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Abstract: Five countries share the catchment of the Tisza River (Central Europe). In most households
electricity and water are available, and by washing synthetic clothes they can produce a large number
of microfibers. However, in many sub-catchments of the river, the wastewater treatment is insufficient;
therefore, microplastics (MP), especially plastic microfiber emissions into rivers, represent a problem.
Our goal was to analyze the suspended sediment and microfiber transport at the low stage, making
repeated (2021 and 2022) measurements in the Tisza River (946 km) at 26 sites across three countries.
Water sampling was performed by pumping 1 m3 of water through sieves (90–200 µm). The mean MP
transport in 2021 was 19 ± 13.6 items/m3, but it increased by 17% in 2022 (22.4 ± 14.8 items/m3). The
most polluted sections were the Upper Tisza (Ukraine, Hungary) and the Lower Tisza (Serbia), where
wastewater treatment is not satisfactory, whereas the Middle Tisza (Hungary) was less polluted. The
tributaries increased the sediment and MP budget of the main river. Microfibers dominate (84–97%)
the suspended MP transport, and thus it can be determined that they originated from wastewater.
The MP transport was influenced by the availability of wastewater treatment plants, dams, tributaries,
and mobilization of bottom sediments. At the low stage, no connection was found between the
suspended sediment and MP particle transport.

Keywords: microplastic transport; reservoir; impoundment; tributary; bottom sediment; suspended
sediment; wastewater management

1. Introduction

Textile fibers are made of natural, semisynthetic, and synthetic materials [1]. The
first polymer-based fiber (artificial silk) was made in the early 1880s, but synthetic fabrics
became popular just in the mid-20th century [2,3]. The textile industry is rapidly growing:
in 2020 the global synthetic fiber production represented ca. 68 million tons, which is
around 62% of all fibers produced annually [4]. The problem with the usage of synthetic
textiles originates not only from their increasing consumption and very low recycling
ratio (≤1% [1]), but also from the pollutant production, including microplastics (MP),
during their fabrication [5–7], and the release of MPs during their usage, washing and
drying [8–11]. The MP contamination of surface waters is probably contemporaneous with
the appearance and usage of synthetic products, as, e.g., in China MPs have been found in
fluvial sediments since 1962 [12].

Microplastics originating from textiles have longitudinal shapes, they are often colored,
and are found in all parts of the Earth. The high abundance of textile-originated MP fibers is
connected mainly to wastewater [10,11], as even after the cleaning process of the wastewater,
the effluent water is usually highly polluted by MPs [2,13]. Cesa et al. [2] indicated that
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current wastewater treatment technologies retain the majority (80–99.9%) of the MPs during
the cleaning process; however, still large number of MPs is emitted into the environment via
effluent water (max. 50 item/L), or by the agricultural usage of the wastewater sludge (max.
24 item/g). At the same time, it must be considered, that even though many households are
supplied by electricity and piped water, and can thus use washing machines, the number
of households connected to sewage pipelines and wastewater treatment plants (WWTP) is
much lower, especially in poorer countries.

Therefore, MPs, and especially microfibers can enter into the rivers, and they can
be transported and/or accumulated in the fluvial environment. Very often, microfibers
form 70–100% of all observed plastic items [14–16]. The significant role of the WWTP
effluents downstream of WWTPs is reported by some studies [15,17]; however, others
did not observe a significant spatial change in MP concentrations [16,18]. However, it
must be noted, that most microfibers (≥87%) in the freshwater environment are made of
natural polymers such as cotton and wool [19,20]; thus, they are not synthetic. Therefore,
these fibers cannot be classified as microplastics without chemical identification of their
polymeric identity [21].

The vertical distribution and transport of MPs in rivers is a complex process, as they
are affected by a combination of several factors related to the hydrological, hydraulic,
morphological, and hydrodynamic conditions of a river, and the physical characteristics
(e.g., density, size, and shape) of the MPs themselves [22]. Due to the heterogeneous nature
of MPs, they behave differently in river channels [23,24]. For instance, low-density MPs,
such as polypropylene (0.9 g/cm3), polyethylene (0.95 g/cm3), and polystyrene (1.1 g/cm3)
are usually floating in the water column; meanwhile, high-density MPs, such as polyvinyl
chloride (1.34 g/cm3), polyamide (1.42 g/cm3) or polyethylene terephthalate (1.42 g/cm3)
sink into the river bed [22]. According to Waldschläger et al. [25], approximately half of
the produced plastic has a density greater than water; thus, approximately half of the
MPs may be transported as bed-load, and the other half as suspended load. On the other
hand, many studies reported a higher abundance of MP in the riverbed than in the water
column [26–28]; thus, they considered the riverbed as a sink for MPs. Besides, MPs are
usually vulnerable to fragmentation, rapid flocculation and biofouling, processed which
alter their physical characteristics and consequently their transport rate [22].

