friried applied
e sciences

Article

Impact of Optimal Feature Selection Using Hybrid Method for
a Multiclass Problem in Cross Project Defect Prediction

Abeer Jalil 1*{, Rizwan Bin Faiz 119, Sultan Alyahya 2

check for
updates

Citation: Jalil, A.; Faiz, R.B.; Alyahya,
S.; Maddeh, M. Impact of Optimal
Feature Selection Using Hybrid
Method for a Multiclass Problem in
Cross Project Defect Prediction. Appl.
Sci. 2022, 12,12167. https://doi.org/
10.3390/app122312167

Academic Editor: Subhas
Mukhopadhyay

Received: 9 October 2022
Accepted: 29 October 2022
Published: 28 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Mohamed Maddeh 3

Faculty of Computing, Riphah International University, Islamabad 46000, Pakistan
Department of Information Systems, King Saud University, Ar Riyadh 12372, Saudi Arabia
College of Applied Computer Science, King Saud University, Ar Riyadh 12372, Saudi Arabia
Correspondence: abeerjalil21@gmail.com

@ N =

Abstract: The objective of cross-project defect prediction (CPDP) is to develop a model that trains
bugs on current source projects and predicts defects of target projects. Due to the complexity of
projects, CPDP is a challenging task, and the precision estimated is not always trustworthy. Our
goal is to predict the bugs in the new projects by training our model on the current projects for
cross-projects to save time, cost, and effort. We used experimental research and the type of research is
explanatory. Our research method is controlled experimentation, for which our independent variable
is prediction accuracy and dependent variables are hyper-parameters which include learning rate,
epochs, and dense layers of neural networks. Our research approach is quantitative as the dataset is
quantitative. The design of our research is 1F1T (1 factor and 1 treatment). To obtain the results, we
first carried out exploratory data analysis (EDA). Using EDA, we found that the dataset is multi-class.
The dataset contains 11 different projects consisting of 28 different versions of all the projects in
total. We also found that the dataset has significant issues of noise, class imbalance, and distribution
gaps between different projects. We pre-processed the dataset for experimentation by resolving all
these issues. To resolve the issue of noise, we removed duplication from the dataset by removing
redundant rows. We then covered the data distribution gap between different sources and target
projects using the min-max normalization technique. After covering the data distribution gap, we
generated synthetic data using a CTGANsynthesizer to solve class imbalance issues. We solved the
class imbalance issue by generating an equal number of instances, as well as an equal number of
output classes. After carrying out all of these steps, we obtained normalized data. We applied the
hybrid feature selection technique on the pre-processed data to optimize the feature set. We obtained
significant results of an average AUC of 75.98%. From the empirical study, it was demonstrated that
feature selection and hyper-parameter tuning have a significant impact on defect prediction accuracy
in cross-projects.

Keywords: hyper-parameter tuning; cross project defect prediction (CPDP); generative adversarial
networks (GAN); hybrid feature selection (HFS)

1. Introduction

Software defect prediction (SDP) is an important software quality assurance step
of predicting the defect proneness in software project development history [1]. Despite
extensive research and a long history, software failure prediction continues to be a thought-
provoking problem in the field of software engineering. [2]. Software groups in particular
use checking out as their main technique of detecting and preventing defects in each level
of the development life cycle, specifically during implementation. Also, testing software
programs can be very time-consuming, and resources for such tasks are likely to be limited,
so automated bug detection can save time, money, and effort. Increase [2].

Defect records from already developed projects can be used to find bugs in new, similar
projects. Prediction primarily based on the historic records amassed from the same projects

Appl. Sci. 2022, 12, 12167. https:/ /doi.org/10.3390/app122312167

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312167
https://doi.org/10.3390/app122312167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8880-3753
https://orcid.org/0000-0003-0442-7653
https://orcid.org/0000-0002-3870-7613
https://doi.org/10.3390/app122312167
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312167?type=check_update&version=1

Appl. Sci. 2022,12,12167

2 of 20

is known as within-project defect prediction (WPDP) and it has been studied widely [3].
Using available public datasets, one can discover the practicality of models created for
different tasks, particularly for people with partial or no defect records repository. Most
traditional software defect prediction models focus on within project defect prediction
(WPDP) and the major limitations of WPDP is lack of training information in the early
phases of the software development and testing process. Therefore, the proposed feature
selection based prediction model is used to assess the cross project defect prediction (CPDP)
on an open source repository [4].

In the latest studies, models of machine learning are successfully implemented to
identify defective features, e.g., correlation analysis, neural networks, and deep learning
(DL). Previous studies have shown that by using suitable and complete data, one can train a
useful machine-learning model. However, it is a crucial problem that an upcoming project
with partial historical data could result in better prediction model performance. In the
absence of adequate amounts of historical data, cross-project defect prediction [1,2] is an
acceptable answer, which discusses the development of the model trained by learning
source projects which have defects, and the prediction is then carried out on target projects.

However, attaining a satisfactory CPDP is stimulating. Zimmermann et al. estimated
CPDP performance on 12 projects (622 cross-project pairs). Among them, 21 total pairs
achieved well. The data from different projects usually have an enormous distribution gap
that interrupts an elementary requirement of many of the ML technologies, i.e., similar
distribution gaps.

Many studies are intended to reduce the data distribution difference from different
projects in CPDP [2,5]. This research has concentrated on different feature selection tech-
niques and their impact on the defect prediction model. Deep neural network (DNN) [2,5]
models have provided mountable non-linear adaptations for feature representations in clas-
sification scenarios, and DNN has been developed widely. Recently, generative adversarial
networks (GANSs) [6] have been proposed, in which two models are trained simultaneously
in an adversarial modeling framework. To acquire a clear representation of the features
of the dataset, GANs play a minimax game, resulting in two models striving with each
other. Moreover, GANs can learn data distribution gaps and the representation of features
very efficiently. So, training the distribution gap of different projects can be carried out
using GAN:Ss. It is possible to learn the mutually distributed representation of inter-class
instances and enhance the correlation learning of intra-class instances in different projects.
CTGANSynthesizer performs well for generating tabular data [7,8].

During the last two decades, different feature selection methods and classification
models have been used for the prediction of different defect datasets. Feature selection
methods extract subsets of optimal features from the large feature set. To predict the fault
in the software, there should be a good understanding of the static metrics. Among these
static subset of features, some of them are features with a high priority defects, and others
are low priority defects. So, it is not necessary to use slight defect features; the chosen
features should be detected and employed in the prediction process.

