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Abstract: In this paper, a multivariable linear integral feedback regulation controller for a microgrid
was proposed. Considering that the nominal structure model of the inverter could not effectively
and in a timely manner deal with the impact of filter parameter uncertainty, there were changes in
output power quality among different generation environments. To solve the constraints imposed by
uncertain factors on the system, we formulated the following scheme. First, based on the analysis of
the asymptotic stability and power characteristics of the nominal model, we added the microgrid
filter parameter uncertainty to this model. Secondly, under the action of the bounded range, the
performance characteristics of the optimal cost were analyzed, adjusted, and optimized. The controller
adjusted parameters to ensure the stable operation of the microgrid system, and to achieve the voltage
stability regulation and output power balance. Finally, we built a test system to verify the feasibility
and effectiveness of the proposed linear integral controller in MATLAB/Simulink.

Keywords: linear integral regulation controller; nominal model; parameter uncertainty; bounded
range analysis; output power balance

1. Introduction

In recent years, with the rise of renewable energy Systems (RESs) and distributed
generation (DG), advances in power converters and digital control technology have made
it particularly important to integrate RESs into modern power systems. It is feasible to use
distributed generation to provide a continuous power supply for key loads after power
failure in large power grids and main power grids [1,2]. In order to reduce the pollution
and waste of the power grid, the power grid connected to the power system through an
inverter or converter should have a high output power factor and a low output current
distortion [1]. At first, an inverter or a converter with a high power density was designed
to connect the DG units of RESs to the large public power grid [3]. However, because of
the excessive switching loss and the upper limit of the switching equipment, the output
of power quality was reduced [4]; we used a compact high-order filter to make up for
this disadvantage [5]. Compared with a traditional inverter connection mode, an inverter
with a filter has the following advantages: a small inductance size, better attenuation of
high-frequency harmonics, and lower power and current ripple. Similarly, the use of filters
brought new challenges to the control methods and power grid structure [6]. For example,
because of the uncertainty and interference problems such as frequency voltage, control loop
delay, and structural nonlinearity, standard sinusoidal current had to be realized under the
conditions of grid voltage harmonics and non–ideal circuit components to avoid resonance.
This ensured that the system’s stable and robust performance was ascertained [7]. At
present, although there is no comprehensive method to solve these emerging challenges,
various approaches have been proposed to solve them in a collaborative way.