The longitudinal variability of MP in rivers is governed by various factors. Several
studies tried to connect the MP contamination in fluvial sediments or in water to land use
types. However, usually no unambiguous correlation was found [14,29–31]. However,
some studies have revealed higher MP concentrations near to urbanized or industrialized
areas than rural territories, or in the vicinity to WWTPs [18,26,32]. The lack of correlation
was explained by the importance of the hydrodynamic conditions of the river for redis-
tributing MPs [29]. The most important is the spatial distribution of point sources, such as
effluents of WWTP [33], industrial and agricultural drains [34], and tributaries [35], whereas
non-point sources include surface run-off from roads, urban and agricultural areas [36],
aquaculture activities [37], wind transport and direct deposition by humans [34]; ultimately,
the contribution of point-source and non-point-source polluters to MP transport has not yet
been cleared. Conversely, the spatial changes in flow velocity, discharge, slope, roughness,
and channel morphology also influence the MP pollution along a river [38]. As these
hydrological parameters could be altered by man-made hydraulic structures, such as dams,
barrages, and weirs, they can accelerate the deposition process of MPs upstream of these
constructions [39]. Finally, the geomorphological setting of the depositionary environment,
such as sedimentary bodies (e.g., point and side bars), and impoundment at confluences
can also influence the MP transport and deposition processes [35,38]. Although many
studies have investigated the spatial variability of MP along rivers, there is no agreement
on the longitudinal downstream trend [14,35,40].

Studying transported MPs in water samples, Rodrigues et al. [41] found a downstream
decrease in MP concentrations (River Estarreja, Portugal); however, Barrows et al. [40]
found no downstream trend (Gallatin River, USA). At the same time, Crew et al. [42] and
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Buwono et al. [43] found an increasing upstream trend on the St. Lawrence (Canada) and
Brantas Rivers (Indonesia). These different results may be caused by the fact that the
transport of MPs in rivers does not only depend on the slope or the discharge, but may also
be governed by the location, time, and magnitude of MP input [44]. Similar conclusions
were reached by Crew et al. [42] and Buwono et al. [43], who explained the increasing
downstream trend with an increase in incoming waste sources. Sucharitakul et al. [45]
revealed that the concentration and composition of MPs did not differ significantly between
source area and the areas further downstream at the Gold Coast Broadwater, Australia.

Considering the actual number of transported MPs, there is a great range at calculated
values. In Hungarian rivers, the MP content varies between 3.52 and 32.5 items/m3 [37]. An
MP pollution (120 ± 10 and 160 ± 20 items/m3) orders of magnitude higher was measured
in the St. Lawrence River (Canada) by Crew et al. [42], and 50–725 items/m3 were reported
from the Zhangjiang River (China) by Pan et al. [46]. Even higher amounts (4390 items/m3)
were measured in the Langat River (Malaysia; Chen et al. [47]), whereas the Brantas River
(Indonesia) could also be classified as highly polluted (133–5467 items/m3 [43]).

Single measurements give a snapshot on the MP transport in rivers; however, based on
repeated measurements over time, the relationship between MP transport and hydrological
conditions could be revealed. For example, Rodrigues et al. [41] performed measurements
in different hydrological situations on the Antuã River (Portugal), and they concluded that
58–193 items/m3 MP particles were transported during high flows, while this increased to
71–1265 items/m3 during low flows. Wu et al. [26] found a similar temporal trend in the
Maozhou River (China), with MP particles of 3.5 ± 1.0 to 10.5 ± 2.5 items/L during high
stage, and an slightly increased amount (4.0 ± 1.0 to 25.5 ± 3.5 items/L) during low stage.
However, Eo et al. [48] observed greater MP transport (4760 ± 5242 items/m3) during high
flow than at low stages (293 ± 83 items/m3) on the Nakdong River (Korea).

Our previous studies have shown that, the fluvial system and sediments of the Tisza
River (Central Europe) are highly polluted by MPs [38]. Therefore, we aimed to analyze
the amount of transported MP in the water by annual monitoring along the river. Our
aims were (1) to evaluate the suspended sediment concentration (SSC); (2) to measure
the number of MPs (e.g., spheres, fragments) and microfibers transported by the flowing
water; (3) to compare the SSC to MP and microfiber transport; and (4) to identify the
morphological types and possible sources of the pollution.

2. Materials and Methods
2.1. Study Area
2.1.1. Geographical Setting

The study was performed along the Tisza River from its spring in Ukraine to its
confluence with the Danube River in Serbia (Figure 1). Our research is unique from the
point of view, that (1) along a quite long (946 km) river high number (26) of water samples
were collected for SSC and MP; and (2) the measurement was repeated in two subsequent
years. The Tisza River drains the eastern part (157,000 km2) of the Carpathian Basin,
Central Europe. The catchment area has a mountainous character in Ukraine, Romania,
and in east Slovakia, whereas the lowland parts are in Hungary and Serbia [49]. The
Tisza and its tributaries usually flood in early spring (March–April) and early summer
(June–July); meanwhile, the river has long-lasting low stages from early summer to late
winter (August–February).
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Figure 1. (A) The study area is located in Central Europe. (B) The research was performed along the
Tisza River (Sites a–z) and its tributaries (Sites E–L). The flow of the Tisza is controlled by three dams
at Tiszalök (TD), Kisköre (KD) and Novi Becej (ND). The grey colors indicate the sub-catchments of
the sections (S1–S5).

The Tisza River has three reaches (Upper, Middle and Lower Tisza); however, we
divided them further into sections (S1–S5) based on the hydrological and morphological
characteristics of the channel and the catchment (Figure 1).

