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Abstract: The smelting slag obtained through iron collection from waste automobile three-way cata-
lysts was used as a raw material to prepare microcrystalline glass through a one-step crystallization
heat treatment. The phase composition and microstructure of the prepared glass were analyzed
through X-ray diffraction and scanning electron microscopy–energy dispersive X-ray spectroscopy,
respectively. Single-factor experiments were conducted to investigate the effects of crystallization
temperature from 900 to 950 ◦C and crystallization time from 0.5 to 4 h on the physical and chemi-
cal properties of the microcrystalline glass. The results indicated that the optimum crystallization
temperature and time for preparing microcrystalline glass with glass smelting slag through the
proposed one-step crystallization heat treatment process were 950 ◦C and 3 h, respectively. Under
these experimental conditions, the number of crystalline phases of the microcrystalline glass was high,
the grains were mainly spherical and columnar particles, the sample structure was dense, and the
best results were obtained: the density was 2.72 g/cm3, the water absorption was 1.55%, the porosity
was 4.2%, the Vickers hardness was 618 HV, the acid resistance was 2.6%, and the alkali resistance
was 0.04%. In addition, the results of the toxicity characteristic leaching procedure indicated that
the leaching concentrations of heavy metals such as Zn, Cr, and Pb in the microcrystalline glass
were lower than those in the base glass and were considerably lower than the acceptable limits. The
microcrystalline glass obtained from final smelting slag through heat treatment can enhance the
stabilization of harmful elements. The findings of this study can be applied to the treatment of bulk
solid waste.

Keywords: waste catalyst; resource-oriented; one-step treatment; microcrystalline glass; stabilization

1. Introduction

In recent years, waste catalyst resource utilization technology, including pyro-technology,
wet technology, and biotechnology, has received extensive attention. In particular, the
pyrometallurgical enrichment technique has been remarkably developed and has been
used to efficiently recover valuable metals. However, green and sustainable technologies
for utilizing enriched smelting slag have yet to be developed. In the process of recovering
platinum group metals from three-way catalysts (SACs-3) through iron collection, the final
glassy slag is mainly constituted by high contents of silicon or silicon aluminum glassy slag,
which can be used as raw materials for aluminosilicate- or silicate-series microcrystalline
glass [1–3]. Furthermore, B2O3, flux agent, added to the smelting process can be used as
the nucleating agent in the preparation of microcrystalline glass [4,5].

A large amount of final glassy residue is generated in the process of iron capture and
the recovery of platinum group metals from SACs, though the corresponding comprehen-
sive utilization and treatment capacity is relatively weak. The low value-added treatment
methods of pit landfill, open pile, paving, or use as raw material for cement are still the
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main treatment methods of final slag, which also contains toxic heavy metal elements such
as chromium, lead and cadmium. Therefore, the accumulation and retention of a large
amount of metallurgical solid waste will certainly bring continuous potential risks and
threats to the surrounding natural environment and human survival. The use of final slag
as a raw material for the preparation of microcrystalline glass can not only realize the
resource utilization of smelting final slag and generate additional economic benefits but
also result in zero solid waste in the whole recycling process, which is a win–win situation
for both economic and environmental protection [6–8].

