
Citation: Chenaru, O.; Mocanu, S.;

Dobrescu, R.; Nicolae, M. Enhancing

Antifragile Performance of

Manufacturing Systems through

Predictive Maintenance. Appl. Sci.

2022, 12, 11958. https://doi.org/

10.3390/app122311958

Academic Editors: Paweł Sitek and

Wilma Polini

Received: 28 September 2022

Accepted: 21 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Enhancing Antifragile Performance of Manufacturing Systems
through Predictive Maintenance
Oana Chenaru, Stefan Mocanu * , Radu Dobrescu and Maximilian Nicolae

Faculty of Automatic Control and Computers, University Politehnica of Bucharest,
RO-060042 Bucharest, Romania
* Correspondence: stefan.mocanu@upb.ro

Abstract: Antifragility was introduced as a term no later than 10 years ago. As presented by Taleb,
antifragility means that a system becomes more resilient and more robust with every harmful and/or
stressful action it is confronted with. This paper is based on a study which aimed to use the concept
of antifragility during the design stage of a self-improving system. This way, it is expected to obtain
a fast adaptive system capable of functioning at optimal parameters even when it works under
adverse conditions or faces unforeseen changes in the environment. Assuming that an antifragile
system not only maintains its robust behavior when faced with stressful and harmful events but
even benefits from them to optimize its performance, the paper offers a detailed description of the
features that must be ensured when designing a self-improving antifragile manufacturing system.
By ensuring the property of antifragility, complex manufacturing systems are much safer to exploit
under uncertain conditions, which brings major benefits to the process management. Starting from
consecrated solutions such as preventive maintenance (PvM) and predictive maintenance (PdM) and
using techniques of artificial intelligence, we present the concept of antifragile maintenance (AfM).

Keywords: antifragile; resilience; robustness; predictive maintenance; preventive maintenance;
self-improvement; self-adaptive; context awareness; uncertainties; decision-making; antifragile
maintenance

1. Introduction

Antifragility is a concept introduced and developed by Nassim Nicholas Taleb in his
book “Antifragile: Things That Gain from Disorder” [1], not even 10 years ago. Of course,
antifragility is opposite to fragility, but it is fundamentally different from the usual antonym
for fragility, which is robustness. According to Taleb, antifragility is more than robust-
ness (the capability to withstand or overcome adverse conditions and, therefore, recover
from failure) and more than resilience (the capability to resist failure). By definition [1],
antifragility is the feature of a system that increases in resilience or robustness as a result
of the harmful effects of stressful actions: malfunctions, shocks, errors, noise, mistakes,
disturbances, attacks, faults, or failures. In other words, the idea that stands behind an-
tifragility is that some systems (either natural or artificial) can improve their performance
and become better when subjected to various forms of stress.

Two years after the appearance of Taleb’s book, Vincenzo De Florio published a work
that somewhat systematizes the means by which an antifragile system can be designed,
formulating an equation that has won its celebrity: “Antifragility = Elasticity + Resilience +
Machine Learning” [2]. Machine learning can be defined as the capacity of a computer to
learn from previous data, based on certain algorithms, with the goal of making predictions,
classifications, or decisions.

Leaving aside the theoretical aspects, which are otherwise very rigorous, the paper
proposes a scheme capable of self-optimizing system processing using a machine learning
stage which succeeds to enhance the ability of the system to adjust to adverse environmental
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conditions, so arguing that an antifragile system is able to learn while using flexible and
resilient strategies. What is important in this approach is the idea of the self-optimization of
the process in hostile environmental conditions, an idea resumed in another paper [3] that
suggests the use of game theory to create a framework for modelling both the system and
the environment as competitive opponents seeking to develop optimal behavioral winning
strategies.

From this seminal point, the works on the design of some antifragile systems have
gained expansion and offered various implementation solutions. However, most of the
results refer to particular situations, especially in social and economic fields, starting from
the simple idea that a substantial gain can be obtained only by assuming significant risks.
This approach does not seem to be compatible with the management of industrial processes.
Usually, the industry favors efficient, profitable solutions also characterized by the fact that
they do not involve significant risks. Ideally, by using the antifragility approach, it would be
desirable to obtain a system or process that produces a high reward, while reducing the risk
exposure, but these two desires are difficult, if not impossible, to be fulfilled simultaneously.

In the aforementioned context, the problem to be solved is to avoid the negative effect
of the uncertainties that can appear during the operations, especially due to environmental
changes. Modern systems permanently monitor the status of a technological installation in
operation and try to detect any anomalies in relation to the normal functioning state. The
concept of a “digital twin” tries to address the virtual system that functions by mirroring
the physical one. Anyway, for the “health” status of the system to be maintained, periodic
checks are made, the worn parts are changed, and the working parameters are reconfigured
to obtain the optimum performance. This operation is called preventive maintenance and
ensures the robustness of the system. The limits of preventive maintenance are given by
the lack of knowledge about the system’s evolution, which is leading to uncertainties.
However, if we were able to anticipate shortcomings, then the system would be more
than robust; it would be antifragile. To become antifragile, we must prepare ourselves
to face uncertainties; that is to say, something that cannot be predicted. It is known that
through preventive maintenance (PvM), periodic inspections are planned with the aim of
verifying and correcting deviations from the normal state and anticipating the detection of
possible failures. The moments at which these interventions are performed are established
using statistics based on historical data records and service intervals recommended by
the manufacturers based on their design criteria. However, as the complexity of the
manufacturing processes increases and, implicitly, the degree of uncertainty regarding
context changes increases, preventive maintenance solutions using predefined scenarios
have been gradually replaced with predictive maintenance (PdM) solutions, based on the
real-time examination of assets’ status, to detect behavioral anomalies that can lead to
failures, but which do not have an obvious cause.