Smart microgrids combine communication technology with control technology to
achieve smarter, more efficient and robust large power networks. The first step in the
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design process of a smart microgrid is to establish a simulation nominal model under ideal
conditions [6]. Using inherent stability analysis methods, such as eigenvalue analysis and
singular value analysis, a controller is designed to verify the accuracy and robustness of
the microgrid system model. However, the traditional synchronous reference frame phase-
locked loop (SRF-PLL) method could lead to frequency fluctuations and degrade the system
performance. To improve the power quality and recovery ability of the power injected into
the grid in a distortion environment, frequency, voltage, and current deviation problems
are studied as a key part of power system research. The authors [8] used a moving average
filter (MAF) to eliminate the frequency fluctuation of the PLL, and to compensate for the
harmonic distortion caused by the power grid voltage distortion, but the control effect on
the current was small and the algorithm of the MAF was relatively complex. The authors [9]
proposed a method for the stability domain in island and grid connection modes to optimize
and calculate the maximum limit value of the stability domain and to achieve the robust
stability of the system. However, this method was only suitable for calculating two known
uncertain parameters. The work of [10] studied the multi-loop control scheme, which
combined a repetitive controller (RC), resonant controller, and a grid voltage feed-forward
controller. This work achieved the seamless conversion between the grid-connected and
island modes and made the current stable, eliminating the harmonic distortion of voltage
and frequency change. However, the requirement on the device level was high; it was
limited to small electronic devices and practical projects. For current harmonics in [11],
a design RC could compensate for the total harmonic distortion (THD) and improve the
dynamic response. However, to precisely track the fundamental frequency and harmonics
was very difficult, which limited the bandwidth of the controller and existing harmonics in
order to eliminate the selected harmonic components. The authors of [12] used the harmony
search (HS) algorithm based on H-infinity to optimize frequency and voltage, and to make
the system more robust and stable. However, the algorithm does not consider the impact of
time delay on the system failure or load change. The work in [13] can compensate for the
total harmonic distortion (THD), but due to the high gain at the fundamental frequency and
harmonic frequency, the zero steady-state tracking error was linearly eliminated. In [14]
the authors designed harmonic compensators and configured them in a series with the
tracking regulator of single-phase grid-connected inverters. This effectively attenuated the
voltage distortion and accurately synchronized the tracking. Thus, the high gain at the
fundamental frequency and harmonic frequency, as well as the zero steady-state tracking
error were eliminated. However, the sensitivity of the disturbance to power quality and the
uncertainties of the filter parameters were not considered. The authors of [15], proposed an
adaptive control scheme that used a highly accurate track with existing inherent resonance
and voltage harmonic distortion and gave the power grid a better, more robust performance.
Smart microgrid systems need to consider more dynamic, complex external interference
and uncertain input factors to be able to respond to the needs of practical engineering.
Therefore, the improvement of power quality under nominal conditions has limitations. For
example, the load frequency quadratic control method in [16] that is based on an unknown
stochastic input observer and linear quadratic regulator (LQR), not only effectively solved
the uncertainties, such as load variation and measurement noise, but also produced better
robustness. Although the research on filter-based powers system is convenient for solving a
lot of problems, the filter is attached with complex conjugate poles and resonance damping
requirements, which makes the power system very sensitive to parameter uncertainty and
the design of its control strategy more complex. In [17], the authors proposed a virtual
inductance method to improve the stability of the microgrid under a constant power load.
However, whether the control strategy can be extended to the AC/DC hybrid microgrid
was not considered. The work of [18] considered distributed quadratic consistency and
fault-tolerant control to compensate for the frequency and voltage errors and to achieve
accurate power distribution. However, the influence of the involved load change or fault
was ignored. The author [19] designed an efficient and reliable intelligent control strategy
for the secondary reconfigurable inverter for the off grid microgrid and diagnosed the
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fault. In [2], the authors proposed a robust nested loop control scheme, with different
load and filter parameter uncertainties that enabled two types of modes to operate stably;
however, this required an accurate mathematical model. In [20], the authors designed
a centralized robust controller through a suboptimal solution of a convex optimization
problem to resolve the influence of parameter uncertainty and unknown disturbances.
However, there was no bounded analysis of parameters, and the time delay was not
considered. In [21], a new dynamic sliding mode control (DSMC) solved the shortcomings
of traditional control state references and sliding coefficient calculation. This compensated
for the impact of time delay and uncertainty in the system, so the system had robustness
and stability. However, the authors did not consider the capacitor voltage variation of
the load itself. The authors of [22], based on droop control, designed a sliding mode
control method to overcome the difference caused by feedback line impedance, reduce
the error of voltage and reactive power, and improve the accuracy of data adjustment.
In [23], the authors proposed that the stabilization algorithm was bound to deal with a
class of boundless uncertainties, but the algorithm was too simple and not applicable to
various types of uncertainties. In [24,25], robust state feedback control and steady-state
robust state estimation for uncertain linear systems were designed by the authors to refine
the types of uncertainties and to achieve better cost estimates, but the non-linear systems
were not considered. The work of [26], a grid connected inverter control technology based
on dq transformation, was introduced, which reduced the cost and the change of power
harmonics, ensured the power quality, and made the power output stable; but it did not
consider the impacts of the LCL filter and inverter structures on the system oscillation
and output distortion. In [27], the authors designed an event triggered robust controller
to solve the problem of frequency instability caused by uncertainty, and used system
interference attenuation to reduce the communication burden. However, this method
needed an accurate energy storage device model and did not consider the influence of the
transmission delay. The work of [28], the distributed self-triggering secondary control, was
proposed to solve the impact of communication interference and realize voltage recovery
and reactive power sharing. The work of [29] achieved the bounded stability of frequency
and voltage after an uncertain load change. However, it lacked the impact of the sensitivity
of the hardware—in—the loop (HIL) on the boundary. In [30], the authors proposed online
primary regulation under island to reduce power loss, optimize operation characteristics,
and improve system reliability. However, the parameter sensitivity of the HIL was not
considered. In [31], the authors investigated robust optimal control for a class of nonlinear
quadratic systems with norm-bounded parameter uncertainties and disturbances. The
work solved and suppressed the influence of disturbances and achieved system stability.
However, this method had great limitations as it only realized the system in the local
stability of the equilibrium point it did not apply to the actual engineering. Therefore,
in [32], a newly defined LMI structure was introduced, which studied the design of the
controller and observer for uncertain positive discrete systems, so that the ideal model
could respond to actual engineering requirements and achieve secondary stability control.