To experiment with the challenges of the distribution gap between cross-projects, and
limited data, and to select an optimal subset of features, we propose a new approach for
CPDP. Our approach consists of three major parts: data pre-processing, hybrid feature
selection, and classification of output data. We performed the proposed approach on
35 datasets of the PROMISE repository. The experiment results show that our experiment
accomplishes phenomenal evaluation compared to the semi-supervised defect prediction
approach and state-of-the-art CPDP.

2. Literature Review

If selected carefully, a dataset from other projects can provide a better predicting power
than WP data [9] as the large pool of the available CP data has the potential to cover a
larger range of the feature space. This may lead to a better match between training and test
datasets and consequently to better predictions. Our research motivation is mainly based

Appl. Sci. 2022,12,12167

30f20

on the dataset, the distribution gap in different projects of the dataset, class imbalance
issues [10] in the dataset, and hybrid feature selection.

Cross-project defect prediction (CPDP) has evoked great interest recently. Many
researchers began building competitive and novel CPDP models to predict defects in
projects without sufficient training data. However, not all studies achieve a high level of
accuracy or perform well in CPDP. Many studies reviewed in the literature have established
software defect prediction models for estimating the prediction regarding the software
development process, including effort estimation, resource utilization, and maintainability
during the software development lifecycle.

In the series of experiment Y. Sun, X.-Y. Jing, FE. Wu, J.J. Li, D. Xing, H. Chen, And Y. Sun
worked on cross-project defect prediction using the PROMISE repository. They introduced
the adversarial learning framework into cross-project defect prediction to better address
the data distribution difference problem of different projects. They normalized the data by
using the commonly used min-max normalization. All the values were then transformed
into intervals. They carried out feature selection by randomly selecting features with the
same metrics from datasets. They used a defect label classifier to predict the class of the
mapped instances in the common subspace and also added Softmax activation on the top of
the neural network. The constructed experiment and the result analyses have demonstrated
the effectiveness and efficiency of the proposed approach with the F-measure being 0.7034
and the G-measure being 0.6944.

S. Hosseini, B. Turhan, and M. Mintylda worked on cross-project defect prediction
using the PROMISE repository. Before using the dataset, there were two major issues to
solve, which were class imbalance issues and noise in the dataset. To address the class
imbalance issue, they presented a hybrid instance selection with the nearest neighbor
(HISNN) method using a hybrid classification. To resolve the issue of noise they used an
NN-Filter. They used a combination of the nearest neighbor algorithm and the naive Bayes
learner for feature selection. In the experiment, they compared the ten-fold cross-validation
with a validation of the model that used independent test data. Overall experimental
results were measured in terms of F1-measure, G-measure, Precision, Recall, and AUC.

Duksan Ryu, Jong-In Jang, and Jongmoon Baik, researchers worked on hybrid instance
selection using nearest-neighbor for cross-project defect prediction using NASA datasets.
They proposed a hybrid instance selection using the Nearest-Neighbor (HISNN) method
that performs a hybrid classification, selectively learning local knowledge (via k-nearest
neighbor) and global knowledge (via naive Bayes). The major challenge of CPDP is the dif-
ferent distributions between the training and test data. To tackle this, they selected instances
of source data similar to target data to build classifiers. In the end, results were measured
in PD (probability of detection), PF (probability of false alarm), and balance performance
measures. The experimental results show that HISNN produces high overall performance.

Prathipati Ratna Kumar, Dr. G.P Saradhi Varma, researchers worked on different
feature selection measures such as hybrid FS, information gain FS, and gain ratio FS to
evaluate attribute selection measure in the proposed decision-tree model using NASA
datasets. The proposed feature selection-based prediction model was used to assess the
cross-company defects prediction (CCDP) on multiple defect databases. Their proposed
clustering-based defect prediction model was used to group the new defects in the cross-
company defects for defect prediction. They used a hybrid attribute selection measure
based on information gain, correlation coefficient, and relief FS to improve the accuracy of
the ensemble’s majority voting in the Mapper phase. They used different base classifiers
such as improved random forest and improved decision trees to predict the new test
samples in the reducer phase. In the end, results were measured as accuracy measures. The
experimental results show that the proposed model results in the highest accuracy measure.

By taking into account the above-mentioned literature, we found that many researchers
have focused on the issue of attaining higher accuracy in terms of cross projects defect
prediction. Researchers have tried to achieve a high level of accuracy but only a few of them

Appl. Sci. 2022,12,12167

4 0f 20

considered the dataset as multi-class and took into account the issues of class imbalance [11],
noise, distribution gap, and feature selection collectively.

Research Gap

Existing literature critical analysis reveals gaps in the types of repositories used, the
steps carried out for data normalization, feature selection techniques, the class of dataset,
classifiers, and statistical analysis, along with the measurement of results. We explain the
research gap in the above literature review as follows:

On carrying out EDA, it is evident that the dataset is multiclass and has issues of
noise, class imbalance, and distribution gap. After conducting a literature review from
different published research papers, we established that researchers solved class imbalance
issues [1,4,5], removed noise [2,5], and reduced the distribution gap [1,4,5] in a disjointed
manner. However, we believe that by combining all these techniques, higher cross-project
defect prediction accuracy can be achieved.

It is evident from the existing literature that by using hybrid feature selection [4],
defect prediction accuracy can be improved. Although the researchers experimented on
the NASA dataset, we will experiment using the dataset. In addition, it is also evident that
for prediction, layered neural networks, as well as the SoftMax activation function [1] as
a classifier have been proven to give better results for predicting defects and classifying
output classes in multi-class.

3. Proposed Methodology

Firstly, to understand our approach better, knowledge of the dataset is important. After
that, we present our proposed approach, including the data normalization, architecture
settings, and training process in Figure 1 below.

PROMISE Repository

{Step 2} 4——

[Noise J [Distribution gap] [Clss Imba\ance_]

L

Hybrid Feature Selection
{Step 3} 4—— (RandomForest & RFECV)

istop 41—

[T P
[Sour:a rujecl] [arget rujecl} {step 6}

Model Training &
Fine Tuning

l

%E\assmer

{Step 5}

Figure 1. Our proposed methodology.

3.1. Exploratory Data Analysis (Step 1)

We did Exploratory Data Analysis to understand the nature of the dataset in order
to normalize the data. To do so, we carried out an exploratory data analysis (EDA).
Exploratory data analysis is used by data scientists to analyze and investigate datasets
and summarize their main characteristics, often employing data visualization methods.
It can also help determine if the statistical techniques being considered for data analysis
are appropriate. We performed the experiments on one of the widely used repositories

Appl. Sci. 2022,12,12167

50f 20

of software defect prediction: PROMISE [12,13]. Table 1 lists the details of the datasets

as follows:

Table 1. Promise repository features along with their description.