There is an example that we find convincing for associating PdM with antifragility.
Formula 1 has achieved spectacular performances that are based on the setting of the
motors according to the most important parameters of the environment. In each tour of
the circuit, the minimum travel time is sought. However, as the evolution progresses, two
variable elements emerge: weight reduction due to fuel consumption and tire wear. PvM
would suggest the tires must be changed when the wear has reached magnitude X. PdM
considers environmental conditions and calculates how to reconfigure the parameters as
the tires wear out and calls for change only when the risk of explosion may occur. In other
words, a stressor (wear) is used to maintain the optimum performance. The system is
antifragile.

In their work, the authors of [4] present Europe’s need to leap to Industry 6.0, and they
define Industry 6.0 as “Ubiquitous, customer-driven, virtualized, antifragile manufactur-
ing”. The authors present a vision of how industry should evolve to meet various demands
(environment friendly manufacturing, profitability, reduced emissions, resilience against
various shocks, sustainability, and many others). The paper presents mostly a philosophical
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approach, as the authors only show WHAT to expect and not HOW to do it. However, this
study is a great starting point for tangible proposals.

This paper aims to prove that ensuring the property of antifragility is the safest way
to exploit complex manufacturing systems under uncertain conditions and that this philos-
ophy can be applied generally in process management, using an association of emerging
technologies borrowed from the techniques of artificial intelligence (machine learning,
neural networks) and process control through computer networks (cloud computing, edge
computing, big data) by performing PdM. We named the concept resulting from this asso-
ciation antifragile maintenance (AfM), which is a simplification of De Florio’s mentioned
formula and written as AfM = PdM + Learning. (In this way, we thank Vincenzo who
suggested this interpretation in a private discussion; details about “Learning” can be found
in Sections 4.3 and 5.)

The rest of this paper is organized as follows: Section 2 debates why self-improving
systems can be seen as antifragile systems; Section 3 presents predictive maintenance in self-
improving systems; Section 4 covers the challenges of designing self-improving systems;
Section 5 is dedicated to uncertainties inside antifragile manufacturing systems; Section 6
presents a case study in which artificial errors are introduced to simulate uncertainties; and
Section 7 is dedicated to our conclusions.

2. Self-Improving Systems as Antifragile Systems

The purpose of self-improvement in autonomous systems, which can also be called
self-adapted systems, is dual: on the one hand, to improve their capacities for better
management of the predicted critical situations and, on the other, to deal with unforeseen
situations. Conceptually, a self-adapted system has two main components: the goals of
the functionality (for which the system was developed, including control procedures for
normal conditions) and the management of the functionality (for achieving goals under
changing conditions, using an adaptation mechanism). Most approaches only address
the first component, proposing solutions for realizing key self-functionalities such as self-
configuration [5], self-healing [6], self-protection [7], and self-optimization [8].

Yet, the efficiency of the management function itself is ignored, and there are possibili-
ties of the deterioration or malfunction of the components of the management system as
well as the possibility of the dynamic modification of the objectives in function according
to unanticipated events.

Different to common and well-known robust control engineering, denoted as resilience
engineering from this point, antifragility engineering includes learning and knowledge
acquisition processes as components of the dynamic system evolution. The essential differ-
ence is that an antifragile system has, as its main objective, the adaptation to unforeseen
events and, in addition, to benefit from the new working conditions due to disturbances in
order to improve their performance in similar circumstances that may occur in the future.
We can, therefore, consider antifragile engineering as a superior form of ecological resilience
engineering, related to the idea of dynamic balance in which the systems change and evolve
when disturbed by changing the state after stress. In this direction, mechanisms of adapta-
tion, self-organization, and self-improvement are responsible for enabling systems to learn
and improve on past situations and take better advantage in future ones. In accordance with
this wider form and considering interconnections between the environment, systems, and
their emergent properties, a more comprehensive and antireductionist approach developed
under the sign of antifragility becomes necessary.

To be able to hope in the building of antifragility, the simple design of a self-improving
system is not enough. We also need to ensure the integration of such systems at different
scales of a complex heterarchical structure. The integration task is proving to be difficult,
especially in the case of complex systems containing numerous heterogeneous components
with different properties. The control solutions implemented in such cases require a long
time to design and analyze, so that in the overall performance of the system are reflected
all the results expected at the level of each component. This challenge is even more difficult
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when more autonomous reconfiguration and adaptation is needed during systems running
in extremely dynamic and variable contexts. The inability to anticipate solutions for all
the contextual circumstances and the lack of expertise required to optimize the selection of
solutions already validated over time leads to the need for a system capable of continuously
learning how to optimize the behaviour of the component subsystems to achieve their
specific objectives. We will say such a system has not only “self-improvement” capability
but also antifragile characteristics. The main problem for such systems is that by fulfilling
particular objectives they are often confronted with conflicts and, therefore, they need
to compromise to find solutions, which makes the decision-making activity much more
difficult. Therefore, we think that the automatization of predictive maintenance (APM) is
one of the steps needed to meet the objectives of antifragile engineering.