In recent years, techniques for preparing microcrystalline glass using metallurgical
final slag after heat treatment have attracted extensive attention [9–13]. Zheng et al. [9]
studied the effect of the amount (mass fraction) of pickling sludge on the properties
of microcrystalline glass prepared from smelting slag with silica aluminate as the main
component, and the results demonstrated the best overall performance of microcrystalline
glass with 21% (mass fraction) of pickling sludge. The sample obtained by heat treatment
at 900 ◦C for 1.2 h had a density of 3.04 g/cm3, a water absorption of 0.11%, a Vickers
hardness of 742.72 HV, a flexural strength of 119.32 MPa, and an acid and alkali resistance
of 99.16% and 99.79%, respectively. Nan et al. [11] used the sintering method to prepare
microcrystalline glass with iron tailings as the main raw material, and the results showed
that the performance of the base glass melted under a melting temperature of 1400 ◦C and
a holding time of 2 h was strong, the performance of the microcrystalline glass specimens
obtained by crystallization treatment under a crystallization temperature of 900 ◦C and a
holding time of 2 h was better, and both specimens’ compressive strength was 158.32 MPa,
their density was 2.74 g/cm3, and their coefficient of thermal expansion was 6.8 × 10−6 K−1.
Wang et al. [12] prepared microcrystalline glass by adding TiO2 as a nucleating agent in a
one-step process in laterite; with the increase in TiO2, the main crystalline phase started
to change from µ-cordierite to the pseudosapphire phase and the crystallinity, grain size,
and acid and alkali resistance of the microcrystalline glass were improved. Shi et al. [13]
successfully produced CaO-Al2O3-SiO2(CAS) glass–ceramic materials from molybdenum
tailings (MTs). A large volume of raw MTs, 41–49 wt%, can be recycled. The main crystalline
phase of CAS glass–ceramic is wollastonite (CaSiO3), and the content of the crystal phase
increases with the addition of MTs in CAS glass–ceramic materials.

Microcrystalline glass not only has the excellent properties of both ceramics and glass
but also has properties (mechanical properties, chemical corrosion resistance, acid and
alkaline resistance, etc.) superior to those of similar ceramics and glass [14–16]. There are
three main processes for preparing microcrystalline glass: the melting method involves
adding a certain amount of a nucleating agent to a solid waste raw material, melting and
homogenizing it under high-temperature conditions to form a glass melt. Then, the melt
is cast and shaped, and after a little cooling and shaping, it is then annealed. After the
annealing process, nucleation and crystallization are carried out under certain temperature
conditions to obtain finished microcrystalline glass. The melting–sintering method is a
process in which raw materials are melted and quenched by water to obtain a glass powder
that is then further ground and pressed into shape and finally sintered at a high temperature
to obtain the desired microcrystalline glass products. In the one-step method, one directly
mixes and grinds raw materials in the glassy or crystalline state and then sinters them to
make solidly soluble raw powder materials to form glass [17–19].

At present, a large amount of waste SACs-3 is generated and a large amount of slag
obtained from the melting and trapping processes is accumulated, but there have been few
studies related to the treatment methods for this slag. In the present study, the smelting
glass slag obtained from waste automobile three-way catalysts through iron collection
was used as the raw material. Microcrystalline glass heat treatments were compared and
analyzed to develop a one-step precrystallization heat treatment suitable for the obtained
melting slag and to finally prepare microcrystalline glass. The studied method showed
the advantages of a short process flow and energy saving compared with the commonly
used nucleation–crystallization treatment process. A new process of slag vitrification in
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the smelting process was proposed, and the influence of the vitrification process on the
harmless treatment of hazardous solid wastes such as SACs was studied. Thereafter, X-ray
diffraction (XRD) and scanning electron microscopy–energy dispersive X-ray spectroscopy
(SEM–EDS) were used to analyze the phase composition and microstructure of the as-
prepared microcrystalline glass, and the physical and chemical properties of the glass
were investigated. Furthermore, the effects of crystallization time and temperature on the
physical and chemical properties of the microcrystalline glass were investigated, and the
optimal heat treatment system was determined.

2. Experiment
2.1. Experimental Materials and Equipment

The base glass was obtained through the water quenching of an upper glass residue
formed in the late stage of the iron smelting process to recover PGMs from SACs-3. X-ray
fluorescence spectrum (XRF) analysis results showed that its main chemical components
were: SiO2 (30.26%), CaO (18.84%), Al2O3 (30.68%), MgO (6.78%), B2O3 (8.32%), TFe
(0.75%), and TiO2 (2.82%).

The following chemical reagents were used during the experiments: sodium hydrox-
ide (analytical grade), nitric acid (analytical grade), acetic acid (analytical grade), and
hydrofluoric acid (10%).

The equipment used in the experimental procedures included the following: a box re-
sistance furnace, a temperature control instrument, a thermocouple, a constant-temperature
drying oven, a differential thermal analyzer, a scanning electron microscope, a Vickers
hardness tester, an X-ray diffractometer, and an ICP plasma emission spectrometer.