As mentioned above, the intermittency of distributed energy affects the output of
the intelligent microgrid inverter, leading to changes in power quality. The inverter with
filter has a better control output effect than the traditional inverter and can respond to
the demand of the power system in real time. However, because the resonance damping
and conjugate poles of the filter are sensitive to parameters, parameter uncertainty will
interfere with the stable operation of the microgrid system, resulting in voltage distortion
and power imbalance. To better meet the needs of practical projects, the main contribution
of this paper is to design a moving average phase-locked loop based on the nominal model
to replace the traditional phase-locked loop to limit frequency fluctuations. Secondly, when
the filter parameters change, based on the guaranteed cost control theory and method, this
kind of uncertainty problem is analyzed in a bounded range to achieve a low-cost filter.
Finally, the linear integral quadratic regulation (LQR) state feedback controller is used to
optimize the influence of uncertain parameters on the system model, suppress the voltage
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harmonic distortion, ensure that the system is in a certain progressive stable state, and
ensure the power output balance.

The paper is arranged as follows: Section 2 describes the problem and analyzes the
model and the bounded range of parameter uncertainty according to assumptions. Section 3
describes a linear integral controller that is designed to analyze the stability and verify the
hypothesis; Section 4 addresses the optimization and adjustment system parameters that
verify system reliability. Section 5 summarizes the conclusions and prospects for future work.

2. Problem Description and Model Analysis

This section discusses the system operation state under parameter uncertainty based
on the nominal model. First, the limitations of the nominal model are discussed. Secondly,
state space modeling is carried out. Finally, combined with relevant research, the system is
assumed to be stable and the bounded uncertainty range is provided.

2.1. A Configuration of PLL

The peer-to-peer control strategy in island mode in the intelligent micro network is
necessary as shown in Figure 1, which means that micro power supplies in MG have the
same control state. First, each micro power supply performs local control according to the
voltage and frequency of the access point. Plug and play are realized and automatized
adjustment of voltage and frequency takes place, eliminating communication, improving
the reliability of MG, and reducing costs.
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However, this control strategy has certain limitations that prevent it from eliminating
the harmonic distortion and frequency change in voltage, current, and power characteristics
of the distributed generator and power grid to some extent and ensuring the effectiveness
and feasibility of model verification.

An accurate estimation of power grid frequency was a key step, so moving the average
filter (MAF) is designed to eliminate the frequency fluctuation in phase-locked loop in the
synchronous reference frame as follow Figure 2. The MAF transfer function is:

GMAF(z) =
1
N
•1− z−N

1− z−1 (1)

where N = Tw/Ts is the number of samples within the window length of MAF, and Tw is
the window length of MAF.