The Upper Tisza (946–688 km) along its upstream section (S1) has a steep-sided, deep
valley with a high slope (20–50 m/km), and thus the water velocity (2–3 m/s) is the greatest
in this section. In the downstream section of the Upper Tisza (S2) the channel gradually
widens, and the slope decreases (from 110 to 13 cm/km), thus the flow velocity decreases to
1 m/s [50]. Due to the great slope of the Upper Tisza, floods here usually last just for a few
days. The maximum discharge of the reach is 3360 m3/s (at Tiszabecs), whereas the mean
is 197 m3/s, and the minimum is 29 m3/s [50]. The height difference between the highest
and lowest water stages is 10.0 m [38]. The high bedload transport (22.6 thousand m3/y) is
attributed to low suspended sediment load (0.9 million m3/y) [51].

Similarly, the Middle Tisza (688–177 km) was divided into upstream (S3) and down-
stream (S4) sections (Figure 1). The slope of the meandering Middle Tisza decreases
significantly, as at the upstream section it is ≥3 cm/km, but just further downstream
it drops to 1–3 cm/km. Therefore, the flow velocity decreases by approximately 70%
(S3: 0.1–0.5 m/s; S4: 0.1–0.2 m/s). Due to the significant decrease in flow velocity, sea-
sonal floods last for weeks, and the bedload transport declines (by 56%) compared to the
Upper Tisza (S3: 8.8 thousand m3/y; S4: 11 thousand m3/y). Meanwhile, the suspended
sediment load increases five-fold (5 million m3/year) in the upstream section and three-
fold (3.3 million m3/year) in the downstream section. Compared to the Upper Tisza, all
characteristic discharge values increased (at Szolnok Qmax: 4336 m3/s; Qmean: 738 m3/s;
Qmin: 58 m3/s), and the elevation difference between the highest and lowest stages also
became greater (11.95 m). The water and sediment budget of the reach is influenced by
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several, large tributaries (e.g., Szamos, Kraszna, Bodrog, Sajó, Zagyva and Körös Rivers)
and two dams at Tiszalök and Kisköre [38].

The hydrological and morphological characteristics of the Lower Tisza (177–0 km)
are similar along the entire reach; thus, the whole reach was considered as one section
(S5). At the very beginning of the reach, the largest tributary of the Tisza (Maros River)
joins (Figure 1); however, there are no more tributaries downstream. This reach is highly
affected by the Novi Becej Dam; thus, the slope drops to 0 cm/km during low stages.
In addition, the Danube and the Maros can impound the Tisza during floods of up to
330 km (Middle Tisza, Szolnok) [52]. The Lower Tisza has the highest water transport (at
Szeged Qmax: 3820 m3/s; Qmean: 564 m3/s; Qmin: 65 m3/s), and the greatest (12.59 m)
water level fluctuation [38]. The lowest slope along the entire Tisza River (0–2.5 cm/km)
occurs at this reach; therefore, the flow velocity drops to 0.1 m/s, and the floods last
for months [50]. The bedload (9–11 thousand m3/year) is only 1% of the total sediment
load [50]. On the other hand, the Lower Tisza transports the greatest amount of suspended
load (12.9 million m3/year) along the entire river [51].

2.1.2. Wastewater Management along the Tisza and Its Catchment

The catchment area of the Tisza River is shared between five countries: Ukraine (8.1%),
Slovakia (10.2%), Romania (45.4%), Hungary (29.9%), and Serbia (6.4%) [53]. The quality of
wastewater discharge and treatment, and the degree of waste management varies between
countries, which affects the amount of municipal plastic entering the water system.

Wastewater pipeline systems (WWPS) are only built in the settlements on the periphery
of the Tisza catchment. For example, in Ukrainian (Transcarpathian) cities only 68% of
the households are connected to WWPSs, but in the small towns it is 58%, and in the
villages is only 1.5% [54]. The situation is similar in Romania, where on average 41% of the
households are connected to WWPSs, but in rural areas, it is only 5–15% [55]. The situation
is better in Slovakia, with an average of 62% [56]. In Hungary, 56% of the settlements along
the Tisza are supplied by WWPS, which is much lower than the national average (83%) [57].

The WWPS can be a false indicator of environmental status, as it is also important,
whether the collected wastewater is treated or not, and what is the degree of the treat-
ment [58]. Unfortunately, the wastewater treatment plants (WWTP) are not sufficiently
built in the countries of the catchment, and sometimes more wastewater is generated than
what can be treated. The fact that the regions along the Tisza in Hungary occupy almost
half of the country’s territory, where 39% of the population lives, but less that than a third of
the country’s total wastewater production is treated reflects the underdeveloped sewerage
treatment capacity of the region [59]. Thus, wastewater is often discharged into the envi-
ronment untreated. The proportion of untreated and discharged wastewater in Hungary is
2–2.8% (11–15 million m3/y). According to a Hungarian MP study, the wastewater contains
466 items/L, whereas in the sewage sludge there are 33–44 thousand items/kg, and 90% of
the MPs are fibers [60]. Approximately 12% of the MPs of the raw wastewater gets into the
effluent-treated wastewater, similarly to other countries [44,58].

2.2. Materials and Methods
2.2.1. Water Sample Collection

In 2021 surface water samples (26) were collected at ca. every 50 km along the Tisza.
However, in 2022 additional water samples (8) were collected from the main tributaries, ca.
15–20 km away from their confluence (Figure 1). Due to the war in Ukraine, no sampling
was performed in the country in 2022, thus only the Hungarian and Serbian sections of the
Tisza were sampled.