Tables 1 and 2 show the chemical reagents and instruments used in the experiments,
respectively.

Table 1. Experiment reagents.

Reagents Specification Manufacturers

sodium hydroxide analytical grade Sinopharm Chemical Reagent Co.,
Shanghai, China

nitric acid analytical grade Sinopharm Chemical Reagent Co.

acetic acid analytical grade Sinopharm Chemical Reagent Co.

hydrofluoric acid C(HF) = 10% Xiamen HaiBiao Technology Co.
Xiamen, China

Table 2. Experiment apparatus.

Apparatus Name Specification/Model Manufacturers

box resistance furnace SX2-4-10 Sinopharm Chemical Reagent
Co.

temperature control
instrument CKW-3100

Beijing Chaoyang Automatic
Instrument Factory, Beijing,

China

thermocouple Platinum-Rhodium Couple(S
type)

Shenyang Dongda Sensing
Technology Co. Shenyang,

China

constant-temperature drying
oven HG101-1A

Nanjing Experimental
Instrument Factory, Beijing,

China
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Table 2. Cont.

Apparatus Name Specification/Model Manufacturers

differential thermal analyzer SDTQ600 Ta Corporation, Singapore

scanning electron microscope SU-8010 Hitachi, Japan

Vickers hardness tester THVP-50
Shenyang Times Testing

Technology Co. Shenyang,
China

X-ray diffractometer D8 Advance Bruker, Bremen, Germany

ICP plasma emission
spectrometer ICP-5000 China Spotlight Technology

Co., Beijing, China

2.2. Experimental Procedure

Figure 1 illustrates the preparation of microcrystalline glass through one-step heat
treatment. The slag was dried at 105 ◦C for 12 h after water cooling; some of the micro-
crystalline glass obtained after drying was taken, crushed, and ground into a fine powder;
and regular-shaped blocks of microcrystalline glass were taken and finely ground with
an agate mortar and sieved through No. 200 mesh to obtain a fine powder. To obtain the
glass transition temperature (Tg) and crystallization temperature (Tc) of the base glass,
10 mg of the sieved fine powder was placed in a platinum crucible, which was transferred
to a differential thermal analyzer and heated up to 1100 ◦C under air at a heating rate
of 10 ◦C/min [20–22]. The fine powder was sieved without adding any binder and was
directly pressed into a cylinder with a diameter of 30 mm and a height of 10 mm under
50 MPa of pressure and held at 105 ◦C for 4 h. Thereafter, the powder was removed and
stored in a sealed container for subsequent heat treatment experiments.
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Figure 1. Schematic of the preparation of microcrystalline glass through one-step heat treatment.

The prepared column base glass was placed in a corundum boat and moved into a
chamber resistance furnace, and the temperature was increased at a rate of 10 ◦C/min. First,
the holding time was set to 3 h and the target treatment temperatures were set to 900 ◦C,
925 ◦C, and 950 ◦C to investigate the best crystallization temperature of the microcrystalline
glass, and then the holding time was adjusted to 0.5 h, 1 h, 2 h, 3 h, and 4 h at these
temperatures. The results showed that the best performance of the microcrystalline glass
was achieved at 3 h of crystallization time.

2.3. Analysis

The microstructure of the microcrystalline glass was analyzed using a scanning elec-
tron microscope (SEM, SU-8010). The acid and alkali resistance of the microcrystalline
glass samples were determined according to the M. Erol method [23]. The density and
water absorptivity of the microcrystalline glass were determined through the Archimedes
drainage method [24]. A Vickers hardness tester (THVP-50; Shenyang Times Testing Tech-
nology Limited Company, Shenyang, China) was used to test the Vickers hardness of the
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microcrystalline glass samples [25]. The standard toxicity characteristic leaching (TCLP)
method was used to determine the leaching concentrations of heavy metals in the prepared
microcrystalline glass [26].

