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Featured Application: Facial recognition.

Abstract: Automated facial gender and age classification has remained a challenge because of the
high inter-subject and intra-subject variations. We addressed this challenging problem by studying
multi-instance- and multi-scale-enhanced multi-task random forest architecture. Different from the
conventional single facial attribute recognition method, we designed effective multi-task architecture
to learn gender and age simultaneously and used the dependency between gender and age to
improve its recognition accuracy. In the study, we found that face gender has a great influence on face
age grouping; thus, we proposed a random forest face age grouping method based on face gender
conditions. Specifically, we first extracted robust multi-instance and multi-scale features to reduce
the influence of various intra-subject distortion types, such as low image resolution, illumination
and occlusion, etc. Furthermore, we used a random forest classifier to recognize facial gender.
Finally, a gender conditional random forest was proposed for age grouping to address inter-subject
variations. Experiments were conducted by using two popular MORPH-II and Adience datasets. The
experimental results showed that the gender and age recognition rates in our method can reach 99.6%
and 96.14% in the MORPH-II database and 93.48% and 63.72% in the Adience database, reaching
the state-of-the-art level.

Keywords: facial attribute recognition; feature extraction; deep learning; random forest

1. Introduction

In daily life, gender and age classification are very important, which can help us to
distinguish whether the person we contact is a “sir” or “madam”, as well as “young” or
“old”. These behaviors rely heavily on human forecasting and the recognition of facial
attributes: gender and age [1]. In addition, the gender and age attributes of faces have
other real-world applications. For example, vending machines can deny selling cigarettes
to minors and an electronic billboard can display advertisements based on gender and
age. However, the performance index of face attribute recognition by machines is far from
meeting the needs of commercial applications [2,3].

In general, face gender and age classification is a branch of face recognition; thus,
generic face recognition technology can naturally be applied to this problem [4–8]. There-
fore, most existing methods are based on manually designed features in this field, such as
Local Binary Patterns (LBPs) [9], Gabor [10], Biologically Inspired Feature (BIF) [11] and
Spatially Flexible Patches (SFP) [12]. After these manually designed feature extractions,
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we can resort to a classification or regression algorithm to estimate facial gender and age.
Among them, Support Vector Machine (SVM)-based approaches [1,11] are used for gender
classification and age grouping; Support Vector Regression (SVR) [13], linear regression [14],
Canonical Correlation Analysis (CCA) [15] and Partial Least Squares (PLS) [16] regression
methods are available for accurate age estimation. However, these methods can only
be applied to the constrained benchmarks, rather than achieving satisfactory results in
benchmarks in the wild [1,17].

Inspired by the success of ImageNet classification and face recognition [18], deep
learning has been applied to gender and age classification [2,3,19,20]. Wang et al. [19]
extracted discriminant features using CNN and these were combined with classification
and regression approaches to estimate age based on FG-NET and MORPH. Additionally,
Levi et al. [2] employed deep learning for age and gender classification together based
on an uncontrolled Adience database. Niu et al. [21] took full advantage of CNN and
SVM to propose a hybrid neural network with better results compared with a plain CNN.
Liu et al. [22] found that the hybrid model integrating CNN and Conditional Random
Field is better than other methods through extensive image segmentation experiments.
What is more, Xie et al. [23] proposed a hybrid neural network by integrating CNN
and SVM for scene recognition and domain adaption. Liu et al. [24] proposed a hybrid
model by integrating CNN and Random Forest (RF) for facial expression recognition, in
which a conditional CNN enhanced the RF for pose-aligned facial expression recognition.
Recently, Guehairia [8] proposed an architecture for age estimation based on a cascade of
classification tree ensembles, which have been known recently as a Deep Random Forest
(DRF). The model consists of two types of DRF. The first type extends the input facial
features; the second fuses all enhanced representations to consider the fuzziness of the
face age. Experimental results demonstrated that it can achieve high accuracy and fast
convergence with a limited amount of image data, rather than a large amount of data
required by a plain CNN.