Both sampling campaigns were performed at low stage (August 2021; July 2022);
however, the discharge of the Tisza was ca. 150–160 m3/s in 2021, but due to a long-lasting
drought it was only 50–55 m3/s in 2022. To analyze the suspended sediment concentration
of the surface water of the Tisza at a given location, unsieved water samples (1.5 L) were
collected in 2022. The sampling for MP analysis in 2021 and 2022 was made by a water
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pump: 1.0 m3 water was pumped through a metal sieve system (90–200 µm). The sieved
samples were washed into glass containers.

2.2.2. Sample Preparation

To determine the total suspended sediment concentration (SSC) of the collected water
samples (including natural and microplastic particles), the total evaporation method was
applied, adopting the ISO 4365 (A) and ASTM D3977–97 (A) standards [61]. The water
samples (1.5 L) were dried at 105 ◦C, and the amount of solid material was measured.
The SSC concentration was expressed as dry g/m3. As this method considers the dry
weight of sediment in the whole collected volume, it gives more accurate results than the
sub-sampling technique [62].

The sieved samples for MP and microfiber analysis were treated by 30 mL hydrogen
peroxide (30%) for 24 h to decompose the organic material. Then, the samples were washed
into Petri dishes and dyed by Nile Red stain [63]. The identification and counting of
MP and microfiber particles were performed with an Ash Inspex II digital microscope
at 60× magnification using visible and UV lights [38,64,65]. An item was identified as
MP if (1) it did not have a structure characteristic of an organic matter; (2) it reacted on
contact with a hot needle [66]; (3) it retained its rigid shape when moved; and (4) it had a
special color (e.g., red, blue) or shape (i.e., sphere, irregular fragmented) [64]. During the
identification, microfibers (colored and colorless), plastic fragments and plastic spheres
were separated. As the and microfibers are not necessary synthetic, and we had no access
to FTIR analysis, all fibers were excluded from the identification, which had any indication
of natural origin. Thus, microfibers with (1) non-uniform thickness; (2) non-uniform dying;
(3) smaller filaments sticking out from the end of the ripped fiber; (4) thinning end; or
(5) with a bulb were considered to be natural fibers (Figure 2) and were excluded from the
analysis. The MP content of the water (including microfibers) was expressed in items/m3.
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Figure 2. Natural microfibers were excluded from the analysis. (A) Hemp fiber with uneven thickness
and non-uniform dying; (B) Ripped hemp fiber with filaments. (C) Cotton fibers with uneven
thickness and bulbs. (D) Wool fiber with uneven thickness. (E) Alpaca fiber with thinning end.

To avoid contamination of the samples, only metal and glass tools were used, and
non-synthetic protective clothing was worn. The tools were rinsed three times with filtered
water before use. The samples were covered during the separation to avoid contamination
by settling airborne MPs. Three water samples and one blind sample were clustered in
order to check the temporal changes in contamination during the laboratory work. The
average contamination of the blank samples was 5 ± 3 items/sample. Within each cluster,
the MP number of blank samples was extracted from the MP content of the water samples
following the suggestion of Crew et al. [42].

3. Results
3.1. Suspended Sediment Concentration of the Tisza

The total SSC was measured just in 2022. Its mean was 37.6 g/m3; however, the
tributaries and the dams highly influenced the longitudinal trend of SSC (Figure 3). It
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can be noticed that some tributaries (e.g., Szamos, Bodrog, Zagyva, and Maros Rivers)
increased the sediment load of the Tisza River, as it was reflected by higher SSCs at the
sections downstream of their confluences. For example, downstream of the Szamos (E) and
Kraszna (F) Rivers, at site “j” and “l” the SSC increased by 35% and 28%, respectively, and
at the site downstream of the Maros River (L) “v” became greater by 117%.
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In the reservoirs behind the dams, the SSC gradually decreased. For instance, the SSC
decreased by 35% in the reservoir of the Kisköre Dam between sites “m” and “o”. On the
other hand, just downstream of the Kisköre Dam (sites “p–q”) the clear water erosion of
the riverbed increased the SSC by 5%.

3.2. Microplastic Transport of the Tisza in 2021

In 2021, the MP transport (including microfibers; Figure 4) of the Tisza River was
19 ± 13.6 items/m3 on average (Table 1). The most polluted section (39 ± 31.1 items/m3)
of the river was the upstream (S1) section of the Upper Tisza in Ukraine; and the most
polluted site was found here too, at the village of Gyilove (Site “b”: 61 items/m3), which
is built right along the banks of the river in the deep valley, where no sewerage cleaning
facilities exist. Towards the downstream sections, the MP content of the water in gradually
decreased, as in S4 section the mean pollution was just 14.5 ± 7.9 items/m3. The decreasing
trend was also obvious along the Upper Tisza when the sites are compared, as in the
upstream Ukrainian settlements (27–32 items/m3) the pollution was higher than in the
Hungarian section (0–7 items/m3). It has to be noted that in the larger cities of the Ukrainian
section (e.g., Rahiv, Bustino, Szolotvino, Tyacsiv) there are WWPS, but that due to the poor
condition of the WWTPs [54], these continuously and significantly pollute the Tisza. The
situation is not better along the Hungarian section of the Upper Tisza, as here half of
the villages (e.g., Tivadar) have no WWPS, while in the other half only 61–78% of the
households are connected to the sewage network [67].
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Table 1. Mean microplastic content (items/m3) of the Tisza and its tributaries in 2021 and 2022.