3. Results and Discussion
3.1. Basic Glass Differential Thermal Analysis

Figure 2 displays the differential thermal analysis results for the base glass. The
glass transition temperature (Tg) of the base glass was approximately 697.42 ◦C, and the
crystallization temperature (Tc) was approximately 948.93 ◦C. In particular, this differential
heat curve obtained through DSC exhibited a heat absorption peak at 958.49 ◦C, indicating
the melting temperature (Tm) of the base glass. Therefore, the maximum crystallization
temperature in this experiment was 950 ◦C.
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3.2. Effects of Heat Treatment Temperature on the Crystal Precipitation of Microcrystalline Glass
and Its Properties

The results of the differential heat curve of the base glass showed that the crystalliza-
tion exothermic peak of the base glass was 948.93 ◦C, that is, the maximum crystallization
temperature of the base glass was 948.93 ◦C. Therefore, three heat treatment tempera-
tures of 900 ◦C, 925 ◦C, and 950 ◦C were selected to analyze the effects of heat treatment
temperature on the crystal precipitation of the microcrystalline glass and its properties.

Figure 3 displays the XRD patterns of the microcrystalline glass obtained after holding
it at different crystallization temperatures for 3 h each. The base glass was precrystallized
at three crystallization temperatures of 900 ◦C, 925 ◦C, and 950 ◦C, and the diffraction
peaks of the obtained microcrystalline glass were stronger at 950 ◦C than those at 900 ◦C,
indicating that the higher the crystallization temperature, the greater the precrystallization
of the base glass. Within the range of the crystallization temperature from 900 ◦C to 950 ◦C,
the crystalline phases of the microcrystalline glass were all dominated by calcium feldspar
(CaAl2Si2O8). The main precipitation phase of the microcrystalline glass within the range
of 900–950 ◦C was independent of temperature; however, the degree of crystallization of
the prepared microcrystalline glass increased with increasing temperature.

Figure 4 displays the SEM images of the microcrystalline glass obtained after the heat
treatment of the base glass at different crystallization temperatures. The crystallization
temperature notably influenced the microstructure of the microcrystalline glass. When
the crystallization temperature was 900 ◦C, the number of crystalline phases in the mi-
crocrystalline glass was small, the degree of crystallization was low, the size of the grains
varied, and the number of glassy phases was greater; furthermore, obvious cracks and
pores appeared after corrosion by hydrofluoric acid. When the crystallization temperature
increased to 925 ◦C, the glass phase in the microcrystalline glass disappeared, the number of
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crystalline phases sharply increased, the grain size increased, the crystal became spherical,
and the density of the microcrystalline structure increased. When the crystallization tem-
perature increased to 950 ◦C, some spherical grains transformed into columnar grains and
the structure became denser, thereby improving the performance of the microcrystalline
glass. With the increase in temperature, the degree of crystallization of the microcrystalline
glass rapidly increased, the precipitation of the crystalline phase rapidly increased the
viscosity of the microcrystalline glass, and the resistance to crystallization became sig-
nificant, which inhibited the further sintering process and formed a supercooled liquid
that could not be nucleated. At the same time, due to the fastest heat dissipation in the
direction perpendicular to the shape wall, the crystal grew in the opposite direction and the
anisotropy of crystal growth made part of the grain shape turn into a column. The degree
of crystallization of the microcrystalline glass within the range of 900–950 ◦C increased
with increases in temperature.
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The determination of parameters such as the strength, coefficient of thermal expansion,
and optical and dielectric properties of microcrystalline glass is costly and time-consuming,
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while the measurement of density is relatively simple and low-cost. Therefore, the evalua-
tion of material density can be used to analyze the phase changes in microcrystalline glass
to indirectly examine its properties and to realize the control of glass composition and the
microcrystallization process. Density testing is commonly used in practical production as
one of the means of glass quality inspection. Figure 5 illustrates the results of the effects of
crystallization temperature on the density of the microcrystalline glass. As illustrated in
Figure 5, the density of the prepared microcrystalline glass gradually increased with the
increase in crystallization temperature, thereby reaching a maximum density of 2.72 g/cm3