As the uncertainty of three-phase voltage is mostly odd harmonics, and even harmon-
ics are generated in SRF, half of the base period was selected as the window length. The
number of samples is N = T/2Ts, where t is the fundamental frequency period of grid
voltage [15]. The state space equation of the integral control term is as follows:

z0(k + 1) = Apz0(k) + Bpε(k) (2)
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where Ap = I2×2, Bp = Ts × I2×2, z0(k + 1) is the state vector of the integral control term,

ε(k) =

[
i∗2q(k)
i∗2d(k)

]
− Cdxs(k) is the current error vector, i∗2(k) is the reference vector.Appl. Sci. 2022, 12, 12418 5 of 16 
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Figure 2. Configuration of the MAF-PLL scheme. 
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The improved nominal model was analyzed. First, a unit was analyzed that as shown
in Figure 3, obtain the stable changes of frequency and voltage of the power grid unit.
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The parameters of connecting between the DG unit and the main grid are as follows:
According to Table 1, two DG devices were used in parallel to obtain stable voltage

and power as shown in Figures 4 and 5.

Table 1. System parameters.

Description Symbol Value

Converter side inductance of filter L1 1.83 mH
Converter side resistance of filter R1 0.52 mΩ

Grid side inductance of filter L2 1.75 mH
Grid side resistance of filter R2 12 mΩ
Damping resistance of filter R f 0.6 Ω

Capacitance of filter C f 270 µF

2.2. State Space Model

Compared with the application in practical control engineering, the uncertainty of
system inductance and capacitance inductance (LCL) were studied. It was proposed that
adding components with impedance or parameters to the filter instead of uncertain factors
would change the characteristics of the nominal system.
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For the accurate modeling and performance analysis of an uncertain intelligent mi-
crogrid system. Combined with Figure 6 and the specific filter uncertain parameters were
given to establish the state-space model of the inverter in the synchronous coordinate
system, as shown below:

di1,d

dt
=

1
L1

(
vd −

(
R1 + R f

)
i1,d ++ωL1i1,q − v f ,d

)
(3)

di1,q

dt
=

1
L1

(
vq −

(
R1 + R f

)
i1,q + ωL1i1,d − v f ,q

)
(4)

di2,d

dt
=

1
L2

(
v f + R f i1,d −

(
R2 + R f

)
i2,q + ωLtoti2,q

)
(5)

di2,q

dt
=

1
L2

(
v f + R f i1,q −

(
R2 + R f

)
i2,q −ωLtoti2,d

)
(6)

dv f ,d

dt
=

1
C f

(
i1,d − i2,d + ωC f v f ,q

)
(7)

dv f ,q

dt
=

1
C f

(
i1,q − i2,q −ωC f v f ,d

)
(8)

where L1, R1, L2, R2 are the impedance, C f and R f are the capacitance and impedance,
v f ,q, v f ,q are the capacitance vc shunt voltage at both ends, vg,d, vg,q are the grid voltage vg
shunt voltage at both ends, between the microgrid side and the grid side branch current
i1,d, i1,q, i2,d, i2,q, ω is the power system frequency.
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At this time, the continuous time representation of the system can be re represented
by the state-space model of the following formula:{ .

x(t) = A∗(t)x(t) + B1
∗(t)Udq(t) + B2

∗(t)egdq(t)
y(t) = C(t)x(t)

(9)

where xi =
[
v f d v f q i1d i1qi2d i2q

]T
, A∗ = Adq + ∆A, B1

∗ = B1dq + ∆B1,

B2
∗ = B2dq + ∆B2

B1dq =

[
0 0 1/L1
0 0 0

0 0 0
1/L1 0 0

]T

, B2dq =

[
0 0 0
0 0 0

0 1/L2 0
0 0 1/L2

]T

,

Adq =



0 ωc 1/C f 0 −1/C f 0
−ωc 0 0 1/C f 0 −1/C f

−1/L1 0 −
(

R1 + R f

)
/L1 ωc R f /L1 0

0 −1/L1 −ωc −
(

R1 + R f

)
/L1 0 R f /L1

1/L2 0 R f /L2 0 −
(

R2 + R f

)
/L2 ωc

0 1/L2 0 R f /L2 −ωc −
(

R2 + R f

)
/L2


The grid side current was the measured state, and the inverter side current and

capacitor voltage were the unmeasured parts of the state vector. To facilitate the use of
data acquisition equipment and PWM signal acquisition in the simulation experiment, the
bounded range analysis of parameter uncertainty was conducted.