3. Predictive Maintenance in Self-Improving Manufacturing Systems

Specific to APM is the fact that it allows the integration and simultaneous exercise of
control and maintenance procedures, respectively. In other words, the maintenance side
expressed by PdM is proactive (PaM). PaM is a particular maintenance strategy that aims
to detect the causes of failures and possibly avoid them or, if this is not possible, correct
them. This strategy can be called conditional maintenance (CM) because it is performed
only when required by the state of the system. As such, PaM aims at the timely diagnosis
of a system that can degrade. On the other hand, this form of diagnosis is not enough
because it provides only a warning (an alarm) and does not provide information about the
remaining life of the system. For this reason, PdM complements the proactive side with
a prognostic side, so that it can accurately predict when a system is expected to fail. In
addition, the high dynamics of manufacturing processes run the risk that the old behaviors
already learned become outdated. Reconfiguring them based on improved input data is not
usually sufficient, so these system models need to be adapted and reconfigured to maintain
and even improve their predictive performance.

An important advance in capitalizing on APM technology is the association with
digital twins [9]. A DT allows the real-time monitoring of machine conditions but also
the anticipation of behaviour based on prediction models without invasive techniques.
DT-based simulation allows us to find a virtual counterpart for each component of a
manufacturing system and, therefore, we can have a clear picture of all assets throughout
their entire life cycle. In this way, the DT-based approach will use both real data provided
by built-in sensors and data from virtual digital models, which allow the calculation of
an essential parameter of PdM, namely, remaining useful life (RUL). Thus, the global
monitoring system can detect behavioral anomalies of the components that could lead to
a failure, a decrease in performance, or a decrease in the quality of the finished product.
Therefore, the essential role of predictive maintenance consists of recognizing a behavioral
anomaly at an early stage of the manufacturing process and then in providing high quality
prediction models to reach the different targets of this process. In paper [10], the authors
present an original work dedicated to the development of a sensor signal-based digital
twin for intelligent machine tools. The paper covers, in detail, two different systems
(DTCS—digital twin construction system and DTAS—digital twin adaptation system) that
are involved in the construction and adaptation of the twin. In the final section, the authors
conclude that a DT is a certain benefit for the IoT; however, they also consider that any DT
must gather knowledge through machine learning techniques based on historical datasets
and use that knowledge while receiving real-time information from sensors.

An interesting study investigating the connection between CPSs (cyber–physical
systems) and smart manufacturing is presented in [11]. As the authors declare, the paper
is “a comprehensive survey and analysis of the CPS treated as a combination of the
IoT and the IoS”. Although the paper aims to serve as a “theoretical basis and as a
comprehensive framework for emerging manufacturing integration”, one of the most
important conclusions that can be drawn is that the integration of various concepts related
to CPSs into manufacturing is still at the beginning. From this perspective, in the very near
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future, we expect to see many proposals for architectures dedicated to smart and wisdom
manufacturing. Although this paper falls into the same category, we admit this raises a
new challenge: the need for (some form of) standardization. This was also noticed by the
authors of [12] who propose a “unified architecture for IoT systems”. They investigate the
combination of DTs and the IoT and conclude that it is of high importance to take into
consideration three aspects: the data, model, and service when a DT is in an application.

In the aforementioned context, the achievement of PdM objectives is based on three
pillars: (i) data gathering and preprocessing; (ii) the integration of maintenance knowledge
in rigorous mathematical models; and (iii) maintenance planning based on RUL calcula-
tions. We insist that preprocessing should not be neglected, as it is crucial in establishing
trust in the data in the process of transitioning from potential information to consistent
real information. Only in this way can the condition of the machine be predicted as a
result of the simulation on virtual models without stopping the operation of the machines.
The great advantage of PdM is the ability to make decisions in the shortest time without
reaching the preset intervals for performing the revision. Even if, at first glance, the success
of a PdM program depends on the performance of the predictive algorithm, in reality, the
challenge is to determine the optimal moment in which to apply the interventional decision.
It should be noted that the way in which an antifragile system is designed, by increasing its
resilience in difficult conditions, is fully in line with multiobjective optimization because
all the essential criteria pursued by optimal control (efficiency of asset management, ro-
bust behaviour, and minimum intervention time) are complementary and nonconflicting.
For modern manufacturing systems, the tendency is to achieve integrated planning (IP)
that synchronizes manufacturing planning and maintenance planning with predictive
maintenance capabilities.

We already mentioned in the introduction the differences between PdM and PvM.
Recall that PvM ensures robustness and PdM ensures resilience, but neither of them suc-
cessfully cope with uncertainties. Although they use real-time collected data for prediction,
PdM algorithms allow decisions based on finding specific patterns in historical data and can-
not correctly interpret sudden and unexpected changes in context. It requires an additional
ability to adapt to these changes, and we see this possibility through learning techniques,
thus reaching AfM. AfM respects all of the PdM characteristics but adds the ability to adapt
to unexpected changes in the operating environment, as it is also context-aware. Therefore,
a system that has AfM can be called an antifragile self-improving system (ASIS).