Upper Tisza Middle Tisza Lower Tisza Tributaries

Year Average S1 S2 S3 S4 S5

2021 19 ± 13.6 39 ± 31.1 18.6 ± 14.2 15.8 ± 13.8 14.5 ± 7.9 22.6 ± 10.1 no data

2022 22.4 ± 14.8 no data 30.5 ± 20.5 16.5 ± 6.6 21.1 ± 17.8 27.6 ± 14.2 27 ± 19

The Middle Tisza was the least polluted reach of the Tisza, especially its downstream
section (S3: 14.5 ± 7.9 items/m3). The MP pollution of the upstream S4 section was also
low, despite the fact that 10 out of the 15 municipalities along the section are without
WWPSs. At one site, the water was heavily polluted (“i”: 42 items/m3; however, it is
located downstream of the Kraszna River (F), which carries large amounts of suspended
sediment and MPs. In the downstream section of the Middle Tisza (S4), the MP pollution
was more uniform, though a slight increase could be observed downstream. In the Middle
Tisza, the sampling sites between “l” and “o” are represent the reservoirs behind dams.
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Along the impounded section of the river, the MP content of the water gradually decreased
(from 19 to 11 items/m3). However, downstream of the Kisköre Dam, the MP content
of the samples was relatively high with an increasing trend: between sites “p” and “q”
it increased from 12 to 21 items/m3, as the clear water erosion probably mobilized the
sediments at the channel bottom.

In the Lower Tisza (S5), the average MP content (22.6 ± 10.1 items/m3) increased by
ca. 25%. This can be partly explained by impoundment and trapping by the Novi Becej
Dam, the influence of the tributaries (K: Körös and L: Maros Rivers), and the low degree of
sewage collection and treatment in Serbia.

The morphological types of the transported MPs were also identified (Figure 4). Plastic
fibers dominated (mean: 84.2%) in all samples along the entire length of the Tisza in 2021.
In general, colored synthetic fibers had a higher proportion in most samples; however,
the proportion of colorless fibers increased in samples with high MPs content (sites “b,
i, v, z”). In some samples, spheres (mean: 8.7%) and fragments (mean: 7.1%) were also
found. Spheres appeared just in the Middle and Lower Tisza (S3–S5), and their abundance
increased downstream. At the same time, fragments occurred almost along the entire
length of the river, with moderate abundance (12–33%) at some sites (e.g., “d, f, i, u, x”).

3.3. Comparison of the Microplastic Transport of the Tisza and Its Tributaries in 2021 and 2022

The average microplastic pollution of the Tisza in 2022 was 22.4 ± 14.8 items/m3; thus,
compared to the 2021 data, the contamination increased by almost 20% (Table 1, Figure 5).
While in 2021 at the most polluted point (Site “i”), the transported MP was 42 items/m3, in
2022 more sites had even higher values: Site “f”: 45 items/m3; Site “u”: 63 items/m3; and
Site “x”: 46 items/m3.
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difference between the data of the surveys made in 2021 and 2022.

In 2022 the tributaries transported 27 ± 19 MP items/m3 on average, which was 20%
greater than the mean value of the Tisza. The most contaminated tributaries were the
Zagyva (J: 63 items/m3) and the Szamos (E: 48 items/m3). The Hernád (H), Sajó (I)
and Maros (L) were moderately polluted (23–25 items/m3), while the least polluted
(11–11 items/m3) tributaries were the Kraszna (F), Bodrog (G) and Körös (K) Rivers.
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Although in 2022 no measurements were made along the Ukraine section, the two
Hungarian samples from the Upper Tisza S2 section reflected also considerable MP pollu-
tion increase (Site “f” from 7 to 45 items/m3; and at Site “g” from 0 to 16 items/m3). The
increased and remobilized contamination is reflected by Site “g”, where in 2021 the water
did not contain suspended MP, but in 2022 it increased to 45 items/m3.

Then, similarly to the previous year, the amount of transported MP decreased heading
downstream; by reaching the upstream section of the Middle Tisza (S3) it was almost
halved (mean: 16.5 ± 6.6 items/m3), and here the subsequent sites reflect gradual drop
in MP pollution. In the S3, section the MP pollution was similar in the two years, and
the same sampling site (“i”) remained the most polluted, although here the MP transport
decreased by 40% (from 42 items/m3 to 25 items/m3). The high MP pollution at this point
clearly can be linked to the joining tributaries, as upstream of this point the highly polluted
Szamos River (E: 48 items/m3) joins the Tisza, causing additional pollution.

In contrast to the previous year, in 2022 between the S3 and S4 sections the mean
MP pollution increased by ca. one third, though in 2021 it decreased further on; thus, the
average MP pollution of the S4 section increased by 45%. This section had the greatest MP
transport variability, as in 2022 the highest value of the entire Tisza (site “u”: 63 items/m3)
and the lowest value (site “s”: 4 items/m3) were measured here. However, this variability
appeared temporally as well, as at some points (e.g., sites “p” and “u”) the MP transport
increased by 3–6 times between the two surveys. Interestingly, in the impounded parts of
the S3 and S4 sections, very similar transported MP values were measured in both years,
referring to similar MP input and flow conditions.

The mean MP transport increased further in the Lower Tisza (S5), showing similar
a spatial trend in both years, though in 2022 the mean value (27.6 ± 14.2 items/m3) was
higher by 22% than the 2021 average. Along this section, in both years, the amount of
transported MPs increased steadily downstream, probably as the result of impoundment
by the Novi Becej Dam and the Danube.