2.3. Bounded Analysis

In order to achieve dynamic stability and robustness for uncertainty, a class of systems
with norm bounded uncertainties were introduced into the H∞ control theory to ensure
that the closed-loop system was asymptotically stable at the specified H∞ disturbance
attenuation level [20]. But it is difficult to achieve a stable and uncertain optimal cost. So,
for the non-zero term uncertainty, we assume that there is a positive scalar constant and a
certain value limit. Therefore, we define the following:

S =
{

A∗(t), B1
∗(t), B2

∗(t), C(t)
}

(10)

Then, if Θ̂(t) ∈ S, we have that Θ̂(t) = Θ̂ + ∆Θ̂(t), Θ̂ =
(θijmax)+(θijmin)

2 is a time
invariant mean matrix, and θij is a matrix Θ̂ The element with the largest singular value in,
∆Θ̂(t) is a real valued uncertain matrix function.

Assumption 1. When the number of uncertain resistive components or uncertain parameters
are added to the LCL, the islanding system is stable. There is a reasonable stability margin
(‖ (I + E0T)−1‖∞ ≤ 1)established, then the sensitivity of nominal and uncertain perturbation is
not much different, and the uncertainty is expressed in the following structured bounded form.

∆Θ̂(t) =
[
∆A ∆B1

]
= EM

[
Fa Fb

]
(11)
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where: E, Fa, Fb are units of a known real constant, and M is an uncertain perturbation matrix that
can be measured.

Therefore, the system model changes to the following:

.
x(t) = (A + BK + EM(Fa + FbK))x(t) (12)

The cost functions related to uncertain systems are as follows:

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt (13)

Q = QT is a positive semi-definite symmetric matrix, R = RT is a positive definite
symmetric matrix and is controllable for (A, B).

Lemma 1 [2]. For any ε > 0, given the matrices Y, C and D with appropriate dimensions, and Y is a
symmetric matrix, then Y + CDM + DTMTCT < 0. For any M, the following equation is satisfied.

symm(xTPYMCx) ≤ εxTPYYTPx + ε−1xTCTCx ∀x ∈ Rn (14)

Lemma 2 [31]. Considering the system uncertainty (without disturbance), given an admissible set
D and cost function (13), it is assumed that there are some positive ε1, ε2. There is an invariant set
if and only if ε > 0, ε ⊂ Rn, ε ⊃ D, a symmetric positive definite matrix P and a matrix K. We
then set the following formula:

xT{Q + KTRK + symm(P[A− BK] + [A− BK]TP)}x + ε1xTPDDTPx+
ε1
−1xT(E1 − E2K)T(E1 − E2K)x + ε2xTP[In ⊗ (xTD)][In ⊗ (DTx

)
]Px < 0

(15)

Definition 1. If the system has no other interference, the designed state-feedback controller is:
u(t) = Kx(t) to keep the uncertain system stable. Given the cost function (14), an admissible set D
and a positive definite cost matrix P > 0, the following satisfied:

xT
[

Q + KTRK
]
+ 2xT[A + BK + EM(Fa + FbK)]x < 0 (16)

For all admissible uncertainties ∆Θ̂(t) in system (9), if the following conditions are
satisfied, the feedback controller is a quadratic guaranteed cost controller with a related
cost matrix.

The relationship between the above quadratic stability definition and quadratic stabi-
lizability definition is extended to ensure performance.

Theorem 1. Considering the system stability under the assumption, the control law is a quadratic
guaranteed cost control with cost matrix P > 0. Then the closed-loop uncertain system (12) is
quadratic stable at any time under constraints MT(t)M(t) ≤ I. In addition, for all allowable
uncertainties ∆Θ̂(t), the corresponding value of the cost function (13) satisfies the following bound:

J ≤ x0
TPx0 (17)

Proof. The uncertain system performance index (13) satisfies the boundary (17) in the
initial state, and it is proved by Lemmas 1 and 2. Under the constraints MT(t)M(t) ≤ I,
Lyapunov function is considered in combination with the above two lemmas:

V(x) = xT(t)Px(t)
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Then:
.