4. Key Challenges for Designing Antifragile Self-Improving Systems

The conception of an ASIS requires the development and adoption of self-adaptive
features from the early stages of design in a different approach than the classic one, which
starts from the desire to satisfy certain user requirements. This new approach requires
permanent feedback after the partial validation of each functional component, which also
implies a specialized communication protocol. Each validation must certify the capacity
of the system to mitigate the impact of unforeseen incidents. The following properties are
essential in the design of a suitable self-improving system.

4.1. Distributed System Architecture

Two architectural solutions are mainly considered for the development of distributed
and autonomous complex systems: service-oriented architectures (SOAs) and multiagent
systems (MASs) [13]. SOAs are a mature technology, which have proven their advantages
in any application that integrates both distributed or separated software components, being
“enabled by technologies and standards that facilitate components communication and
cooperation over a network” [14]. However, the design of a service-oriented architecture is
of a top-down type, which implies, on the one hand, a meticulous stage of study of as many
evolutionary scenarios as possible and, on the other hand, the exclusion of “surprises”,
i.e., uncertain events, as much as possible. Unlike SOAs, the MAS architecture design,
a specific structure of artificial intelligence, is based on a bottom-up approach in which



Appl. Sci. 2022, 12, 11958 6 of 16

the collaboration of the agent-type entities located at the lowest level of the hierarchy is
essential to cope with the unpredictable changes in the context. MASs also provide various
elements of structural organization which can form holons, groups, teams, hierarchies, etc.
Being more natural and intuitive, MASs have been the subject of numerous works that
highlight the propensity for self-organization and self-improvement [15–17]. However, the
use of MASs is subject to restrictions particularly due to the limited support for ensuring
MAS scalability and modularity.

For this reason, we recommend as the best solution for the design of self-improving
systems, the combination of the MAS and SOA styles proposed in [18] and defined as
“agent-services”. This solution will maintain all the valuable characteristics of the agents,
including various cooperation and coordination mechanisms, goal-based planning, and
flexible organization and, at the same time, will highlight the main SOA facilities for
software engineering based on modularity, reusability, and interoperability. In our vision, a
self-improving system should be a set of agent-service teams (ASTs), each with different
specific strengths and capabilities. An AST comprises many agent-service entities (ASEs)
that cooperate to reach a common target. The use of ASTs provides a way for distributed
problem-solving that will lead to a faster and more strongly argued decision-making
process, considering that ASEs can also benefit from collective learning procedures.

4.2. Flexible System Architecture

Especially in the case of AST-based architecture, flexibility must be an intrinsic prop-
erty of a self-improving system. By providing flexibility, such a system receives several
features which allow it to adapt both behaviorally and structurally. The main feature of
a flexible architecture is the adjustable autonomy. Obviously, the agents must behave
autonomously, but an adjustable autonomy can modify the proactivity of the ASE by either
increasing it in favor of the component “agent” or decreasing it in favor of the component
“service”. At the same time, the flexibility allows the ASE to dynamically modify its role
according to the objective pursued and then to dynamically modify its behaviour according
to the role it is playing in the current activity.

4.3. Autonomous and Collaborative Learning

The learning process is essential for acquiring the necessary knowledge in the decision-
making process, especially for a self-improvement system which must be able to collect its
own training data and learn from it, using both autonomous and collaborative learning
mechanisms. The current tendency is to use machine learning techniques, with three of
them being adequate to ensure the main objectives in the learning process for self-improved
systems: eliminating the incorrect knowledge from the already learned ones, promoting self-
motivated learning, and ensuring the correctness and relevance of the learned knowledge.
These techniques are: supervised learning (SL) which uses feedback observations to build
models, unsupervised learning (UL) which allows the learning of patterns from a set of
observations without any explicit feedback, and reinforcement learning (RL) which allows
software agents to take action in an environment based on a procedure which maximizes
the cumulative reward.

4.4. Distributed Self-Management

As we have already mentioned, autonomous self-improved systems must have the
capacity to improve their management procedure in real time; in other words, they must
show a capacity for self-management. More precisely, ASISs need a dedicated service
management system which corresponds to a service-oriented organization. The peculiarity
of an SMS for an ASIS is that it has two components: one that refers to the management
of the application, ensuring its functionality, and one that refers to the self-management
subsystem itself, ensuring the coherence of the relationship of the components of the
managed subsystem under the conditions in which they change their dynamic goals.
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4.5. Context-Aware Modelling

For an ASIS, interaction with the environment is a permanent source of information
based on which context-sensitive adaptation algorithms can be developed. The best solution
is to develop appropriate context-aware models that accurately represent both the current
state of the operating process/system and the status of the context. As new knowledge is
acquired, it must be evaluated on these context-aware models to certify to what extent their
interpretation in the decision-making process ensures that the performance criteria are met
and the compatibility with standards is satisfied. The most important challenge, however,
remains the ability to cope with unforeseen situations, i.e., dealing with uncertainties due
to contextual changes.