at 950 ◦C. The increase in temperature promoted the precrystallization of the base glass
and increased the number of crystals, improved the crystallization degree, increased the
density of the crystal structure, and increased the density of the microcrystalline glass.
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Water absorption is a physical quantity that indicates the degree of water absorption
of an object. A low water absorption rate could inhibit the adsorption of a leaching
solution into the interior of a curing body, thus inhibiting the leaching of heavy metals.
Therefore, reducing the water absorption rate of microcrystalline glass is important for
product quality improvement. Figure 6 illustrates the results of the effect of crystallization
temperature on the water absorption of the studied microcrystalline glass. The trend of
the water absorption of the microcrystalline glass with the increase in the crystallization
temperature and the trend of density with the increase in the temperature were opposite.
This may be attributed to the increase in the number of crystalline phases precipitated from
the microcrystalline glass with increasing temperature. Moreover, the crystalline grains
primarily had spherical and columnar shapes; therefore, the number of pores between the
crystals gradually decreased and the densities of the crystals increased. As displayed in
Figure 4, with the increase in the crystallization temperature, the number of crystalline
phases gradually increased, the densities of the crystalline phases increased, and the water
absorption rate of the microcrystalline glass decreased.
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Porosity refers to the percentage of the volume of pores contained in a refractory
product compared with the total volume of the product. It is used to identify the degree of
sintering of products such as ceramics and refractory materials, to determine the adsorption
capacity of porous substances such as activated carbon, and to measure the technical
properties of foams, among others. Th excessive porosity of microcrystalline glass could
lead to an uneven surface and thus affect the strength of the product. Figure 7 illustrates
the results of the effects of crystallization temperature on the porosity of the studied
microcrystalline glass. When the crystallization temperature was 900 ◦C, the number of
crystalline phases in the microcrystalline glass was small because the lower crystallization
temperature hindered the precipitation process and the growth of the precipitated grains
was incomplete. Moreover, a large number of pores were observed between the crystalline
phases, thereby resulting in a high porosity of the samples. For example, the porosity was
as high as 7.43% at 900 ◦C. With the increase in temperature, the precrystallization process
was strengthened, the number of crystalline phases increased, the degree of crystallization
was high, the pores and gaps between the crystals gradually decreased, the density of the
microcrystalline glass increased, and the porosity of the microcrystalline glass decreased.
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Figure 8 illustrates the results of the effects of crystallization temperature on the
Vickers hardness of the prepared microcrystalline glass. The Vickers hardness of the
microcrystalline glass increased with increasing crystallization temperature. When the
crystallization temperature was 950 ◦C, the Vickers hardness of the microcrystalline glass
was 618 HV. The lower the crystallization temperature, the less the crystalline phase
precipitation and the larger the glassy phase in the microcrystalline glass; thus, the internal
densities and microhardness were low. With increasing temperature, a large number of
crystalline phases precipitated inside the microcrystalline glass and the grains bit each
other more; the porosity of the microcrystalline glass decreased, thus increasing the density
and Vickers hardness of the microcrystalline glass.
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Industrial microcrystalline glass often needs to serve in acidic and alkaline environ-
ments, and the acid and alkaline resistance of microcrystalline glass materials significantly
affect their service life, so it is important to study the acid and alkaline resistance of micro-
crystalline glass to expand its use field. The possible reactions between the main crystalline
phase of the microcrystalline glass and acidic and alkaline substances in this study are
shown in Equations (1)–(3). Figure 9 displays a plot of the acid and alkali resistance of
the microcrystalline glass versus crystallization temperature. Overall, the alkali resistance
of the microcrystalline glass was stronger than its acid resistance because the glass phase
leaches more easily in acidic solutions. However, the variation trends of the acid and alkali
resistances of the microcrystalline glass with temperature were identical; both resistances
decreased with increasing temperature. With increasing crystallization temperature, the
number of crystals in the microcrystalline glass gradually increased, the number of com-
plete grains increased, the density increased, and the acid and alkali resistances increased.
As illustrated in Figure 9, the acid and alkali resistances of the prepared microcrystalline
glass were the highest (by 2.36% and 0.4%, respectively) at a crystallization temperature of
950 ◦C.
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In summary, the optimal crystallization temperature for preparing the microcrystalline
glass in this experiment was 950 ◦C.