V(x) = xT(t)(ATP + PA)x(t)
= xT(t)([A + BK + EM(Fa + FbK)]TP + P[A + BK + EM(Fa + FbK)])x(t)
≤ xT{symm(P[A + BK] + [A + BK]TP) + EM(Fa + FbK)}x + ε1xTPDDTPx+

ε1
−1xT(E1 − E2K)T(E1 − E2K)x + ε2xTP[In ⊗ (xTD)][In ⊗ (DTx)]Px

≤ xT{P[A + BK] + [A + BK]TP + EM(Fa + FbK)}x
< −xT(t)(Q + KTRK)x(t)

It can be seen that the Lyapunov derivative is negative definite, then (Q + KTRK) = −I.
As Q and R are positive definite real symmetric matrices, there is a solution P of positive definite
real symmetric matrix, so that the uncertain system (12) tends to be asymptotically stable.

It has been proved that the system is asymptotically stable. Then, when x(∞) = 0,
there are:

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt ≤ V(x(0))−V(x(∞)) = V(x(0)) = x0

TPx0 (18)

From the above conditions, ∆Θ̂(t), the lower and upper bounds can be displayed here
as follows:

− hΘ̂(t) ≤ EM
[
Fa Fb

]
≤ hΘ̂(t), hΘ̂(t) =

(
θijmax

)
−
(
θijmin

)
2

(19)

�

Remark 1. (11) and constraint condition MT(t)M(t) ≤ I are admissible conditions, which are
widely used to represent the parameter uncertainty in the control system. When other disturbances
are not considered, the derivative of the quadratic Lyapunov function along the system trajectory is
in the form of V(x) = xT(t)Px(t) to prove and infer Lemma 2.

Remark 2. In uncertain structure matrices E, Fa, Fb and M, according to the restricted condition
of Lebesque measurable matrix value, the function conforms to the above operation within a certain
bounded range.

3. Controller Design

For uncertain systems, the Riccati equation method for constructing the optimal
quadratic guaranteed cost controller under the Lyapunov function is given. Symmetric
matrix P is a stable Riccati differential equation solution of ATP + PA + PMP + Q = 0.

Lemma 3. For any ε > 0 and any M satisfying Equation (16), then combined with Lemma 1, there
are x ∈ Rn, all of which have the following:

0 ≤ εxTPYYTPx + ε−1xTCTCx− symm
(

xTPYMCx
)

(20)

Theorem 2. Given Q ∈ Rn×n and R ∈ Rn×n, the symmetric matrix satisfies the Riccati equation
and has a constant ε > 0, in combination with references [5,6], the Riccati equation is as follows:(

A + B
(
εR + Fb

TFb
)−1Fb

TFa

)T
P + P

(
A + B

(
εR + Fb

TFb
)−1Fb

TFa

)
+ εPEETP−

εPB
(
εR + Fb

TFb
)−1BTP + 1

ε Fa
T
(

I − Fb
(
εR + Fb

TFb
)−1Fb

T
)

Fa + Q = 0
(21)

With positive definite symmetric solution P, the uncertain system (10) is quadratic stable. Then,
the appropriate stable control rate of the state feedback system is given as:



Appl. Sci. 2022, 12, 12418 10 of 16

K = −
(
εR + Fb

TFb
)−1(

εBTP− Fb
TFa
)
= −W−1V, which meets the assumed design criteria

and makes the system control stable.