Sr. No. Attribute Abbreviations Description
1 WMC Weighted Methods per class The number of methods used in a given class
’ DIT Depth of Inheritance Tree The maximum dlstan.ce from a given class to the root of an
inheritance tree
3 NOC Number of Children The number of children of a given class in an inheritance tree
4 CBO Coupling between Object The number of classes that are coupled to a given class
Classes
5 RFC Response for a Class The number of distinct methods invoked by code in a given class
6 LCOM Lack of Cohesion in Methods The number of method pairs in a cla.ss that do not share access to
any class attributes
. Afferent coupling, which measures the number of classes that
7 Ca Afferent Coupling depends upon a given class
3 CE Efferent Coupling Efferent coupling, Whlch measures the number of classes that a
given class depends upon
9 NPM Number of Public Methods The number of public methods in a given class
10 LCOM3 Normalized Version of LCOM Another type of lcom metric proposed by Henderson-Sellers
11 LOC Lines of Code The number of lines of code in a given class
12 DAM Data Access Metric The ratio of the number of prlyate / p.rotec.ted attributes to the
total number of attributes in a given class
13 MOA Measure of Aggregation The number of attrlbutes. in a given class that are of
user-defined types
Measure of Functional The number of methods inherited by a given class divided by the
14 MFA . total number of methods that can be accessed by the member
Abstraction -
methods of the given class
The ratio of the sum of the number of different parameter types
) of every method in a given class to the product of the number of
15 CAM Cohesion among Methods methods in the given class and the number of different method
parameter types in the whole class
16 IC Inheritance Coupling The number of parent classes that a given class is coupled to
17 CBM Coupling Between Methods The .total .number of new or Qverwr1tten methods that all
inherited methods in a given class are coupled to
18 AMC Average Method Complexity The average size of methods in a given class
Maximum Values of Methods The maximum McCabe’s cyclomatic complexity (CC) score of
19 MAX_CC . . .
in the same class methods in a given class
20 AVG.CC Mean Values of Methods in The arithmetic means of McCabe’s cyclomatic complexity (CC)

the same class

scores of methods in a given class

PROMISE repository consists of different datasets such as Ant, Camel, Jedit, Log4;,
Ivy, Lucene, Synapse, Velocity, Xerces, Xalan, and Poi. Each dataset consists of 20 features,
shown above in Table 1. There is a total of 11 projects with 35 different versions. Table 1
lists the details of the datasets.

On EDA, we established that the dataset had issues of noise, data distribution gap,
class imbalance issue, and had a multi-class nature. The multi-class nature of the dataset
can better be described visually, as shown in the Figures 2 and 3 below.

From the above diagrams, it is obvious that the promise dataset is multi-class, so we
treated the dataset as multi-class during data normalization.

Appl. Sci. 2022,12,12167

6 of 20

ant-1.6

=0

200

bug

100

= —-
; ﬂﬂlllll
1] 1 2 3 4

Figure 2. Multi-class of project ant 1.6.

5 & B 10

warces-1.4

175

. | [T | [SS—

01234567 830NRZVMEIBBITIV021243 6706
Figure 3. Multi-Class of project Xerces 1.4.

3.2. Data Pre-Processing (Step 2)

To normalize the dataset, we first removed the noise from the dataset. After removing
noise, we covered the distribution gap between source and target projects. In the last step,
we solved the issue of class imbalance by generating synthetic data. After performing all
these steps, we obtained normalized data for our experimentation. Let us explain each step
of data preprocessing in detail.

To answer and describe each issue, we divided our process into two steps for each,
which were:

e Describing the method of performing an experiment
e Displaying the dataset before and after performing an experiment

3.2.1. Noise

The repository has noise in the form of duplicated rows. We removed noise from the
PROMISE dataset by removing the redundant data, so that our trained model predicts the
defects accurately with higher accuracy.

e Method to Perform Experiment

To resolve the issue of noise in the dataset, we performed the following steps:

Read CSV File

Drop all unimportant columns, i.e., name and version

Use panda’s duplicated method on the data retrieved from CSV file

Duplicating method of panda’s library, traversing each row in the dataset one by one
throughout the file and selecting the duplicated rows.

5. Use pandas’ method drop_duplicates on the data retrieved from the CSV file

Ll

Appl. Sci. 2022,12,12167

7 of 20

81
96

81

96

wmc dit noc

2
2

wmc
2
4

3
3

dit
3
1

(-]
(“]

noc
e
e

*

Use drop_duplicates method to remove all the retrieved duplicated rows from the dataset.
7. Display dataset before and after performing the experiment

Figures 4 and 5 display the result before and after experimenting.
From the EDA, we established that there was noise as redundant data in the rows of
the dataset. This can better be explained visually as Figure 4 below:

cbo rfc lcom ca ce npm lcom3 loc dam moa mfa cam ic cbm amc max_cc avg cc bug

3
3

cbo
3
4

7 3 2 2.6 23 0.8 @ 0.969697 1.6 @ e 10.5 il 8.5 1
7 1 1 3 2 2.6 23 0.8 @ 0.969697 1.6 0 8 10.5 al 8.5 il

Figure 4. Noise in terms of duplicated records in ant version 1.3.

We removed duplicated rows in the dataset in the first step of data normalization.
After removing the noise, we obtained these results:

rfc lcom ca ce npm lcom3 loc dam moa mfa cam ic cbm amc max_cc avg cc bug

7 1 1 3 2 2.0 23 0.0 @ 0.969697 1.0 © @ 10.5 1 8.5 1
= 6 3 1 4 2.0 4 0.0 © ©0.000000 0.5 © @ 0.0 1) 0

Figure 5. Removed noise in terms of duplicated records in ant version 1.3.

3.2.2. Distribution Gap

After removing noise, in the next step, we covered the data distribution gap in
the datasets.

e Method:

To cover this gap, we used an adversarial learning concept. We first combined all the
versions of datasets; in other words, we combined all the versions of Ant datasets as one
CSV file and did the same for all the projects. The reason for combining all the versions is
to have maximum data for training. After combining them, we had 11 different projects.
We performed the following steps:

read source CSV File

we created a list of all the columns

we applied a loop for each column

we calculated minimum and maximum values based on the column

we generated a list containing minimum and maximum range values for each column
we removed those values which are outside the calculated min and max acceptable
column values and made sure both source and target appeared in the same space.

e Dataset before and after the experiment:

Figures 6 and 7 show the result before and after experimenting.