Ca[Al2Si2O8] + 2H+ + H2O = Al2[Si2O5][OH]4 + Ca2+ (1)

Al2[Si2O5][OH]4 + 6H+ = 2Al3+ + 2H4SiO4 + H2O (2)

Ca[Al2Si2O8] + 4OH− = Ca[Al2O4] + 2SiO3
2− + 2H2O (3)

3.3. Effect of Crystallization Time on Precrystallization and the Properties of the Microcrystalline Glass

The crystallization time notably influenced the performance of the microcrystalline
glass, and a reasonable crystallization time was crucial to achieve superior performance. The
prepared cylinders were placed in corundum boats and transferred to a high-temperature
furnace, the temperature was increased to 950 ◦C in one step at a rate of 10 ◦C/min, and
the microcrystalline glass samples were obtained by cooling in the furnace after holding
for 0.5, 1, 2, 3 and 4 h.

The XRD patterns for the microcrystalline glass products prepared by holding for
different times at the optimal crystallization temperature are displayed in Figure 10. The
crystalline phase species of the microcrystalline glass did not change with the increase
in the crystallization time from 0.5 h to 4 h. The main crystalline phases of the micro-
crystalline glass obtained at different crystallization times all constituted the anorthite
phase (CaAl2Si2O8). However, when the crystallization time was increased to 1 h and
more, the diffraction peak of the chalcocite feldspar was enhanced compared with that at
a crystallization time of 0.5 h. This indicated that the content or crystallization degree of
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the crystalline phase of the microcrystalline glass increased, while the peak intensity of the
chalcocite feldspar was slightly enhanced after 1 h. Thus, the crystallization degree of the
crystalline phase was slowly enhanced by the continuing extension of the crystallization
time after 1 h. The extension of the crystallization time did not affect the crystalline phase
type of the microcrystalline glass; however, a reasonable extension of the crystallization
time improved the degree of crystallization of the microcrystalline glass.
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Figure 10. XRD patterns of microcrystalline glass product samples prepared at different crystallization
times.

Figure 11 displays SEM images of the microcrystalline glass prepared at different
crystallization times. When the crystallization time was 0.5 h, the crystallization degree of
the sample was low, the number of glassy phases was larger, the grain size was uneven and
the number was small, the grains were irregularly distributed, and the internal structure of
the microcrystalline glass was random and contained defects such as pores. This can be
attributed to the short crystallization time, the small number of grains, and the incomplete
growth of the nuclei, which resulted in an insufficient crystallization of the prepared
microcrystalline glass. With the extension of the crystallization time, the crystallization
drive of the sample was enhanced, the number of crystals increased, and the growth of the
nuclei was complete [27]. When the crystallization time was extended to 1 h, the glass phase
in the microcrystalline glass sample disappeared and a large number of spherical grains
with different sizes ranging within 100–200 nm was generated. The grains generated in the
samples were more closely arranged and tended to gather into clusters; however, small
holes were observed in the samples. When the crystallization time was further extended
to 3 h, some spherical grains in the sample transformed into rods, thereby increasing the
density of the sample structure and enhancing the performance of the microcrystalline
glass. However, when the crystallization time was extended to 4 h, the spherical grains
and rod-like grains in the sample disappeared. In addition, a mesh structure formed in the
sample increased the contact area of the glass with the acidic and alkaline solutions and
considerably reduced the acid and alkali resistances of the sample, thereby resulting in a
decrease in its chemical stability.