The 2022 survey reflected that the transported dominant MP type remained fiber
(Figure 4); however, its proportion increased from 84.2% to 97.8%. Most of the fibers were
colored, and similarly to the previous year, the increase in colorless fibers was typical in
the samples with higher MP pollution. In 2022, only 0.5% of the particles were fragments
and they were found only at two sampling sites (“f” and “q”); 1.7% were spheres, which
were found especially in the water of the Middle Tisza and in the tributaries originating in
Slovakia and Hungary (I: Sajó, H: Hernád and J: Zagyva).

4. Discussion
4.1. Microplastic Transport of the Tisza River in 2021 and 2022

The amounts of transported MPs (2021: 0–61 items/m3; 2022: 4–63 items/m3) were
similar in 2021 and 2022 (Table 1), though the mean concentration of MPs in increased
by almost 20% (2021: 19 ± 13.6 items/m3; 2022: 22.4 ± 14.8 items/m3). The tributaries
transported a higher amount of MPs (11–63 items/m3; mean: 27 ± 19.0 items/m3) than
the Tisza.

Comparing these results to similar measurements worldwide, it could be stated that
the Tisza is slightly polluted by MP during low stages. For example, the Zhangjiang
River (China) transports 50–725 items/m3 [46], the Brantas River (Indonesia) carries
133–5467 items/m3 [43], in the Langat River (Malaysia) 4390 items/m3 were found [47], or
120–160 items/m3 was detected in the St. Lawrence River (Canada) [42].

However, based on the latest results of Stanton et al. [19], Le Guen et al. [20] and
Finnegan et al. [21], these MP numbers should be handled by care, as most (84–97%) of
the identified particles were microfibers, which probably have both synthetic and natural
origin (cotton, wool, etc.). However, in the lack of chemical analysis, their exact proportion
could not be given, despite the careful visual analysis.
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4.2. Influencing Factors of Microplastic Contamination

The spatio-temporal changes at certain sites can highlight the transport characteristics
of the MP particles. As water samples were collected along an over 900 km long, medium-
sized river; subsequently, the survey was repeated. This enabled us to evaluate various
factors which might influence the transport and redistribution of MP particles.

4.2.1. Relationship between Suspended Sediment and Microplastic Transport

As the Tisza and its tributaries had low stages during the surveys, relatively low
SSCs were measured (mean Tisza: 37.5 ± 10.9 g/m3; mean tributaries: 120 ± 63.8 g/m3).
These are consistent with the reported sediment concentrations on Tisza. For instance, the
multiannual (1998–2002) mean SSC was 31 g/m3 during low stages and 110 g/m3 during
floods at the Middle Tisza [68]. Conversely, on the Lower Tisza the mean concentrations
are slightly higher (low stages: 35 g/m3; high stages: 125 g/m3; [69]), due to the elevated
suspended sediment loads transported by the Maros River.

The suspended sediment concentrations could be employed as an indicator of surface
runoff over the watershed into the river channel [70], thus higher SSCs may refer to elevated
surface runoff, which is usually associated with an increase in MP concentrations [22]. In
our study, no correlation was found between SSC and MP concentrations (Figure 6). For
instance, in 2022 the greatest MP concentration in the water was recorded at Site “u”,
though the SSC was the lowest here. Therefore, it is assumed, that at low stages the spatial
distribution of MP in the Tisza may be highly related to effluents of WWTPs or tributaries,
rather than surface runoff from the watershed. The lack of correlation between SSC and MP
could be explained by the low river slope [71], the existence of dams and artificial levees,
which block the longitudinal and lateral sediment input into the river. Our results are also
consistent with the results of Constant et al. [72], Mani et al. [73], de Carvalho et al. [74],
who found no correlation between precipitation/surface runoff and MP concentration
in rivers.
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On the other hand, it should be noted, that our measurements were performed at low
stages, when the MP transport is governed by sewage input rather than run-off. Therefore,
the measurements should be repeated in time, during rising and falling stages of floods to
understand the correlation between hydrology, SSC and MP transport.
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4.2.2. Downstream Changes in Microplastic Transport

The longitudinal trend of the transported MP pollution was similar during the two sur-
veys, as the Upper Tisza was the most polluted section of the river in both years (Table 1).
As the sub-catchments of the Upper Tisza have the less developed WWPSs and WWTPs [54],
it is obvious, that the transport rate was the highest on this reach. Further downstream,
the amount of transported MPs decreased, parallel to the transport capacity drop of the
river related to slope and velocity decrease [75]. This gradual drop in MP transport was
detectable along a ca. 800 km long section (S1–S4) in 2021, however in 2022 it was only
ca. 470 km (S1–S3). However, in the water of the lower sections (in 2021 along S5; in 2022
along S4–S5) more transported MP particles were detected, than in the upstream sections.
These suggest that the downstream variations in MP transport are more complex than just
a single longitudinal decrease [41] or increase [42,43]. The fact, that in our study area in
both years the Lower Tisza (S5) had high MP pollution, refers to the importance of not just
slope, discharge, and MP input [42–45], but also to the significance of impoundment by
dams and joining rivers.