104e
8 °
°
61e o L]
e o
4-4e e o o
° e o o
24 e o o o o
° e o o o o
O4e o o ° ° ° o
2 4 6
dit

Figure 6. Before removing the data distribution of the “dit” feature of the Ant project.

Above are the graphs of the “dit” feature of the Ant and Camel projects. We can see
their distribution gap. We covered this gap using adversarial learning, in which we selected
one project as the source and the other project as a target. There are two components in
adversarial learning which bring source and target projects to a common space to remove

Appl. Sci. 2022,12,12167 8 of 20

the distribution gap between projects in CPDP. In adversarial learning, the generator
component learns the source project. The target project is fed to the discriminator of the
architecture which discriminates the source and target projects and also generates the
min-max value. This min-max value will help the generator to train the source project
as per the distribution of the target project. When the discriminator fails to recognize the
distribution gap between the source and target project, our source project is completely
trained and our source and target projects start to be situated in a common space. All
the values outside the min-max value of the projects were considered outliers which we
removed to cover the distribution gap completely. After removing the distribution gap, the
above projects look as in Figures 8 and 9 below:

2.0 4 o

1.5

1.0 1 o ° o °

0.5 4

001 o e o o o

dit

{e ° ° ° °
{e ° o
{e o o o o
{e o o o)
2 4
dit

-4 o L o
ERJ L] o =] L]
0 4
dit

Figure 9. After removing the data distribution of the “dit” feature of the Camel project.

Above are the graphs of the “dit” feature of Ant and Camel projects after covering the
distribution gap.
3.2.3. Class Imbalance

In the last step of pre-processing, we solved the issue of class imbalance both in terms
of the total number of instances and a total number of output classes. We solved the issue
of class imbalance using a CTGANSynthesizer.

e Method:

Appl. Sci. 2022,12,12167

9 of 20

To solve the class imbalance issue from the dataset, we performed the following steps:

e Once the outliers had been removed from the dataset, we used a CTGANSynthesizer.
CTGAN is a collection of deep-learning-based synthetic data generators for single-table
data, which can learn from real data and generate synthetic clones with high fidelity.

e We passed 100 as an epoch value as a parameter of CTGANSynthesizer to obtain the
most relevant values.

o We then trained the CTGANSynthesizer model by passing data and discrete columns
as parameters.

o We passed the sample size as 960, the highest number of rows in the PROMISE reposi-
tory datasets. Then, using this technique, all the minority classes were oversampled to
the majority class

e Dataset before and after the experiment:

Tables 2 and 3 display the results before and after experimenting. All the projects have
different numbers of classes in datasets as follows:

Table 2. List the total number of instances for each version before resolving class imbalance. Maxi-
mum number of rows is 960 for Camel-1.6 and the minimum number of rows is 7 for Forrest-0.6.

Class Name Total Columns Total Rows
Camel-1.6 24 966
Xalan-2.7 24 910
Xalan-2.6 24 886
Camel-1.4 24 873
Xalan-2.5 24 804

Ant-1.7 24 746
Forest-0.8 24 33
Forest-0.7 24 30
Pbeans-1 24 27

ckjm 24 11
Forest-0.6 24 7

Table 3. List the total number of instances for each version after resolving the class imbalance.

Class Name Total Columns Total Rows
Camel-1.6 24 966
Xalan-2.7 24 966
Xalan-2.6 24 966
Camel-1.4 24 966
Xalan-2.5 24 966

Ant-1.7 24 966
Forest-0.8 24 966
Forest-0.7 24 966
Pbeans-1 24 966

ckjm 24 966
Forest-0.6 24 966

To resolve the class imbalance issue, we generated synthetic data using CTGAN. We
established the maximum number of classes in any of the datasets, which was 966, and
then generated all the datasets synthetically equal to 966. CTGAN learnt the dataset pattern
and generated the data on the same pattern to solve the class imbalance issue.

In a detailed study about classes, we established that most of the classes of the dataset
have much less data, which ultimately decreases the performance of our approach. To
achieve better results, we took class 0 and class 1 as they were, but merged the classes
with the bugs’ label 2, 3, 4, 5, 6, and 7 as 2. This meant that Class 2 had all kinds of bugs
of classes 2, 3, 4, 5, 6, and 7. We did so to obtain the maximum data to train our model.
Among the 960 classes of each of the projects, we generated equal classes for every bug

Appl. Sci. 2022,12,12167

10 of 20

class; in other words, we generated 320 classes for each of the bug class0, class1, and class2.
We also balanced the classes of output.
After solving each of the issues, we obtained the normalized data for further experimentation.

3.3. Hybrid Feature Selection (Step 3)

After obtaining normalized data, we carried out feature selection to obtain the optimal
feature subset for our experimentation. Hybrid methods offer a good way of combining
weak feature selection methods to obtain more robust and powerful ways to select variables.
Rather than using a single approach to select feature subsets as the previous methods do,
hybrid methods combine the different approaches to obtain the best possible feature subset.
The big advantage that hybrid methods offer is high performance and accuracy [14], better
computational complexity than with wrapper methods, and models that are more flexible
and robust against high dimensional data.

There are two types of hybrid feature selection, i.e., 1. Filter & Wrapper methods,
and 2. Embedded and Wrapper Methods. We chose embedded and wrapper methods,
which can be used to select top features, and then performed a wrapper method to rank
the selected features which contribute more to the results. We used the recursive feature
elimination technique to obtain our optimal feature subset. Recursive feature elimination
works as follows:

e Train a model on all the data features. This model can be tree-based, lasso, or others
that can offer feature importance. Evaluate its performance on a suitable metric of
your choice.

Derive the feature importance to rank features accordingly.

Delete the least important feature and re-train the model on the remaining ones.

Use the previous evaluation metric to calculate the performance of the resulting model.

Now, test whether the evaluation metric decreases arbitrarily. If it does, that means

this feature is important. Otherwise, you can remove it.

Repeat steps 3-5 until all features are removed (i.e., evaluated).

This method removes the feature only once rather than removing all the features at

each step. This is why this approach is faster than pure wrapper methods and better

than pure embedded methods.

e We used random forests to select the best features. We also used recursive feature
elimination and cross-validation (RFECV) to rank the optimal features selected. RFECV
uses different parameters for feature selection details, which are as follows:

e min_feature_to_select: as its name suggests, this parameter sets the minimum number
of features to be selected.

Step: how many features do we remove at each step?
CV: an integer, generator, or iterable that describes the cross-validation splitting strategy.
Scoring: the evaluation metric we use.