A very interesting and relevant study on context awareness is depicted in [19]. The
authors present the key elements of context awareness and outline the importance of con-
text modelling in possessing a good understanding between the system, elements, and
the environment. In addition, context adaptation is proposed as a mean for adjusting an
application’s behavior, so an expected response can be obtained. In [20], the authors present
a method for developing context-aware systems. This study is based on a practical project
dedicated to international container shipping. In order to avoid false or partially correct
assumptions about elements of the context, the authors present a methodology for identify-
ing relevant and irrelevant elements of a context. Whereas the study proposes three steps
for getting familiar with the context, observing elements that define the context, and deter-
mining the rules for system adaptation, it has a limited field of applicability. In paper [21],
the authors address the problem of context awareness from the perspective of business
process management (BPM). Although the authors identify some useful approaches to
context awareness, they conclude that “most BPM methods are not context-specific—or at
least they do not state in which contexts they can or should be applied”.

4.6. Distributed Decision-Making

As an essential element in adapting to the sudden environmental changes sensed
and filtered by a context-aware system, the decision-making process is subject to the same
challenges already mentioned regarding decentralized control in ASE coordination, valid
for both an ASIS as a whole and for its associated SMS. We will insist, however, that to
comply with the numerous constraints of organization and functioning in real time, the
decision system must have the capacity to avoid the inherent conflicts that arise from the
simultaneous requests to perform the functions of self-improvement and, respectively, of
self-management and to compensate for the lack of information caused by the impact of
uncertainties.

5. Dealing with Uncertainties in Antifragile Manufacturing Systems

The increasing complexity of the challenges faced by production systems, in general,
and manufacturing systems far exceeds the ability to discover the cause and make even
provisional causal assumptions to be subject to error. Therefore, it is increasingly important
to find methods of assessing solutions that can face uncertainties arising in situations
of high complexity in which no single cause, but several simultaneous causes, can be
identified. As a first step, we must be able to modify the approach of the working mode
through adaptation obtained by learning about uncertainty. Learning becomes essential
to offer the knowledge necessary for decision-making in uncertainty. In [22], the authors
describe a simple but intuitive model of the repartition of knowledge in a four-quadrant
representation of a knowledge-centric view of uncertainty. The first quadrant Q1, named KK
(from “Known Knowns”), represents the knowledge stored in the system based on previous
data and observations. By learning, this knowledge can be renewed, and, at the same time,
the outdated or incorrect knowledge can be eliminated. The second quadrant Q2, named
KU (from “Known Unknowns”), contains several deficiencies in knowledge due either to
incomplete information or insufficient expertise. The ambiguity due to the presence of
these gaps prevents a correct interpretation of the data and, as such, represents a danger
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in decision-making. The purpose of learning in Q2 is to deduce from the observations the
possible behavioral tendencies of the system and establish a consolidated control strategy.
The third quadrant Q3, named UK (from “Unknown Knowns”), refers to knowledge
validated in previous acquisitions but which was not used either because of blockages
or it could not be referenced. The learning process in this quadrant aims to unlock this
knowledge and, eventually, to transfer it (sharing) from Q3 to Q1. The fourth quadrant Q4,
named UU (from “Unknown Unknowns”), refers to uncertainty which is unknown for the
system. Learning in this quadrant is performed by evaluating the results of changes in the
data acquired from previous events. It is primarily about the detection of anomalies but
just as important is the detection of evolution trends of the parameters in a preferential
direction (gradient). This is the location of the antifragile approach to decision-making.

We will specify that the process by which an ASIS placed in Q4 tries to solve situations
of indeterminacy through training based on historical data refers only to epistemic uncer-
tainties, which, unlike the uncertainties produced by the variability of natural processes,
are not random. An epistemic uncertainty results from a lack of knowledge, either because
not enough data were collected or the flow of information in the dynamics of the system
is fluctuating. This means that an ASIS, which improves through the accumulation of
new knowledge, can reduce or even eliminate uncertainties. Moreover, by the fact that an
ASIS can identify hazards through a logical process of understanding the uncertainties in
critical infrastructures, it can also assess the vulnerabilities associated with each hazard
and implicitly assess the effectiveness of the risk reduction measures.

From the implications of the learning process, the knowledge model suggests that one
can deliberately introduce some errors without serious repercussions, and this can allow
the rapid detection of weaknesses and provide a learning basis for how to remove these
errors. Failure injection provides a basis for the predictive analysis of risk and vulnerability,
which will augment the intimate knowledge on the system. It is true that the priority given
to indeterminism to the detriment of a meticulous investigation of the deterministic causes
of errors can be questioned. Our answer is that we have a limited capacity to discover this
determinism and that, for the antifragile approach, the bet on combating indeterminism
is the indicated one. Of course, this approach is mainly reflected in the transposition of
uncertainty based on the degree of confidence in the predictive maintenance algorithms.

One of the major challenges in PdM is validation of the prognostic methods, which
require the comparison of estimated failure times with the observed failures. In fact, this is
the main element that creates the difference between PdM and PvM. The performance of
a forecast model can only be tested when a failure occurs. PvM policies, as they greatly
reduce the number of failures observed, significantly complicate the validation of the
prognostic method. Solutions for checking the status of a system at predefined fixed
intervals become insufficient in the case of increasingly complex manufacturing processes.
In the case of PdM, which permanently provides additional information about the level
of system degradation or the occurrence of behavioral anomalies, information about the
possibility of a failure is already available before the actual failure occurs. The limitations
of the probabilistic approaches are mainly due to three causes: (i) model uncertainty (there
is no perfect model; the accuracy of the model depends on the volume of knowledge and
the level of detail); (ii) data uncertainty (the use of expert data, accuracy, and relevance in
the data acquisition); and (iii) the changing context (events cannot be known with certainty
because of their continuous change).