The accurate classification of face gender and age includes two important steps: feature
extraction and classifier design, while the former is the key to the whole process. It not
only requires the extracted features to have great differences among different classes, but
also requires it to maintain invariance within the same class. Most traditional methods
use manually designed features and statistical models for the recognition of gender and
age [10,11,15,16], which have achieved favorable results based on the benchmarks of
controlled databases, such as FG-NET [25] and MORPH [26]. However, they exhibit
unsatisfactory performance based on recent benchmarks of uncontrolled databases, namely
“in-the-wild” benchmarks, including Adience [1], and the apparent age dataset LAP [27],
which have a variety of variations in appearance, illumination, pose and occlusion. In
recent years, deep learning has been widely applied to various scenarios, such as disaster
scenes [28], industrial IoT [29,30], large-scale data [31], wireless sensor networks [32–34]
and healthcare monitoring [3,35]. Specifically, CNN has been extremely striking in the field
of pattern recognition and computer vision due to its strong nonlinear feature extraction
capability [36]. Therefore, we can enjoy great improvements brought about by CNNs [2,37]
in gender and age prediction in the wild. At present, for face images in natural scenes,
the recognition rates of gender and age based on depth learning can exceed 95% and
55%, respectively.

Through more discriminative features and powerful classifiers, higher recognition
rates can be obtained. In the CNN-based classification method, the full connection layer
is the same as a common single hidden layer in the feedforward neural network (SLFN)
and trained through a back-propagation (BP) algorithm. It easily causes a local minimum
and over-fitting problem [38]. Therefore, in CNN-based deep learning, the generalization
ability of the full connection layer is not optimal, where discriminative features can be
well exploited. In order to solve these problems, a novel classifier needs to be developed
by making full use of the features extracted by the convolutional layer while possessing
the full connection layer or softmax classifier with similar ability. In the field of pattern
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recognition, three classification algorithms, including Naive Bayes [39], SVM and RF [14],
have been applied extensively. To date, RF has been proven to have high generalization
and big data processing ability, in addition to being easy to implement and having high
speed [40]. Additionally, RF and improved RF, including its mixing approaches, have been
widely used in pattern recognition tasks and have achieved excellent results [24].

Therefore, we made full use of CNN and RF to propose a hybrid deep learning
architecture for facial gender and age classification. In addition, we found, in practice,
that males and females have different aging models. In other words, gender has a certain
impact on facial age grouping. However, this relationship between gender and age is rarely
exploited by current methods. To deal with such relationships, we put facial gender and
age recognition in a unified RF classification framework and proposed a gender-conditional
RF to recognize facial age. Our goal is to improve both the accuracy and efficiency of facial
gender and age classification in the wild. An overview of the proposed multi-instance- and
multi-scale-enhanced multi-task random forests is shown in Figure 1. The robust features
are extracted from face instances to overcome the variance in image resolution, illumination
and occlusion. Facial gender is estimated first using RF and then, age is estimated under
the conditional probability of facial gender alignment. Our contributions can be described
as follows:

1. A multi-instance- and multi-scale-enhanced multi-task random forest is proposed
to process gender and age classifications together, which exploits the advantages of
CNN and RF.

2. We propose a multi-instance- and multi-scale-enhanced facial multi-task feature
extraction model, which can alleviate the intra-subject variations in faces, such as
illumination, expression, pose and occlusion.

3. We propose a gender-aligned conditional probabilistic learning model for facial age
grouping to suppress inter-subject variations.

Throughout this paper, we use the following abbreviations:

• CNNs: Convolutional Neural Networks
• LBPs: Local Binary Patterns
• BIF: Biologically Inspired Feature
• SFPs: Spatially Flexible Patches
• SVM: Support Vector Machine
• SVR: Support Vector Regression
• CCA: Canonical Correlation Analysis
• PLS: Partial Least Squares
• RF: Random Forest
• DRF: Deep Random Forest
• SLFN: Feedforward Neural Network
• BP: Back Propagation
• MML: Multi-instance and Multi-scale Learning
• MMFL: Multi-scale Fusion Learning Network
• MIF: Multi-Instance Fusion
• GAP: Global Average Pooling
• FC: Fully Connected
• IRBs: Inverted Residual Blocks
• CPR: Compact Pyramid Refinement
• NCSF: Neurally Connected Split Function

The rest of the paper is organized as follows: Section 2 presents our method. Experi-
mental results are presented in Section 3. Finally, the conclusion is provided in Section 4.



