HILL S-UNIWARD WOW

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

SRNet 60.85 67.10 68.79 67.17 76.18 79.06 77.40 83.97 88.49

Ye-Net 53.79 61.60 65.61 62.32 70.60 74.98 70.42 78.81 82.37

Yedroudj-Net 57.28 64.14 66.91 63.51 71.28 74.15 73.49 81.93 85.46

Zhu-Net 63.81 69.85 77.27 73.40 79.89 83.40 79.51 87.55 92.66

Proposed Method 64.49 74.10 77.13 75.06 83.64 86.85 81.50 88.81 91.78
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Data augmentation was used to increase the size of the available images of the two
datasets BOSSBase and BOWS2, as discussed in Case III. The improvement in the detection
accuracy is evident in Table 6. Except for one scenario, in all scenarios, the result of the
proposed technique was better. Augmented data enhanced the detection accuracy by
7.75%, 2.82%, and 5.15% for HILL with payloads of 0.2, 0.3, and 0.4 bpp, respectively. For
S-UNIWARD with 0.2, 0.3, and 0.4 bpp payloads, there was a benefit of 7.10%, 3.59%, and
4.52%, respectively. WOW with the 0.2, 0.3 and 0.4 bpp payloads showed an increment in
the detection accuracy by 1.82%, 0.46%, and 1.38%, respectively. Only in one scenario did
Zhu-Net give a 1.10% better result for WOW ρ = 0.4 bpp, otherwise the proposed technique
superseded the other techniques.

Table 6. Performance assessment while considering Case III.

Steganography Technique/
Payload (bpp)

HILL S-UNIWARD WOW

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

SRNet 64.44 70.03 72.92 74.31 81.29 84.66 78.28 84.37 87.97

Ye-Net 59.62 64.84 69.81 65.72 74.08 82.25 72.46 77.50 83.66

Yedroudj-Net 60.94 66.93 70.17 67.03 75.40 80.02 74.25 82.66 86.85

Zhu-Net 66.82 72.45 78.97 80.57 85.28 88.45 81.86 90.37 92.31

Proposed Method 72.24 76.92 82.28 82.16 87.23 91.37 83.32 89.27 93.16

4. Conclusions

In the proposed scheme, two non-trainable convolutional layers were used to enhance
the performance. The high-boost filter was utilized in the first non-trainable layer to
enhance the statistical information. The SRM filters were considered in the second non-
trainable layer to fetch additional information. The bottleneck approach was followed in
the network design to improve the performance. The clipped ReLU layer was taken instead
of the simple ReLU layer to customize the thresholding. Two skip connections were also
used for additional information from different connections. A single pooling layer was
used at the end of the network to avoid information loss between the layers. The SVM
classifier was applied instead of the softmax classifier to obtain better results than previous
methods. In the experimental analysis, the proposed scheme was found to be the most
effective for three context-aware steganography techniques on different payloads. The
detection accuracy of the proposed scheme was better than the four existing techniques in
most cases.
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