We have already mentioned in Section 3 that an ASIS has in principle nonconflicting
optimization objectives and, as such, can successfully solve multiobjective optimization
(MOPs) problems. On the other hand, we discussed only well-defined objectives, unaltered
by uncertainties. The problem is complicated if the control techniques aim to identify
optimal solutions in an uncertain environment. In MOPs, uncertainties are due either to
disturbances in the variables involved in the decision-making processes or unpredictable
changes in the environmental parameters. In this context, we want to develop methods
that determine the most robust solutions, i.e., the least sensitive to disturbances. However,
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in this situation, we reach again the situation in which we have to accept a compromise
between achieving optimal performance and robustness, respectively. An interesting
solution, which we decided to adopt, is to combine a PdM procedure with the method
presented in [23], whose objective is to minimize the weighted amount of quality robustness
(QR) and robustness of the solution, which in our paper we call functional robustness (FR).
The antifragile MOP solution we discuss below starts from the design of a model that
integrates a PdM procedure with the dynamic phases of the production plan and aims for
the optimization of two objectives—maximizing the QR and FR parameters.

The main instrument that ensures balance in the process of simultaneous optimization
of the production scheduling and maintenance policy is a time buffer that must be inserted
to deal with uncertainties that may cause damages or failures, which, from a mathematical
point of view, represents a stochastic optimization procedure with discrete and continuous
variables. In summary, the steps of the optimization procedure in the simple case of a single
machine system are:

1. Establishing a set of tasks (jobs) with a prefixed processing time, with all jobs available
at the initial moment.

2. Establishing, based on the exploitation indicators processed in the previous stages,
the law of distribution of the probability of failure.

3. Establishing the weighting coefficient which reflects the increase in the probability of
defect due to the increase in the operating life of the machine (aging).

4. Establishing the time of the production horizon in which we must carry out the
maintenance procedure, after which the machine is restored to the same operating
conditions that it had at the initial time, i.e., it becomes a machine “like a new one”.
(We must remember that during the execution of the maintenance, work jobs cannot
be performed on the machine.)

5. Setting the minimization objective, namely, the weighted amount of QR and FR, which
is determined by the sequence of jobs, the maintenance interval, and the buffer time
in the program.

6. Solving the minimization problem which ensures a solution S1 for QR and a solution
S2 for FR. A surrogate measure for S1 with the value V1 is selected to minimize the
total deviation of the recalculated time of the current program from that of the initial
program, and, respectively, a surrogate measure for S2 with the value V2 is selected in
order to serve to minimize the total completion time. The final goal of the optimization
problem is to obtain the solution that minimizes the function f = w1V1 + w2V2, with
w1 + w2 = 1, where w1 and w2 are weights assigned according to priorities given to
each individual objective. This is a classic problem of the weighted sum method for
multi-objective problems [24] reduced to two objectives This method allows us to
systematically change weights, and each objective optimization determines a different
optimal solution.

6. Method for Injection of Artificial Errors in a Virtual Environment

Increasingly sophisticated methodologies are available nowadays to determine the
causes of the failures of flexible manufacturing lines. Of these, the most widely used
seems to be the failure mode and effects analysis (FMEA), most often associated with
criticality analysis (CA). The use of FMEA allows both the identification of failures and
the actions required to remove them, usually based on rules of priority in the execution
of corrections. The testing and validation of the method was carried out on the testbed
called SMART Flexible Assembly System within the research project CIDSACTEH (http:
//cidsacteh.upb.ro accessed on 1 September 2022). The main objective of the project is the
use of advanced modelling and simulation technologies for the performance assessment
of manufacturing mechatronic lines. The logistic support for performing the tests is a
laboratory model for a flexible assembly line of industrial products with five workstations
(Stations 1 to 5), as presented in Figure 1.

http://cidsacteh.upb.ro
http://cidsacteh.upb.ro
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Figure 1. Block diagram of the mechatronic assembly line.

The technological flow consists of successive sequences of movement of a support
on which the component elements of a product are mounted. The actual assembly is
performed using a robotic arm in the central workstation (No. 3).

Our method proposes the use of a virtual environment for injecting and evaluating
the impact of artificial errors on the system’s antifragility. This method uses FSM (finite
state machine) representation of the process correlated with FMEA (failure mode and effect
analysis) to dynamically quantify this impact.

The method involves two steps: (1) building a behaviour model in the virtual environ-
ment, and (2) an analysis of the model under artificial error injection.

Process modelling (Figure 2) is a DT representation of the system, with all of the phases,
nodes, and dependencies. This can be performed through an FSM where different diagrams
capture different detail levels of the plant as well as dependencies between different nodes,
allowing a nested top–bottom approach. Each node represents either a phase, a branch,
or a final element. A risk factor is assigned to each element, taking into consideration
the severity of the possible failures, the occurrence, and detectability probability. The risk
factor of a phase or branch consists in the sum of all of the included elements. According to
this data, a criticality matrix is built to represent element failure along with the occurrence
and severity.
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Figure 2. Building the behaviour model.