Proof. Combined with Lemma 1, for any ε > 0 and any m satisfy Equation (16), there are
x ∈ Rn, all of which have the following:

0 ≤ εxTPYYTPx + ε−1xTCTCx− symm
(

xTPYMCx
)

For the Riccati equation, define A = A− BK, R̃2 = εR+ Fb
TFb, E = Fa + FbK, Q = Fa +

KTRK, P̂ = εP and when P̃ = (ε/ε1)P = (1/ε1)P̂ > P, any constant ε1 < 1
nσ[P(t)] ∈ (0, ε),

According to the above expression, we have the following equation:

ATP + PA + εPEETP + εPBR̃2
−1BTP + 1

ε Fa
T
(

I − FbR̃2
−1Fb

T
)

Fa + Q

= ATP + PA + εPEETP + εPBR̃2
−1BTP + 1

ε E−1E + Q
= ATP̂ + P̂A + P̂EETP̂ + PBR̃2

−1BTP + E−1E + εQ
= ATP̂ + P̂A + P̂EETP̂ + PBR̃2

−1BTP + E−1E + εQ
< ATP̂ + P̂A + P̂EETP̂ + E−1E + ε1Q

< ATP̃ + P̃A + ε1P̃EETP̃ + 1
ε1

E−1E + Q < 0

There is a constant ε1 such that the controller makes the system stable. The proof
is completed. �

Lemma 4 (Schur’s lemma) [32]. Given the appropriate dimensions, we have matrices Ω1, Ω2
and Ω3 also Ω1 = Ω1

T. There are inequalities Ω1 + Ω3
TΩ2

TΩ3 < 0 that are equivalent to[
Ω1 Ω3

T

Ω3 −Ω2

]
< 0

Lemma 5 [20]. For matrix Ω ≤ 0, both sides of the equation are multiplied by a positive definite
matrix P−1, that is, P−1ΩP−1 ≤ 0.

Theorem 3. Combining Lemma 1 and Lemma 2, when there is a positive definite matrix X > 0,
the uncertain system in nominal mode can achieve robust quadratic stability through optimization
and adjustment within the bounded range of parameters. Therefore, the matrix under the condition
of uncertain parameters satisfies the following inequality:

−X + EET XAT XBT PFa
T PFb

T

AX −X + EET 0 0 0
BX 0 −X + EET 0 0
FaP 0 0 I 0
FbP 0 0 0 I

 < 0 (22)

Proof. The equation of the reasonable positive definite solution is as follows:

− P + GTPG + H1
TPH1 < 0

through Lemma 4 and the above proof process, we have the following:

− P−1 + P−1GTPGP−1 + P−1H1
TPH1P−1 < 0 (23)
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Let P = P−1, combined with Lemma 3, we have the following:−P PGT PH1
T

GP −P 0
H1P 0 −P

 < 0

through Equation (12), the above equation becomes: −P P(A + ∆A)T P(B + ∆B)T

(A + ∆A)P −P 0
(B + ∆B)P 0 −P

 < 0

take,

Z =

−P PAT PBT

AP −P 0
BP 0 −P


then,

Z +

 0 P∆AT P∆BT

∆AP 0 0
∆BP 0 0



= Z +

 0 P(EMFa)
T P(EMFb)

T

(EMFa)P 0 0
(EMFb)P 0 0



= Z +

EM
EM

EM

 0 0 0
FaP 0 0
FbP 0 0

+

0 PFa
T PFb

T

0 0 0
0 0 0


(EM)T

(EM)T

(EM)T

 < 0 (24)

by Lemma 1, the above inequality applies to the following inequality,

Z + v

E
E

E

ET

ET

ET

+ v−1

0 PFa
T PFb

T

0 0 0
0 0 0

 0 0 0
FaP 0 0
FbP 0 0



=

 Ω PAT PBT

AP −P + vEET 0
BP 0 −P + vEET

 < 0

were, Ω = −P + vEET + v−1PFa
TFaP + PFb

TFbP.
Let P = vX, that is  ∧ XAT XBT

AX −X + EET 0
BX 0 −X + EET

 < 0

where,
∧ = −X + EET + XFa

TFaX + XFb
TFbX

Using Theorem 2, replace A with A − BK and so on, respectively, and a new LMI
similar to (20) appears. The proof of this theorem is completed. The proof is complete. �

Remark 3. The quadratic stabilizability of uncertain systems can be stabilized in the same system,
but the opposite is not true.
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Similarly, given constant ε1 > 0, if and only if there is an appropriate scalar function
or value, and there are positive definite symmetric matrix W−1 and matrix V−1, then the
guaranteed cost controller is stable to the system within a certain limit.