4.2.3. Impoundment and Microplastic Transport

The flow of the Tisza River is regulated by three dams at Tiszalök, Kisköre and Novi
Becej (Figure 1). Upstream of the dams the flow velocity drops, allowing the accumulation
of the suspended MP particles, whereas downstream of them the clear water erosion
can mobilize the deposits on the bottom of the channel [76]. The SSC in all reservoirs
gradually declined downstream, referring to sedimentation, whereas the clear water erosion
downstream of the Kisköre Dam is clearly indicated by the increased SSC. On the other
hand, the transportation of suspended MPs has dissimilar trends in the reservoirs of the
Middle Tisza compared to the reservoir of the Lower Tisza. In the Middle Tisza, behind the
Tiszalök and Kisköre Dams, the SSC gradually decreased, simultaneously with SSC, due to
the decreasing gradient and flow (Figures 3 and 5). This suggests that the MP transport is
influenced by the same factors as the transport of natural fluvial sediments. In contrast, in
the reservoir of the Novi Becej Dam, though the SSC is declining downstream, the amount
of transported MP has an increasing downstream trend. This can be explained by the
increased MP input via untreated wastewater discharge, as in Serbia the WWTPs are poorly
operating [77].

The increased stream power downstream of the Kisköre Dam mobilized the sediments
with MPs on the channel bottom, thus high MP pollution was measured (at Sites “p–q”) at
the sites downstream of the dam. Similar observations were made by Liu et al. [78].

Thus, dams and reservoirs can break the longitudinal, downstream MP transport
trend. A similar spatial trend in MP content was measured along the Tisza in the freshly
deposited sediments [35], as downstream of the most polluted tributaries the amount of
MP increased, and in the reservoirs towards downstream it decreased due to the gradual
deposition of natural and plastic particles.

4.2.4. The Role of Tributaries in Suspended Sediment and Microplastic Transport

The role of tributaries in MP pollution of the main river was shown by the 2022
measurement, when the main tributaries were sampled too. Most tributaries transported
higher SSC than the main river itself, reflecting that they play an important role in the
sediment budget of the river system, despite of the low stages and drought conditions dur-
ing the survey. In 2022, some tributaries were highly polluted (e.g., Hernád: 24 items/m3,
Sajó: 23 items/m3, Zagyva: 62 items/m3, and Maros: 25 items/m3); thus, they increase the
MP transport of the main river, rather than reducing it by dilution.

The influence of a tributary can be detected along several tens of kilometers. For exam-
ple, 17.4 km downstream of the Szamos confluence at site “i” high (42 and 25 items/m3) MP
transport was detected in both years. Here, in 2021 the amount of MP pollution was 7-times
higher than at the site upstream of the confluence, and in 2022 it was still 1.5-times higher.
Similar differences in MP transport were observed between the upstream and downstream
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sites of the confluence of the Sajó (1.5 times in 2021), and the Körös and Maros rivers (2.5
and 2.6 times, respectively). This excess MP loading was also revealed in sediment samples
of upstream and downstream sites at confluences [35,38]; besides, similar pollution pattern
caused by tributaries was reported by Barrows et al. [40], Rodrigues et al. [41], and Gerolin
et al. [79].

The MP conveyance function of the tributaries is supported by the fact that the
tributaries transported not only colored fibers which clearly indicate wastewater origin, but
also spheres, which probably originated from health care products. It was also interesting
that spheres were found especially in those tributaries (i.e., Sajó, Hernád and Zagyva)
which have a catchment in Slovakia and Hungary with relatively high GDP.

4.2.5. Annual Redistribution of Microplastic Pollution

The repeated survey enabled us to analyze the changes in MP transport between
two dates. Though the reach-scale averages had similar spatial patterns at the two dates,
the sites themselves reflect great variability. The greatest local variations (up to 6-times
difference) were detected in the Upper Tisza, where the point-source waste input is the
most probable, and the highest gradient and flow provide favorable conditions for spatio-
temporal changes in MP transport. The redistribution of MP sediment hot-spots was
reflected by the sediment samples of the Tisza too [38]. Similar redistribution was reported
by Hurley et al. [65] in various rivers after a flood. However, in our case the redistribution
was not governed by high (flood) stages, as between the two surveys, as only low and
medium stages occurred. On the other hand, between the surveys the precipitation was
only 300–350 mm (usually it is ≥550 mm), thus the run-off was negligible, which support
the point-source origin of the MP particles. As the MP input was probably similar as in
the previous year, during the drought in 2022 the water became richer in MP pollution,
similarly to other rivers where during low stages higher MP pollution was measured
Rodrigues et al. [41].

4.3. Origin of the Microplastics

Most of the transported particles were colored microfibers, and there were some plastic
spheres too. These morpho-types clearly have a wastewater origin [46]; thus, probably
the actual transport of particles is also influenced by the local input of wastewater. As
microfibers dominate (84–97%) the suspended MP transport, such a homogeneity reflects
the uniformity of the origin of the pollution according to Xu et al. As some sources
argue [80], we thus assumed that in case of the Tisza the microfibers definitely originate
from wastewater drained into the Tisza.

A similar human impact was indicated by several other rivers [43,44,46], where the
main source of MP transport in the river was not surface run-off but wastewater input into
the river. Considering that the year 2022 was a drought year with minimal/no surface
runoff, it can be assumed that most of the transported MPs directly reached the Tisza and
its tributaries through wastewater discharge.