Appl. Sci. 2022, 12, 12432 4 of 14
Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 1. An overview of the proposed method for facial gender and age classification. 

2. Facial Gender and Age Classification Based on MML and DRF 

The flowchart of the proposed method is shown in Figure 2. The robust features are 

extracted from multi-instance and multi-scale learning (MML) using the transferring 

CNN model to suppress the influence of low resolution, illumination and occlusion. DRF 

is used to estimate facial gender and then, age is recognized under the conditional proba-

bility of gender alignment. 

Figure 1. An overview of the proposed method for facial gender and age classification.

2. Facial Gender and Age Classification Based on MML and DRF

The flowchart of the proposed method is shown in Figure 2. The robust features are
extracted from multi-instance and multi-scale learning (MML) using the transferring CNN
model to suppress the influence of low resolution, illumination and occlusion. DRF is used
to estimate facial gender and then, age is recognized under the conditional probability of
gender alignment.
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Figure 2. Flowchart of the proposed approach for facial gender and age classification.

2.1. Deep Feature Representation by MML
2.1.1. Facial Instance Selection

We extracted robust features from facial instances with MML. Different from randomly
or densely sampled patches and the salience detection algorithm [24], we took advantage of
the facial gender and age characteristics to select nine facial patches from the detected face
image as facial instances, as shown in Figure 3, and instance 1 is the overall face image. The
selection strategy of facial instances is based on the influence of different facial patches on face
gender and age recognition. The specific facial instance selection steps can be seen as follows:

Firstly, the face detection algorithm [41] is used to cut a pure face image as in instance 1.
Secondly, according to the face detection results, the nose tip of the face is found by

using face landmark localization technology.
Finally, according to the position of the nose tip and the “three eyes and five chambers”

characteristics of the facial structure, eight other facial patches are selected as face instances.
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2.1.2. Multi-Instance Learning

After selecting the facial gender and age instances, we propose a multi-instance multi-
scale fusion learning network (MMFL) for robust facial feature extraction. Figure 4 depicts the
MMFL architecture; we employed MobileNetV3 [42] as the backbone for multiple instance
representation. A multi-instance fusion module (MIF) is applied to each scale, and the features
of the top-level layer are aggregated to this level layer. For convenience, five stages in the
output feature maps are denoted as S1, S2, S3, S4, S5, with strides of 2, 22, 23, 24, 25, respectively.
We fused the extracted instance map S1, S2, S3, S4, S5 to generate the multi-instance fuse
feature. We designed a lightweight MIF for multi-instance fusion, as shown in Figure 5.
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Specifically, we first obtained a vector by using a global average pooling (GAP) layer to
Si, followed by an attention vector vi computed based on two fully connected (FC) layers:

vi = σ
(

FC2(ReLU(FC 1(GAP(Si))))
)

(1)

where ReLU and σ indicate ReLU layers and the standard sigmoid function, respectively.
At the same time, the Si is sent to Inverted Residual Blocks (IRBs) [6] to derive the feature
maps Ni = IRB

(
Si). With Ni and vi, the multiplication of Ni and vi is fed into an IRB,

such as

Ci = IRB(vi ⊗Ni) (2)

Note that attention vi is replicated to the same shape as Ni before multiplication and
the vi is used to recalibrate the instance features. We than combined each Ci through
concatenation to derive the instance fusion feature C = [C1,C2, · · · ,CM].