Figure 12 illustrates the effects of crystallization time on the density of the prepared
microcrystalline glass. The density of the microcrystalline glass first increased and then
decreased with the extension of the crystallization time. When the crystallization time
was extended to 3 h, the density reached its maximum value of 2.72 g/cm3; when the
crystallization temperature was further extended to 4 h, the density of the microcrystalline
glass decreased. These results can be attributed to the gradual increase in the number of
precipitated phases (chalcocite feldspar) in the microcrystalline glass with the extension
of the crystallization time, especially at 3 h of crystallization. Furthermore, the density of
the prepared microcrystalline glass increased because a considerable number of columnar
crystals were generated and the density of the chalcocite feldspar was between 2.6 and
2.76 g/cm3. However, when the crystallization time was extended to 4 h, the density of
the microcrystalline glass decreased because a large number of reticular structures were
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generated in the microcrystalline glass. Moreover, the spherical and columnar crystal
phases in the crystal disappeared and holes started to appear. Therefore, the density of the
microcrystalline glass was maximum at a crystallization time of 3 h.
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Figure 13 displays the relationship between the crystallization time and the water
absorption of the microcrystalline glass. The variation trend of the water absorption of the
microcrystalline glass was opposite to the variation trend of density. The water absorption
of the microcrystalline glass first decreased and then increased with the extension of the
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crystallization time and reached a minimum of 1.55% at 3 h. This may be attributed to
the extension of crystallization time, the increase in the number of crystalline phases of
the microcrystalline glass, the complete growth of more grains, and the higher mutual
adherence between grains, which increased the crystal densification and thereby reduced
the number of pores in the microcrystalline glass and decreased the water absorption rate of
the microcrystalline glass. However, an excessively long crystallization time may cause the
aggregation of crystals in microcrystalline glass and form a mesh structure, thus resulting in
a large number of pores in a sample and increasing the water absorption of microcrystalline
glass. As illustrated in Figure 13, when the crystallization time was extended from 3 h to
4 h, the water absorption of the microcrystalline glass increased from 1.55% to 2%.
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Figure 14 illustrates the effects of crystallization time on the porosity of the microcrys-
talline glass. For the crystallization time of 0.5 h, the porosity of the microcrystalline glass
was as high as 9.23%, which can be attributed to the nonuniform distribution of grains
in the matrix due to insufficient crystallization time. Moreover, the microcrystalline glass
was not dense enough to produce a large number of pores and gaps inside the crystal; this
increased the porosity of the microcrystalline glass. With the extension of the crystallization
time, the number of crystalline phases increased and the bonding of the glass phase with
the crystalline phase was enhanced. Moreover, the density of the samples increased, so
the porosity of the microcrystalline glass decreased. Furthermore, the porosity of the
microcrystalline glass decreased to 4.2% when the crystallization time was extended to 3 h.
However, a further extension of the crystallization time resulted in the agglomeration of
crystals in the microcrystalline glass and the simultaneous arrangement of spherical and
columnar grains in networks. Consequently, a large number of pores were generated in the
sample, thereby increasing the porosity of the microcrystalline glass.
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Figure 15 illustrates the effects of crystallization time on the Vickers hardness of the
prepared microcrystalline glass. The Vickers hardness of the microcrystalline glass samples
first increased and then decreased with increases in the crystallization time. The Vickers
hardness of the microcrystalline glass was maximum (618 HV) after 3 h of crystallization.
When the crystallization time was exceedingly long (4 h), the Vickers hardness of the
sample decreased to 592 HV. The crystallization time was not sufficient, the crystal precip-
itation inside the microcrystalline glass was less, and the grain shape was irregular and
incompletely developed; thus, the number of pores in the microcrystalline glass increased
and the hardness of the glass decreased. With the extension of the crystallization time, the
precipitation was more complete, the grain growth was more adequate, and the shape was
transformed to spherical and columnar, thereby strengthening the mutual bonding between
the grains, considerably reducing the number of pores inside the microcrystalline glass,
and increasing the hardness of the microcrystalline glass. However, an excessively long
crystallization time caused an abnormal increase in the grain size and the aggregation of
the grains into clusters. This weakened the effects of fine crystal strengthening and reduced
the hardness of the microcrystalline glass.
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Figure 16 illustrates the relationship between crystallization time and the acid and
alkali resistances of the prepared microcrystalline glass. The alkali resistance of the mi-
crocrystalline glass was stronger than its acid resistance, likely because the glass phase is
more easily leached in acidic solutions [28]. The acid and alkali resistances of the micro-
crystalline glass were optimal at 2.36% and 0.04%, respectively, after 3 h of crystallization.
When the crystallization time was shorter, the number of crystals of the microcrystalline
glass was small and the residual glass phase was dominant; thus, the corrosion resistance
of the microcrystalline glass was low. When the crystallization time was extended, the
degree of crystallization of the microcrystalline glass was higher, the grain growth was
more complete, the crystal structure was denser, and the constituent glass phase was lesser,
thereby increasing the acid and alkali resistances of the microcrystalline glass. However, the
crystallization time was exceedingly long, so the grains accumulated into clusters, thereby
resulting in the destruction of the dense structure between the crystalline phases, the gener-
ation of a large number of holes and gaps, and the arrangement of spherical and columnar
grains in a network-like structure. The two aforementioned conditions resulted in an
increase in the contact range of the microcrystalline glass with the acid and alkali solutions;
thus, the acid and alkali resistance of the microcrystalline glass decreased. As displayed in
Figure 16, when the crystallization time was extended to 4 h, the acid and alkali resistances
of the microcrystalline glass decreased compared with those when the crystallization time
was 3 h; the acid and alkali resistances were 0.27% and 0.13%, respectively.
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3.4. Effects of Microcrystallization on the Toxic Leaching Characteristics of Heavy Metals