The dataset has a total of 20 features, as discussed in the above section, but after
carrying out a hybrid feature selection, the optimal feature set came out as 14. The features
‘WMC’, ‘DIT’, 'NOC’, “‘CBO’, ‘RFC’, ‘LCOM’, ‘CA’, ‘CE’, 'NPM’, 'LCOM3/, 'LOC’, 'DAM’,
‘MOA’, 'MFA’, ‘“CAM’, “IC’, ‘CBM’, ‘AMC’, 'MAX_CC’, “AVG_CC’ are the 14 features
selected using hybrid methods, and these features contribute the most to the results.

3.4. Dataset Division (Step 4)

After selecting features using a hybrid feature selection technique, we split the
datasets into training and testing projects. Since we have less data to train our classifier,
we combined all the versions of the same projects into one project and used these
projects as source projects, in order to have the maximum amount of data to obtain better
results. We then tested our target projects against these source projects to evaluate the
prediction accuracy.

Appl. Sci. 2022,12,12167

11 of 20

3.5. Classification (Step 5)

Data classification is carried out to obtain accuracy for our evaluation approach. To
do this, we needed a classifier [15]. Since the dataset is multi-class and we were aiming
to experiment on the cross-project, we added a two-layer NN which applies Softmax
activation on the top of the neural network. The classifier takes the mapped instances as
training data and generates a class probability as output. We used two layers of the neural
network, which are the input layer and the LeakyReLU layer [15]. Using this classifier, we
classified our results into Class 0, Class 1, and Class 2. We also took each of the projects as
a source and target and evaluated their performance, i.e., we first took Ant as the target
and all others as a source and checked the accuracies one by one. We repeated the steps by
changing the target every time and by taking the rest of the projects as the source.

3.6. Model Tuning (Step 6)

We fine-tuned our model to check our results on different architectural settings. Fine-
tuning of the model includes the adjustment of weights, epochs, and other parameters. By
adjusting these parameters, we calculated the errors between the last output layer and the
actual target layer. Fine-tuning our model helped us to identify the settings with which our
model performs the best.

3.7. Research Methodology

This section describes the detailed facts of our study. All the sections for both the
research questions remained the same except for independent variables and design. The
content is discussed in detail.

3.7.1. Context

The context of our research is cross-project defect prediction. We predicted the defects
in cross-project using the neural network layer.

3.7.2. Data Collection

The dataset consists of numeric and statistical data, so our research used quantitative
research methods to collect data, as quantitative research methods focus on numbers and
statistics. We used the numeric datasets of different projects of the PROMISE repository as
input to our approach for training our model. In our research, we normalized the datasets
before training our model (e.g., removing noise, and class imbalance issues and covering
the distribution gap between source and target projects).

3.7.3. Research Type

The research type of our approach is explanatory. The objective of explanatory research
is to explain the causes and consequences of a well-defined problem. Cross-project defect
prediction is a well-defined problem. We found the defect prediction accuracy using hybrid
feature selection and layers of neural network, to which SoftMax activation layer was
applied as a classifier.

3.7.4. Research Method

Our research is based on an experimental research method to manipulate and control
variables in order to determine cause and effect between variables for prediction accuracy
and authenticity. Our research method consists of the following sub-sections.

e Perspective

The perspective of our experiment is the earlier defect prediction based on already
developed non-defective projects. Through our experiment, we predicted the defects earlier
by training our model using trained source projects and then testing our trained model in
the target projects.

e Purpose

Appl. Sci. 2022,12,12167

12 of 20

The purpose of our experiment is to evaluate the impact of optimal feature selection
through hybrid feature selection in neural networks for cross-project defect prediction,
and to achieve higher defect prediction accuracy by getting optimal features through
hybrid feature selection after normalizing data by removing noise, solving class imbal-
ance issues, and covering the distribution gap between source and target projects of the
PROMISE Repository.

e Object of study

We set projects of the PROMISE Repository as source and target projects which are the
objects of the study.

e Dependent variables
Our research has accuracy (AUC) as the dependent variable.
e Statistical Analysis

Our research will use the Wilcoxon test for cross-project defect prediction authenticity
as statistical analysis.

e Independent variables for RQ1

Our research has NN as a manipulative independent variable.
e Design for RQ1

Our research design is IF1T (1 factor 1 treatment).

Factor- Design Method
Treatment

1. NN

3.8. Research Question
According to our literature review, research summary, and research gap, we addressed
the following questions in our research paper:

RQ1: What is the impact of hybrid feature selection in multi-class for the cross-project defect
prediction accuracy of the PROMISE repository?

Null Hypothesis (HO0): Hybrid feature selection has no impact on multi-class in predicting
cross-project defect prediction accuracy of the PROMISE repository.

Alternate Hypothesis (H1): Hybrid feature selection has an impact on multi-class in predicting
cross-project defect prediction accuracy of the PROMISE repository.

4. Result and Analysis

In this section, we will answer our research question and will also analyze our results.
The research question addressed is as follows:

4.1. Hyper-Parameter Tuning

We fine-tuned hyper-parameters by adjusting our learning rate, epochs, and neural
network layers to get the optimal hyper-parametric settings for defect prediction. De-
tails are:

4.1.1. Learning Rate

We took Ant as the target project and Log4j as the source project to see the impact
of fine-tuning on learning rate. We performed the same experiment on a learning rate of
0.1, 0.01, and 0.001. The Figures 10-12 below show the visualization of results for each
learning rate.

Appl. Sci. 2022,12,12167

13 of 20

Training and validation accuracy

ol . .

® Training accuracy
— Valdation accuracy

4 20 L] 60 80 100

Learning rate 0.1
AUC Measure: 78.32%

Figure 10. Graphical representation of model at learning rate 0.1.

Training and validation accuracy

o8

o7

0.6

0s ® Training accuracy
— Validation accuracy

0 20 «© 60 80 100

Learning rate 0.01
AUC Measure: 86.94%

Figure 11. Graphical representation of model at learning rate 0.01.

Training and validation accuracy

081

074

064

@ Training accuracy
— validation accuracy

054
] 20 0 60 80 100

Learning rate 0.001
AUC Measure: 98.31%

Figure 12. Graphical representation of model at learning rate 0.001.

From the above visualization in Figures 10-12, it is clear that the optimized learning
rate for the project is 0.01.

4.1.2. Epochs

To set the epochs for the experiment, we took Ant as the target project and Log4;j as the
source project to see the impact of fine-tuning epochs. We performed the same experiment
on epochs 30, 100, and 200. The Figures 13-15 below show the visualization of results for
each of the epochs.