2.1.3. Multi-Scale Integration Learning

It is generally believed that in the backbone network, high-level features contain more
semantic abstract information, while low-level features contain more detailed information.
For facial gender and age recognition, we designed a lightweight decoder using the Com-
pact Pyramid Refinement (CPR) [43] module as the basic unit. Because different levels of
features correspond to different scales, multi-scale learning integrates features of different
scales, so that the final extracted features not only have semantic abstract information,
but also have details. Hence, we designed a multi-scale integration learning strategy to
enhance facial feature extraction.

Suppose that the input of a CPR module is C. First, the channels of C are expanded
M times by using a 1 × 1 convolution. Second, we apply three depth-wise separable
convolutions with dilation rates of 1, 2 and 3 to obtain three different scale features. Finally,
these multi-scale features are connected with a multi-scale fusion strategy, which can be
denoted as:

C1= Conv1×1(C),
Cd1

2 = Convd1
3×3(C1),

Cd2
2 = Convd2

3×3(C1),
Cd3

2 = Convd3
3×3(C1),

C2 = ReLU(BN(Cd1
2 +Cd2

2 +Cd3
2 )),

(3)

where d1, d2 and d3 are dilation rates. BN indicates batch normalization. Next, we used
a 1× 1 convolution to compress channels of C2 to the same number as the input:

C3 = Conv1×1(C2) +C (4)

Then, an attention vector v′ is computed by applying the attention mechanism in
Equation (1), so that we have:

X = v′ ⊗Conv1×1(C3) (5)

Equation (5) uses global contextual information to recalibrate the multi-scale fusion
features. As shown in Figure 4, at each decoding phase, the feature maps of the top decoder
and the corresponding encoder are concatenated and then, the CPR module is used for
fusion. In this way, the decoder can aggregate multi-level features from top to bottom.

2.2. DRF Model

In general, gender recognition is easier than age grouping. In the facial age grouping
field, due to the existence of facial gender factors, the facial age grouping in the feature
space is different, which makes it difficult to construct a facial age classifier with high
accuracy. Therefore, by putting a gender and age recognition study together and using
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facial gender as an implicit condition to divide the face data space, we propose a face age
grouping method based on conditional random forest. The implementation steps for the
DRF model are as follows:

Step 1. A face gender classifier based on random forest is developed by using all face data.
MMFL was used to extract the robust features y, and TG was used to estimate face

gender g, where TG training uses uncertainty measures:

H(y) = −∑
g

p(g|y) log2(p(g|y)) (6)

The uncertainty measure guides each node to choose the best binary test from the
candidate library of binary tests to ensure that the current node can be divided into two sub-
nodes with reduced uncertainty. Face gender is stored on each leaf node l of TG with
a Gaussian model:

p(g|l(y)) = N(g;
−
gl ; σl) (7)

where
−
gl and σl are the mean and covariance, respectively. While Equation (7) models the

probability for a sample feature y ending in a leaf l, the gender probability of the forest is
obtained by averaging over all trees:

p(g|y) = 1
M∑

m
p(g|lm(y)) (8)

where lm is the corresponding leaf for a tree and M is the number of trees.
Step 2. We classified the face dataset according to face gender and trained a series of

gender-conditional random forest decision trees.
Each decision tree in a conditional random forest

{
TS(Ωn)

}2
n=1 is independently

trained by using the same method. In order to build each decision tree TS
t (Ωn), first,

randomly select images from the corresponding data subset SΩn to form a training dataset;
then, randomly extract a series of sub-features {yi = (ai, Ii)} from each training image
feature y, where ai is the face age class and Ii =

{
I1
i , I2

i , · · · , IF
i
}

is a set of sub-features
selected from y; finally, the selected sub-features are used to split the decision tree nodes to
generate the final decision tree.