To determine whether the leaching concentrations of heavy metal ions from the final
smelting slag after microcrystallization satisfied the requirements, we analyzed the leaching
characteristics of heavy metals such as Zn, Cr, Mn, and Pb in the prepared microcrystalline
glass under optimal conditions; Table 3 summarizes the results. The leaching concentrations
of heavy metal ions from the base glass leachate were lower than the limits stipulated
by the U.S. Environmental Protection Agency (US-EPA), indicating that the glass slag
obtained from the melting and collection process was non-toxic. Moreover, the leaching
concentrations of heavy metal ions, especially Zn, Cr, and Pb ions, in the microcrystalline
glass obtained after microcrystallization were lower than the US-EPA limits. The leaching
concentrations of heavy metals in the microcrystalline glass were lower than those in the
base glass, indicating that microcrystallization can effectively immobilize heavy metal ions
in microcrystalline glass. Therefore, the microcrystalline glass prepared with the proposed
one-step heat treatment process is an environmentally friendly and harmless material.

Table 3. Heavy metal leaching characteristics of the microcrystalline glass prepared under optimal
conditions (mg/L).

Zn Cr Mn Pb

Base glass 1 0.072 4.7 BDL
Microcrystalline glass 0.28 BDL 2.48 BDL

Limit value 500 5 5 5
BDL: below instrument detection limit.

4. Conclusions

This study proposed a one-step method for the preparation of microcrystalline glass
using the iron smelting slag of SACs-3. We investigated the effects of crystallization
temperature and crystallization time on the physical and chemical properties of microcrys-
talline glass prepared using the proposed method. Furthermore, the toxicity and leaching
characteristics of heavy metals in the microcrystalline glass were investigated. The main
conclusions of the study are as follows:

(1) The differential thermal analysis of the base glass and the XRD analysis of the micro-
crystalline glass samples indicated that the main crystalline phase of the microcrys-
talline glass was constant and constituted by chalcocite feldspar. A suitable range of
variables was determined. The crystallization temperature varied between 900 and
950 ◦C, and the crystallization time varied between 0.5 and 4 h.

(2) Single-factor experiments were performed to analyze changes in the degree of crys-
tallization, number of crystalline phases, grain shape, and physical and chemical
properties of the microcrystalline glass, with crystallization temperature and time as
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variables. The optimal parameters for the heat treatment process were determined as
follows: a crystallization temperature of 950 ◦C and a crystallization time of 3 h.

(3) The physicochemical properties of the microcrystalline glass prepared with the pro-
posed one-step method were determined: the bulk density was 2.72 g/cm3, the water
absorption rate was 1.55%, the porosity was 4.2%, the Vickers hardness was 618 HV,
the acid resistance was 2.6%, and the alkali resistance was 0.04%. The leaching con-
centrations of heavy metal ions were lower than those of the base glass and were
considerably lower than the stipulated limits, and the harmful components were
stabilized for disposal.
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