From the above visualization in Figures 13-15, it is clear that the set of epochs for the
project should be 100, so we set 100 epochs for all the projects throughout the experiment
except the log4j and Ivy. For Log4j as the target and all others as the source, epochs vary

Appl. Sci. 2022,12,12167 14 of 20

from 200-500. Similarly, for Ivy as the target project, epochs for every other source project
vary from 300-500 due to having less data for training.

Training and validation accuracy

10“.....
ee*

® Trainin 9 accuracy
—— Validation accuracy

Epochs 30
AUC Measure: 87.99%

Figure 13. Graphical representation of model at Epochs 30.

Training and validation accuracy

@ Training accuracy
—— Validation accuracy

[20 40 0 80 100

Epochs 100
AUC Measure: 98.31%

Figure 14. Graphical representation of model at Epochs 100.

Training and validation accuracy

® Training accuracy

Epochs 200
AUC Measure: 85.63%

Figure 15. Graphical representation of model at Epochs 30.

4.1.3. Neural Network Layers

We took Ant as the target project and Log4j as the source project to see the impact
of adding dense layers to our architecture. We performed the same experiment on dense
layers at 16, 32, and 64. The Figures 16-18 below show the visualization of results for each
of the dense layer settings.

From the above visualization in Figures 1618, it is clear that the optimized dense
layers for the project are 32, so we set dense layers as 32 for all the projects throughout
the experiment.

Appl. Sci. 2022,12,12167

15 of 20

s

07

06

05

04

Training and validation accuracy

@ Taining accuracy
— Validation accuracy

20 © 60 80 100

Dense Layer 16
AUC Measure: 94.80%

Figure 16. Graphical representation of model with Dense Layer 16.

Training and validation accuracy

09

os

or

06

os

® Training accuracy
—— validation accuracy

0 20 0 60 80 100

Dense layer 32
AUC Measure: 98.31%

Figure 17. Graphical representation of model with Dense Layer 32.

Training and validation accuracy

® Training accuracy
—— Validation accuracy

o 20 « 60 80 100

Dense layer 64
AUC Measure: 91.93%

Figure 18. Graphical representation of model with Dense Layer 64.

4.2. Experimental Configuration

Experimental configurations of our experiment were as follows:

Batch Size: 64

Epochs: We set the epochs for almost every project as 100 but for a smaller number of
training datasets. We also set epochs to be 200 or 300.

Optimizer: Adam (learning rate = 0.001)

Activation Function: SoftMax

Hybrid feature selection method and neural network model architecture is shown in
below Figure 19

Appl. Sci. 2022, 12, 12167

16 of 20

Model: “"sequential”

Layer (type) Output Shape

leaky re_lu (LeakyRelU)

flatten (Flatten)
dense (Dense)
Total params: 48

Trainable params: 48
Non-trainable params: @

Figure 19. Experimental configuration of our model.

In this study, the number of epochs was set to 100, except for some of the projects
with fewer data issues, and the time cost was less than 60 s for every target project which
was run.

4.3. Results and Analysis

In this section, we will answer our research question and will also analyze our results.
The research question addressed was as follows:

RQ1: What is the impact of hybrid feature selection in multi-class for the cross-project defect
prediction accuracy of the PROMISE repository?

To answer this question in our research, we performed a controlled experiment on
open-source projects of the PROMISE repository and evaluated the results in terms of AUC
measure. We first normalized the dataset by removing noise, covering the distribution gap,
and solving the class imbalance issue. The PROMISE repository consists of 28 datasets
of many versions of 11 different projects. We combined all the versions of each of the
datasets as one project to increase the dataset, in order to improve the training of our model.
We then used the hybrid feature selection method to obtain the optimal feature subset
that contributes the most to defect prediction. After obtaining the optimal features, we
evaluated the accuracy of our model in terms of AUC measure by using two layered neural
networks with a SoftMax Activation layer on the top as a classifier to classify the results in
class0, classl, and class2.

We have displayed our results for each of the target and source projects of the reposi-
tory and evaluate the results in AUC measure as follows in Table 4:

Table 4. Results of Experiment in AUC Measure for each target project.

AUC Measure
Source

Target Ant Camel Jedit Lucene Poi Log4j Velocity Synapse Ivy Xalan Xerces
Ant-1.3 - 6291% 62.66% 63.07% 65.32% 60.47% 53.50% = 62.74% 66.80% 66.60% 61.76%
Ant-1.4 - 50.68% 70.76% 73.83% = 69.82% 60.27% = 64.39% 71.46% 69.65% 66.23% 52.89%
Ant-1.5 - 77.46% 75.37% 67.92% 7548% 69.02% 34.68% 6647% 65.80% 71.31% 78.16%
Ant-1.7 - 76.78% 78.60% 76.68% 72.54% = 60.42% 63.03% 84.77% 79.42% 83.23% 72.83%
Camel-1.2 70.81% - 66.78% 75.96% 68.92% 70.80% 52.87% 70.46% 66.63% 62.28% 59.19%
Camel-14 80.96% - 69.12% 77.40% 74.60% 67.37% 6321% 71.13% 7548% 69.26% 60.98%
Camel-1.6 78.86% - 74.52% 72.80% 69.96% 64.63% 57.64% 69.05% 76.62% 70.00% 72.55%
Ivy-2.0 84.08% 72.62% 78.26% 7629% 75.13% 64.12% = 62.46% 76.02% - 77.92% 74.62%
Jedit-3.2 83.90% 74.48% - 71.33% 76.68% 62.43% 59.35% 79.11% 81.10% 72.01% 69.81%