We used a Neurally Connected Split Function (NCSF) splitting model to reinforce the
learning capability of a splitting node by combining the Information Gain of the decision
tree and the loss function of the deep network model [24]. The connection function fn of
a hidden layer in MMFL is used to enhance the conditional feature presentation y of a face
sample; meanwhile, the enhanced feature presentation is used as the node feature selection
of the network-enhanced forest:

dn(y, K
∣∣Ωg) = σ( fn(y, K

∣∣Ωg)) (9)

where σ(x) = (1 + e−x)
−1 is the sigmoid function, K is the parametrization of the network,

the Adaptive Moment Estimation approach is used to minimize the risk with respect to
K, Ωg is the age sub-forest with different genders and n is a decision node. We employed
an Information Gain approach to split a node into its left and right child nodes in the tree
construction:

ϕ̃ = argmax
ϕ

(H(dn)−∑S∈{Nr ,Nl}

∣∣dS
n
∣∣

|dn|
H(dn)) (10)

where dS
n

dn
, S ∈ {R, L} is the probability between the number of feature samples in dL

n (the
left child node) and dR

n (the right child node) and H(dn) is the entropy of dn.
Step 3. The conditional random-forest-based face age classifier is dynamically con-

structed according to face gender.
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Under the condition of face gender g ∈ Ωn, we can model the conditional probability
p(a|Ωn, y) of facial age by voting on all trees in the random forest TA:

p(a|Ωn, y) =
1
M∑

m
p(a|Ωn, lm(y)) (11)

In the case of unknown face gender g, we can model the probability p(a|y) of facial age:

p(a|y) = ∑
n

p(a|Ωn, y)
∫

g∈Ωn
p(g|y)dg

= ∑
n
( 1

M ∑
m

p(a|Ωn, lm(y)) )
∫

g∈Ωn
p(g|y)dg

≈ 1
M ∑

n

kn
∑

m=1
p(a|Ωn, lm,Ωn(y))

(12)

where kn ≈ M
∫

g∈Ωn
p(g|y)dg .

It can be seen from the above equation, in the facial age classification, kn decision trees
are randomly selected from the conditional random forest TS(Ωn) to construct the random
forest TA dynamically according to the results of face gender estimation, and then, the age
probability p(a|y) of the test image feature y is obtained by voting on each decision tree
in TA.

3. Experimental Results
3.1. Datasets and Settings

In order to evaluate the performance of our model, we used two publicly available
benchmarking databases, namely MORPH-II [26] and Adience [1].

The MORPH-II database is the largest public dataset of non-celebrities marked by
gender and age, including 46,645 male images and 8487 female images, ranging in age from
16 to 77. We split the selected image sets from the MORPH II datasets into three age groups:
16–30, 31–45 and 46–60+.

The Adience database consists of images that are automatically uploaded to Flickr from
smart-phone devices, which are collected for age and gender classification. Because these
images are not manually filtered before they are uploaded, as in the case of media websites
or social networking sites, these images are collected in an uncontrollable environment,
reflecting many challenges in the real world of faces appearing in Internet images. Therefore,
Adience images have extreme environmental variations, such as illumination conditions,
pose and resolution changes. The Adience database includes roughly 26 K images of
2284 subjects. Table 1 shows the dataset by age category. Tests classified by age or gender
are performed by using a standard five-fold, subject-exclusive cross-validation protocol,
defined in [1].

Table 1. Adience faces benchmark.

0–2 4–6 8–13 15–20 25–32 38–43 48–53 60− Total

Male 745 928 934 734 2308 1294 392 442 8192
Female 682 1234 1360 919 2589 1056 433 427 9411
Both 1427 2162 2294 1653 4897 2350 825 869 17,603

Figure 6 shows the facial gender and age classification examples of MORPH-II and
Adience. We used the Pytorch framework for implementing MMFL. In the training process,
random translation and mirror data augmentation methods are introduced. The key
training parameters in the experiments include the learning rate (0.001), epochs (6000),
splitting interactive times (1500) and tree depths (20).
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3.2. Face Feature Extraction Experiments

In order to evaluate the influence of feature representation, the common feature
extraction methods used in facial gender and age recognition were selected for comparative
analysis, including deep learning features, Gabor, LBP and BIF. The comparative results
with six features based on the Adience datasets are shown in Table 2. The results show
that our MMFL features achieve the best results. In the challenging dataset with SVM, the
gender and age recognition rates reached 92.35% and 55.24% by using the MMFL features,
which were improved by about 4% with respect to the second-best result. Additionally,
compared with SVM, the DRF has better recognition performance.