For each station of the manufacturing line, an FSM representation was built. For
example, Station 1 (Figure 3) was modelled using 10 states and 12 transitions. The states
are represented by: nr_pf, the number of products and nr_pi, the number of components for
each product, given by the PLC; two inductive sensors, SP1 and SP2, showing the product
entered or exited the conveyor belt; one RFID sensor, RFID1, to identify the stop position;
one optical sensor, SO1, to check the pallet availability in the rack; two feedback sensors,
SF1 and SF2, which confirm the element is in the correct position and can be released
from the stack; a capacitive sensor, SC, for confirming the element reached the belt; and
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B2_free, a parameter confirming the next station accepts the new elements. The transitions
represented by elements P1 to P12 check the cumulative conditions required for each step
for the element to be correctly processed until it leaves the station.
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Figure 3. Behaviour model example for Station 1.

The FMEA analysis was applied on Station 1, considering for each element possible the
failure modes, and causes and effects, and assigning a risk ranking with a factor between
1 and 10 for the severity of the event, the probability of occurrence, and the ease of detecting
it (measured by detectability). By multiplying all three indices, we obtained a risk factor
which varied from 1 to 1000. The risk value was denoted by an RPN (risk priority number),
as one can see in Table 1. This step was performed offline, with the identification of the
failure modes and assignment of the associated risk ranking determined according to a
specialist’s experience and recommendation.

Starting from the FMEA analysis in our method, we considered, at the beginning, the
same occurrence index for all of the elements with the value of 1, thus making the initial
risk of the operation lower, corresponding to a proper operation (as shown in Table 1). The
risk index for an individual element was computed as the maximum value between all of
the RPNs associated with that element. By overlapping the risk indices over the elements
represented in the FSM diagram, we can perform real-time computation of the overall
risk factor as the sum of all of the possible risks of all of the linked elements, according
to the state of each element. In a manufacturing line where reconfiguration is possible,
these values should be computed for all possible links and set for each element through the
normal behaviour of the manufacturing line.

The method for introducing artificial errors involves investigating how a failure can
affect the overall system operation and if it can be overcome by selecting an alternative
path. It allows fast identification and classification of system weaknesses, providing a tool
not only for increased plant reliability but also for better action planning. For this, we
considered in the analysis both the functional dependencies between the system elements,
according to the existing process models, as well as the propagation impact, according
to the real-time data. Thus, depending on the error, multiple branches may be affected.
The method illustrated in Figure 4 considers evaluating multiple available paths and
computing as a severity factor. If the impact of this artificial error is major, alternative paths
are searched in the DT model.
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Table 1. FMEA analysis of station components (an extract), considering minimum occurrence risk.

Critical
Component Failure Mode Failure Cause Failure Effects

Initial Risk Ranking

Severity
(S)

Occurrence
(O)

Detectability
(D)

Risk Priority
Number
(RPN)

1. Programmable
logical controller

(PLC)
Shut down Instant power

line failures Line stop 8 1 4 32

2. Programmable
logical controller

(PLC)

Operation
error

Delayed
maintenance Line stop 7 1 9 63

3. Programmable
logical controller

(PLC)

Communication
error

Improper
connection Line stop 7 1 8 56

4. TP1500 Comfort
HMI trainer Shut down Instant power

line failures
Under optimal

operation 4 1 4 16

5. Conveyor belt
with asynchronous

AC motor
Motor failure

Broken rotor
bars

Stator faults
Line stop 8 1 4 32

6. Conveyor belt
with asynchronous

AC motor
Shut down Instant power

line failures Line stop 8 1 4 32

7. Conveyor belt
with asynchronous
AC motor and IO

Excessive
vibration

Unbalance
Misalignment

Improper
assembly 5 1 6 30

8. SINAMICS
G120—1AC 230 V Shut down Instant power

line failures Line stop 8 1 4 32

9. SINAMICS
G120—1AC 230 V

High
fluctuation in
output power

Fluctuation of
power supply
Partial failure

Under optimal
operation 6 1 8 48

10. Compact
pneumatic

pallet storage unit

Actuator
moving

abnormally
slow

Air leak or
squeezed tube

Low produc-
tionImproper

alignment
3 1 4 12

11.
RFID—SIEMENS

RF300

Unidentified
parts Broken module Production

stop 4 1 9 36

We applied the method to artificial failure injection on our manufacturing line by sim-
ulating a high fluctuation in the output of the frequency converter. This was acknowledged
by setting an occurrence index for this event in Table 1 to the maximum level of 10 and
recomputing the risk priority number of each element of the normal path as well as for
alternative paths, if available. We did not change the occurrence index between elements
where there was a dependency relationship such as an event affecting only the task com-
pletion. For elements which were in a propagation relationship with the simulated faulty
element, we used a medium occurrence value determined in the offline FMEA analysis.
These values and their corresponding risk factors can be recomputed during the operation
according to the fault events and required maintenance procedures. As detailed in Figure 4,
an alternative path can be selected, considering this event will have a lower impact on those
elements. This can be achieved either if the artificial error was not applied to an element
which is part of the new path or if the propagation impact is lower. Following the same
approach, the method can be extended to support multiple error injections.