Appl. Sci. 2022,12,12167 17 of 20
Table 4. Cont.
AUC Measure
Source

Target Ant Camel Jedit Lucene Poi Log4j Velocity Synapse Ivy Xalan Xerces
Jedit-4.0 86.05% 77.30% - 76.90% 6495% 62.33% 65.40% 84.83% 82.67% 64.50% 53.62%
Jedit-4.1 80.75% 71.28% - 66.51% 65.26% 58.24% 48.99% 71.39% 82.65% 77.54% 58.00%
Log4j-1.0 80.68% 76.86% 73.98% 7523% = 71.62% - 66.16% 64.75% 73.01% 65.80% 60.53%
Log4j-1.1 86.09% 77.48% 7536% 7890% 69.61% - 62.16% 72.47% 58.60% 71.52% 60.10%
Log4j-1.2 61.99% 66.25% 58.96% 65.82% 53.89% - 50.55% 59.68% 49.38% 56.86% 48.24%
Lucene-2.0 74.84% 69.11% 63.11% - 66.82% 56.62% 57.70% 71.58% = 75.04% 65.88% 54.75%
Lucene-22 65.98% 61.37% 66.38% - 66.24% 61.59% 55.50% 65.02% 66.61% 60.47% 55.59%
Lucene-24 6831% 6491% 66.50% - 62.42% 66.92% 5811% 63.65% 62.04% 62.21% 53.58%
Synapse-1.0 88.08% 65.65% 64.03% 65.82% 78.39% 49.82% 59.50% - 77.69% 75.36% 49.59%
Synapse-1.1 ~ 74.45% 71.04% 74.07% 64.73% 69.38% 5749% 57.98% - 73.42% 62.96% 63.15%
Synapse-1.2 72.65% 65.63% 61.25% 62.15% 65.05% 59.05% 61.39% - 72.36% 66.82% 58.91%
Velocity-1.4 61.64% 53.99% 59.91% 63.86% 61.13% 64.92% - 66.89% 63.72% 59.26% 58.75%
Velocity-1.5 68.99% 60.81% 77.47% 7342% 68.40% 61.90% - 71.65% 6547% 64.60% 64.43%
Velocity-1.6 56.93% 55.34% 57.90% 58.05% 63.65% 48.25% - 65.30% 63.87% 51.56% 51.45%
Xalan-2.4 72.63% 69.76% 69.86% 65.40% 67.00% 57.75% 56.21% = 69.51% 76.31% - 64.72%
Xalan-2.5 79.00% 7857% 74.75% 69.07% 73.39% 58.82% 5521% 74.44% 78.51% - 60.88%
Xalan-2.6 77.25% 70.32% 71.56% = 68.36% 64.83% 59.30% 51.37% 73.86% 76.62% - 67.41%

Xerces-1.2 63.35% 64.73% 60.31% 55.35% 60.20% 54.14% 53.95% 65.14% 66.32% 54.75% -

Xerces-14 63.71% 64.76% 64.55% 6391% 61.74% 62.79% 50.11% 59.23% 60.14% 64.96% -

The above Table 4 show the results of our experiment, which we established by finding
the impact of the NN classifier along with the SoftMax layer. The SoftMax layer performs
the best when it comes to multi-class datasets because of its output probability range, which
is from 0 to 1, and the sum of all probabilities is equal to 1.

Using EDA, we established that the dataset had 63 output classes in which the majority
of the instances were 0 and 1 classes. Instances greater than 1 were so few in number that
we put them all in class 2. The reason was that to have the maximum amount of data
for training our model, we used CTGAN to generate synthetic data. CTGAN trains the
classifier based on several instances and then generates the synthetic data on the pattern
of already existing classes. CTGAN learns the pattern and generates data where greater
number of data is required. All the classes above 1 were fewer in number and CTGAN
finds it difficult to generate the synthetic data with less data. To overcome this issue, we
combined all the classes above 1 in a single class 2.

To experiment, we combined all the versions of the same dataset as one project and
treated it as the source. We then tested one source project against all the versions of
28 projects from the promise repository. We combined the versions to get a large range
of data so that we could efficiently train our classifier. By combining the versions of one
project, we also obtained the maximum range of the project to train our classifier.

Table 4 shows the results we obtained from our experiment. We have highlighted the
highest accuracy of one project in bold in every row. In Table 4, where source and target are
same, we put dashes at their intersection point because we aren’t addressing the issue of
WPDP. As our experimental domain is cross-project defect prediction, we did not predict
the results for the same target projects.

From our experimental results, it is evident that through hybrid feature selection
we obtained the optimal set of features. By combining the SoftMax layer with the NN
layer, better prediction accuracies were achieved for a multi-class dataset in terms of
AUC measure for the PROMISE repository, which supports our alternative hypothesis,

Appl. Sci. 2022,12,12167

18 of 20

i.e., “Hybrid feature selection selects optimal feature sets for multi-class in predicting
cross-project defect prediction accuracy of PROMISE repository”.

4.4. Research Validation

We validated our results with two statistical tests i.e., the Wilcoxon Test. Details are
as follows:

4.4.1. Wilcoxon Test

“The Wilcoxon signed ranks test is a nonparametric statistical procedure for comparing
two samples that are paired, or related. The parametric equivalent to the Wilcoxon signed
ranks test goes by names such as the student’s t-test, t-test for matched pairs, f-test for
paired samples, or {-test for dependent samples”.

4.4.2. Hypothesis Assumption
The following are the assumptions for the hypothesis:

e Observations in each sample are independent and identically distributed (iid).
e Observations in each sample can be ranked.

4.4.3. Acceptance Criteria

The significance level, based on the information provided, is alpha = 0.05. If the
p-value is greater than alpha, then HO is accepted, otherwise it is rejected.

4.4.4. Test Statistics

Table 5 shows the test results using the Wilcoxon test. We calculated the value of p
by passing two groups in the Wilcoxon test. We considered Ant as a target project and
observed the accuracy with other source projects i.e., Ivy, Camel, Synapse, Velocity, Lucene,
Poi, Xerces, Xalan, and Log4j. One of the groups of the observation contained values of
measure without applying hybrid feature selection and another observation contained
values of the measure after applying hybrid feature selection.

Table 5. Test statistics of Wilcoxon test.

Test Statistics

p-Value Accepted Hypothesis
Wilcoxon Test 0.0039 Hi1

4.4.5. Analysis of Validation Test

The above Table 5 shows that our alternative hypothesis was approved, which clearly
shows that our approach of hybrid feature selection in neural networks does have an impact
on the cross-project defect prediction.

5. Threat to Validity

During an empirical study, one should be aware of the potential threats to the validity
of the obtained results and derived conclusions. The potential threats to the validity
identified for this study are divided into three categories, namely: internal, external, and
construct validity.

5.1. Internal Validity

We implemented the baselines by carefully following the base papers [1,2]. These
compared related works did not provide the source codes of their works, so we did not
work on the source code of the dataset. We worked on the static features of the dataset.

Appl. Sci. 2022,12,12167 19 of 20

5.2. External Validity

PROMISE datasets used for validation are open-source software project data. If
our proposed approach were built on closed software projects developed under different
environments, it might produce better /worse performance.

5.3. Construct Validity

We mainly used AUC-measure, which has been widely used to evaluate the effective-
ness of defect prediction models, to evaluate the prediction performance. On the other
hand, the experimental datasets were collected by Jureczko et al., who cautioned that there
could be some mistakes in non-defective labels as not all the defects had been found. This
may be a potential threat to defect prediction model training and evaluation [16].