4. Simulation Results

In order to make the model more in line with the standards of the actual engineering
field, improve the limitations brought by the nominal model. The uncertain parameters
of the filter structure were adjusted in a bounded range to simulate the intermittency of
distributed generation, although the controller ensures the stable operation of the system.

First, when two DGs units are connected in parallel and the nominal parameter value
is changed, the frequency and voltage will change as shown in the Figure 7:
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Figure 7. Generating uncertain parameters: (a) frequency; (b) voltage.

Within the uncertain and bounded range, adjust the rated values of capacitance and
inductance in the filter to ensure that the parameters are between 20% as follow Figure 8
and 50% as follow Figure 9 of the nominal values. The simulation results are as follows.
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Figure 8. When the parameters change slightly, the output of active and reactive power: (a) DG1; (b) DG2.

To make the microgrid system effective and stable, a linear quadratic integral regulator
(LQR) controller is designed to regulate the voltage, so that the active and reactive power of
the system remain stable within a limited range as follow Figure 10. Through the following
experimental simulation analysis, the feasibility and effectiveness of the model are verified.

Within a certain time variation range, for the output power imbalance caused by
uncertainty, after the effective control of the controller, the active power and reactive power
finally tend to balance, as shown in Figure 11.

Under the same conditions, continuously optimize and adjust the parameter values of
the filter structure, and the system can converge more stably, as shown in Figure 12.
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the quality of power output. 
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ing the uncertain model, restraining voltage distortion, and balancing output power was 
achieved and ensured the stability of the power grid. At the same time, this method could 

Figure 11. The controller adjusts some parameters and performance to optimize and stabilize the
active power and reactive power in a certain bounded range: (a) DG1; (b) DG2.

The performance of capacitors, inductors, and other components in the filter structure
changes with temperature. In the case of uncertain parameters, the controller optimizes
and adjusts the analog quantity change value within the bounded range of parameters
to achieve the purpose of system voltage stability and power balance and to ensure the
quality of power output.

At the same time, this method can indirectly and effectively reduce the cost. On the
other hand, it could also optimize and adjust the system parameters by the trial-and-error
method to determine the boundary value of system stability.
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5. Conclusions

In this paper, the frequency fluctuation of the original system was eliminated through
MAF. In the second section, under the condition of nominal parameters, we simulated and
verified the stable operation state of voltage and power with one inverter DG unit, and
two inverter DG units were run in parallel in the intelligent microgrid system. Secondly,
on the basis of the nominal model, the problem of structural parameter uncertainty was
introduced. Assuming that the new system was stable and under the initial conditions
of guaranteed cost theory, the bounded range of the uncertain parameters was obtained
through constraints. Finally, when the system was unstable due to parameter uncertainty,
the relevant LQR controller was obtained by the Lyapunov function to give the system
a certain progressive stable state. Through simulation, the purpose of optimizing the
uncertain model, restraining voltage distortion, and balancing output power was achieved
and ensured the stability of the power grid. At the same time, this method could analyze
the parameter sensitivity of the controller, continuously adjust the filter parameters, find
out the reasonable uncertainty range, verify the hypothesis, effectively simplify the model,
and realize the low-cost filter.

To better respond to the needs of the actual project, the follow-up work would consider
the impact of load imbalance, faults, communication delay, interference, and other issues
on the system. Considering the intermittency of distributed generation, a hardware loop
simulation experiment is conducted to simulate the impact of inverter on output power
between islanding and grid connected modes. In the hardware in the loop simulation
experiment, the impact of the implementation of the switching system on the system
performance will also be considered to make the smart microgrid more anti-interference
and ensure high-quality and stable output of power.
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