As one can observe in Table 2, the risk index for the PLC, HMI, storage unit, and RFID
sensor is represented by the maximum value between all of the possible events associated
with each of these elements, as identified in Table 1. A failure of the frequency converter
at Station 1 will change the occurrence value for this element to 10, thus making the new
risk factor 480. As the cause can be represented by a fluctuation in the power line, this
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would affect all frequency convertors and conveyor belt motors but with a lower risk
index. This risk index is computed based on the offline values for the occurrence factor, as
identified in the FMEA analysis. For example, for the conveyor belt, the occurrence factor
for motor failure under the event of motor failure will be set to 4, so the new risk index will
become 128. The index factor for FREQ2 is computed also considering the initial occurrence
factor of 5, thus resulting in a risk index of 240. By determining the new risk indexes
(higher than previous in the case of component #3, #4, #5, and #6), we consider the learning
phase produces visible results. In addition, by determining the different factors for the
new indexes, the system reacts differently to different stressors and provides data for the
decision-making process. Although research to validate antifragile design control solutions
is in its infancy, the facilities offered by the DT-based CIDSACTEH testbed are promising
and encouraging. To date, the performance of adaptive control procedures and physical
controls has been assessed using HIL (hardware in the loop) and SIL (software in the
loop) techniques—see details in [25]. Now, the research aims to increase this performance
by addressing antifragile responses to the effect of uncertainties due to changes in the
environment.
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Table 2. Risk index of station components (an extract), considering artificial failure injection.

Critical Component Identification Initial Risk Index New Risk Index

1. Programmable logical controller (PLC) PLC 63 63

2. TP1500 Comfort HMI trainer HMI 16 16

3. Conveyor belt with asynchronous AC motor (Station 1) B1 32 128

4. Conveyor belt with asynchronous AC motor (Station 2) B2 32 128

5. SINAMICS G120—1AC 230 V (Station 1) FREQ1 48 480

6. SINAMICS G120—1AC 230 V (Station 2) FREQ2 48 240

7. Compact pneumatic pallet storage unit (Station 1) SO1 12 12

8. RFID—SIEMENS RF300 (Station 1) RFID1 36 36
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7. Conclusions

Finally, we mention a phrase rather jokingly said by Taleb: “ . . . is better to be dumb
and antifragile than smart and fragile”. It is obvious that it is even better, i.e., optimal to
be “smart and antifragile”. In this work, we tried to present the possibility of designing
such systems, which we called antifragile self-improving systems (ASISs). We have shown
that ASISs are a special category of complex adaptive systems that permanently maintain
performance at optimum parameters, extending the operating time as much as possible by
assuming calculated risk forms. This is recommended because traditional risk management
is not able to predict and reduce incidents that lead to malfunction and stopping processes.

From a hardware architecture perspective, an ASIS should be a MAS, with many
collaborative agent-services entities (ASEs) that cooperate to reach a common goal in agent-
service teams (ASTs). The main benefit of an AST is that it enables collective learning,
leading to faster problem-solving and better decision-making. From a software architecture
perspective, an ASIS must be a scalable system consisting of separate and isolated processes
running on multiple servers and communicating through an external computer network.
As both malicious and benevolent processes that take too long to activate are difficult to
detect and repair, these processes are designed to stop as soon as an error occurs, and,
after isolation, their functionality should be replaced immediately to mitigate the effects of
unwanted incidents and avoid the spread of errors that cause failure.

Although managerial concepts were mentioned in the first five sections in this paper
in relation to predictive maintenance, we aimed to focus on the automatization of predic-
tive maintenance (APM) which is as a needed step to meet the objectives of antifragile
engineering. In addition, APM should be seen as a means to meet and overcome the limits
of robust/resilient design. Thus, we consider that antifragile engineering is an improved
form of robust and resilient engineering, and we see this to be more of a technical than
managerial concept. The first five sections approached management only to prepare the
automatization technical solutions. Due to the limited functionalities available at the man-
ufacturing line we had at our disposal, we could only implement and test the antifragile
response obtained by learning to stress generated by the artificial error injection method.
The seemingly bizarre solution to achieving antifragility consisted of experimental injec-
tions of artificial defects into a manufacturing system (it is advisable to simulate this in a
virtual environment) to detect and eliminate hidden vulnerabilities and ensure the isolation
of the wrong behaviour processes. The introduction of artificial defects, thus, appears as
positive feedback with a catalytic character to accelerate self-improvement actions. In fact,
artificial error injection should be seen only as a learning basis and a means to analyze the
response of the system to stressors.

The present results are represented by the scenario and the preparation of antifragile
responses to stressors. We consider this to be an incipient stage in which antifragility can
be obtained through “learning” based on artificial error injection. We tried to implement
a system capable of working well under uncertain conditions, based on learning from
previous experiences. In our vision, the evolution of the indexes presented in Table 2 is
an incipient form of antifragility as the system became able to show different responses
to the effects of environment uncertainties. For the future development of the study, the
challenge will be to confirm the antifragile response when more stressors are added.

Although ASISs become stronger through over-adaptation for stressors, they are
resilient only up to a certain limit. If this limit is exceeded, the systems may be severely
damaged or even collapse. Therefore, the positive feedback loops with beneficial effect
must be controlled by stronger negative feedback loops, which maintain the stability of the
system as a whole.

As we said, in practice, you cannot be dumb and antifragile. ASISs are smart and
antifragile.
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