Comparing the MP pollution of the sections with the sewerage and wastewater man-
agement of the different areas, it can be concluded that the high pollution levels, especially
in the Upper Tisza and its tributaries in Ukraine, and in the Lower Tisza in Serbia, are
likely connected to the inadequate treatment of wastewater in the sub-catchments and the
direct discharge of wastewater into the Tisza. The situation is better in the Middle Tisza in
Hungary, where WWPSs and WWTPs are adequately developed, thus less MP particles
can get into the water. However, it should be noted that the MP pollution could be trapped
in the sediment deposited on the river bed [38], which could be mobilized by erosion
downstream of dams or by floods, and thus MP particles could re-enter the water system.

The dominance of microfibers in the water and in the sediments [35,38] of the Tisza sug-
gests that washing of clothes is the main source of MP microfibers in wastewater [22,81,82],
and thus in the river system [37]. There is a clear connection between wastewater treatment
facilities located near rivers and the persistence and replenishment of microfiber and MP
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pollution. Some of these wastewater treatment plants function as point sources of pollution
in rivers, providing a continuous supply and a high relative frequency of microfiber pollu-
tion [44,46], as only 64–99% of the MP particles can be removed by different wastewater
treatment technologies during the treatment process [45].

5. Conclusions

The Tisza River (Central Europe) is a good example of how the different rate of
wastewater treatment practices of the countries sharing a catchment can affect the amount
of transported MP particles. As most of the households have drinking water pipeline
systems and electricity, they can use washing machines. Thus, automatic washing became
more frequent, not just in the studied catchment but all over the world, which was combined
with the intensive consummation of textiles. Therefore, in the effluent water, a high number
of microfibers are presented. The fate of the produced wastewater is various, as it can be
drained to surface waters without or with some degree of cleaning. In the Tisza River’s
system, microfibers dominate (84–97%) in the MP transport; the MP pollution dominantly
originated from wastewater drained into the Tisza, though probably not all the microfibers
were synthetic polymers.

Only a limited number of studies have tried to monitor and map the MP transport
along a river of several hundreds of kilometers; therefore, the presented study provided
a new glimpse into the spatial characteristics of MP transport, and its connection to SSC.
During the prevailing drought conditions between the surveys, no or limited surface-run-off
could transport suspended sediment and MP particles into the Tisza’s river system. Thus,
the sediment (including MPs) originated from the erosion and mobilization of the channel
bottom sediments, and from the wastewater input. Our study on a long reach showed, that
clear longitudinal trend in MP transport could be drawn just on short (e.g., impounded)
sections. However, in the case of longer reaches the downstream trend is less clear, as the
WWTPs, dams, and tributaries can influence the sediment and MP transport.

As several spatially and temporally changing factors determine the MP transport of
rivers, it is suggested to increase the density of the measurements, as by more frequent
sampling the correlation between hydrology, SSC and MP, the transport could be analyzed.
Thus, it is suggested to perform measurements during rising and falling stages, as well as
high and low stages. Besides, to understand the origin of the MPs, much more sampling
points should be selected, and the tributaries should be also surveyed in detail.
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60. Hohner, K. Mikroműanyagok Vizsgálata Szennyvíziszapból Készült Komposztban (Microplastics in the Sewage Sludge); University of
Szeged: Szeged, Hungary, 2021.

61. D3977-97R07; Standard Test Method for Determining Sediment Concentration in Water Samples; ASTM: West Conshohocken, PA,
USA, 2007. [CrossRef]

62. Dramais, G.; Camenen, B.; Le Coz, J.; Thollet, F.; Le Bescond, C.; Lagouy, M.; Buffet, A.; Lacroix, F. Comparison of standardized
methods for suspended solid concentration measurements in river samples. E3S Web Conf. 2018, 40, 04018. [CrossRef]

63. Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and
sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [CrossRef]

64. MERI. Guide to Microplastic Identification; Marine and Environmental Research Institute: Blue Hill, ME, USA, 2017; p. 15.
65. Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide

flooding. Nat. Geosci. 2018, 11, 251–257. [CrossRef]
66. De Witte, B.; Devriese, L.; Bekaert, K.; Hoffman, S.; Vandermeersch, G.; Cooreman, K.; Robbens, J. Quality assessment of the

blue mussel (Mytilus edulis): Comparison between commercial and wild types. Mar. Pollut. Bull. 2014, 85, 146–155. [CrossRef]
[PubMed]

67. KSH. A Települések Infrastrukturális Ellátottsága. 2019. Available online: https://www.ksh.hu/docs/hun/xftp/stattukor/
telepinfra/2019/index.html (accessed on 27 September 2022).

68. Csépes, E.; Nagy, M.; Bancsi, I.; Végvári, P.; Kovács, P.; Szilágyi, E. The phases of water quality characteristics in the middle
section of river Tisza in the light of the greatest flood of the century. Hidrológiai Közlöny 2000, 80, 285–287. (In Hungarian)

69. Mohsen, A.; Kovács, F.; Kiss, T. Remote Sensing of Sediment Discharge in Rivers Using Sentinel-2 Images and Machine-Learning
Algorithms. Hydrology 2022, 9, 88. [CrossRef]

70. Tian, P.; Zhai, J.; Zhao, G.; Mu, X. Dynamics of Runoff and Suspended Sediment Transport in a Highly Erodible Catchment on the
Chinese Loess Plateau. Land Degrad. Dev. 2016, 27, 839–850. [CrossRef]
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