6. Conclusions

Using EDA, we established that the PROMISE dataset was multi-class, which has noise,
distribution gap, and class imbalance issues, as clearly shown above in Figures 2,4, 5, 7 and §,
and Table 3. From our experimental results, it is evident that after removing noise, covering
the distribution gap and balancing the classes, and selecting optimal features set using the
hybrid feature selection technique, we can obtain better results. We used the NN classifier
along with the Softmax layer to predict the accuracy of our experiment as the SoftMax layer
has proved to perform better for multi-class classification. We predicted the accuracy for
all 28 versions of all 11 projects in terms of AUC measure, with an average of 75.96%. We
validated our results using the Wilcoxon test. Our experimental results clearly illustrate
that CPDP can help to predict the defects in software modules and will help in the early
prediction of defects.

Author Contributions: Conceptualization, A.J. and R.B.F,; Data curation, A.J. and R.B.F.; Formal
analysis, A.J. and R.B.F,; Funding acquisition, S.A. and M.M.; Investigation, A.J.,, RB.F, S.A. and
M.M.; Methodology, A.].; Project administration, R.B.E, S.A. and M.M.; Resources, A J.; Software, A.J.;
Supervision, R.B.E,; Validation, A J., R.B.E,, S.A. and M.M,; Visualization, A.]. and R.B.F,; Writing—
original draft, A.].; Writing—review & editing, A.J. and R.B.E. All authors have read and agreed to
the published version of the manuscript.

Funding: This research paper is funded by Deanship of Scientific Research at King Saud University.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to extend their sincere appreciation to the Deanship of
Scientific Research at King Saud University for its funding this Research—Group No (RG-1436-039).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, Y; Jing, X.Y.,; Wu, E; Li, J.; Xin, D.; Chen, H.; Sun, Y. Adversarial Learning for Cross-Project Semi-Supervised Defect
Prediction. IEEE Access 2020, 8, 32674-32687. [CrossRef]

2. Hosseini, S.; Turhan, B.; Méntyl, M. A benchmark study on the effectiveness of search-based data selection and feature selection
for cross-project defect prediction. Inf. Softw. Technol. 2018, 95, 296-312. [CrossRef]

3. Yu, Q;Qian,], Jiang, S.; Wu, Z.; Zhang, G. An Empirical Study on the Effectiveness of Feature Selection for Cross Project Defect
Prediction. IEEE Access 2019, 7, 35710-35718. [CrossRef]

4. Kumar, R.P; Varma, 5.D.G. A novel multi-level based cross defect prediction model for multiple software defect databases. Int. J.
Pure Appl. Math. 2017, 117, 293-301.

5. Ryu, D.; Jang,].-L; Baik, J. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction. J. Comput. Sci.
Technol. 2015, 30, 969-980. [CrossRef]

6. Algahtani, H.; Kavakli-Thorne, M.; Kumar, G. Applications of Generative Adversarial Networks (GANs): An Updated Review.
Arch. Comput. Methods Eng. 2021, 28, 525-552. [CrossRef]

7. Xu, L.; Veeramachaneni, K. Synthesizing tabular data using GAN. arXiv 2018, arXiv:1811.11264. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2974527
http://doi.org/10.1016/j.infsof.2017.06.004
http://doi.org/10.1109/ACCESS.2019.2895614
http://doi.org/10.1007/s11390-015-1575-5
http://doi.org/10.1007/s11831-019-09388-y
http://doi.org/10.48550/arXiv.1811.11264

Appl. Sci. 2022,12,12167 20 0f 20

10.

11.

12.

13.

14.

15.

16.

Park, N.; Mohammadi, M.; Gorde, K. Data Synthesis based on Generative Adversarial Networks. Proc. VLDB Endow. 2018,
11, 1071-1083. [CrossRef]

Quintana, M.; Miller, C. Towards Class-Balancing Human Comfort Datasets with GANs. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13-14
November 2019; pp. 391-392. [CrossRef]

Khoshgoftaar, M.T.; Gao, K.; Seliya, N. Attribute Selection and Imbalanced Data: Problems in Software Defect Prediction. In
Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 27-29 October 2010;
Volume 1, pp. 137-144. [CrossRef]

Bejjanki, K.K.; Gyani,].; Gugulothu, N. Class Imbalance Reduction (CIR): A Novel Approach to Software Defect Prediction in the
Presence of Class Imbalance. Symmetry 2020, 12, 407. [CrossRef]

Sayyad Shirabad, J.; Menzies, T.]. PROMISE Software Engineering Repository. Available online: http:/ /promise.site.uottawa.ca/
SERepository (accessed on 1 January 2022).

Rodriguez, D.; Herraiz, I.; Harrison, R. On Software Engineering Repositories and Their Open Problems. In Proceedings of
the First International Workshop on Realizing Al Synergies in Software Engineering (RAISE), Zurich, Switzerland, 5 June 2012;
pp. 52-56. [CrossRef]

Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches for Energy Load
Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions. Energies 2018,
11, 596. [CrossRef]

Shepperd, M.; Bowes, D.; Hall, T. The Use of Machine Learning in Software Defect Prediction. IEEE Trans. Softw. Eng. 2014,
40, 603-616. [CrossRef]

Menzies, T.; Milton, Z.; Turhan, B.; Cukic, B.; Jiang, Y.; Bener, A. Defect prediction from static code features current results,
limitations, new approaches. Autom. Softw. Eng. 2010, 17, 375-407. [CrossRef]

http://doi.org/10.14778/3231751.3231757
http://doi.org/10.1145/3360322.3361016
http://doi.org/10.1109/ICTAI.2010.27
http://doi.org/10.3390/sym12030407
http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository
http://doi.org/10.1109/RAISE.2012.6227971
http://doi.org/10.3390/en11030596
http://doi.org/10.1109/TSE.2014.2322358
http://doi.org/10.1007/s10515-010-0069-5

	Introduction
	Literature Review
	Proposed Methodology
	Exploratory Data Analysis (Step 1)
	Data Pre-Processing (Step 2)
	Noise
	Distribution Gap
	Class Imbalance

	Hybrid Feature Selection (Step 3)
	Dataset Division (Step 4)
	Classification (Step 5)
	Model Tuning (Step 6)
	Research Methodology
	Context
	Data Collection
	Research Type
	Research Method

	Research Question

	Result and Analysis
	Hyper-Parameter Tuning
	Learning Rate
	Epochs
	Neural Network Layers

	Experimental Configuration
	Results and Analysis
	Research Validation
	Wilcoxon Test
	Hypothesis Assumption
	Acceptance Criteria
	Test Statistics
	Analysis of Validation Test

	Threat to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions
	References