Table 2. Gender and age classification accuracy (%) of SVM/DRF using different image features.

Features SVM
(Gender/Age)

DRF
(Gender/Age)

MMFL 92.35/55.24 93.48/63.72
Gabor [10] 82.61/42.72 82.45/48.62

LBP [9] 84.52/41.47 85.06/47.67
BIF [11] 83.48/44.06 83.67/50.61

Plain CNN [2] 86.83/50.75 87.14/55.32
ResNet50 [44] 88.21/51.58 89.84/58.05

3.3. Facial Gender and Age Recognition

• Facial Gender Estimation:

We evaluated the method based on MORPH-II and Adience databases, in comparison
with the state-of-the-art facial gender estimation and age grouping methods. Table 3
lists the comparison results of our method, plain CNN [2], RoR [20] and CNN-ELM [3]
for gender estimation. For the Adience database, we directly selected the experimental
results of plain CNN, RoR and CNN-ELM. For the MORPH-II database, as plain CNN,
RoR and CNN-ELM did not conduct experiments based on this database, we reproduced
these methods and took the best results for comparison. The plain CNN uses AlexNet
architecture to obtain an average accuracy of 98.7% and 86.8% based on MORPH-II and
Adience databases, respectively. For Residual Networks of Residual Networks (RoR), which
use the basic block and bottleneck block to construct the training network, the average
accuracy using RoR is 99.5% and 92.43% based on MORPH-II and Adience databases,
respectively. The CNN-ELM combines Convolutional Neural Networks and the Extreme
Learning Machine in a hierarchical fashion, which takes advantage of CNN and ELM; the
average accuracy using CNN-ELM is 98.5% and 88.2% based on MORPH-II and Adience
databases, respectively. Our method achieves an average accuracy of 99.6% and 93.48%
based on MORPH-II and Adience databases, respectively, which is competitive with the
methods mentioned above. It should be pointed out that the accuracy of the ROR method
is similar to that of our method. However, its network is deeper and more complex and its
training time is longer. Comparing DRF with RoR, the training time of DRF is less than
one-tenth of the time of RoR and the testing time of DRF is also much less than that of RoR.
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Table 3. Gender estimation accuracy (%) by using different methods based on two datasets.

Methods
Accuracy

MORPH-II Adience

plain CNN 98.7 86.8

RoR 99.5 92.43

CNN-ELM 98.5 88.2

Ours 99.6 93.48

• Facial age grouping:

In comparison with the state-of-the-art facial age grouping methods, Table 4 shows
the average age grouping accuracy based on MORPH-II and Adience datasets. The plain
CNN achieves an average accuracy of 89.15% and 50.7% based on MORPH-II and Adience
databases, respectively. RoR achieves an average accuracy of 94.86% and 62.34%, respec-
tively. The CNN-ELM achieves an average accuracy of 92.58% and 52.3%, respectively.
Our method achieves an average accuracy of 96.14% and 63.72% based on MORPH-II and
Adience databases, respectively. It is shown that the accuracy of DRF is greater than that of
the other methods.

Table 4. Age grouping accuracy (%) by using different methods based on two datasets.

Methods
Accuracy

MORPH-II Adience

plain CNN 89.15 50.7

RoR 94.86 62.34

CNN-ELM 92.58 52.3

Ours 96.14 63.72

Age grouping confusion matrixes with MORPH-II and Adience datasets are shown in
Tables 5 and 6. The accuracies are all above 93% with an average accuracy of 96.14% for the
MORPH-II database. In the Adience database, the average accuracy was 63.72% and the
highest accuracy was 66.9% for group1 (0–2), followed by that of group5 and group8. The
lowest accuracy was 59.29% for group7.

Table 5. Face age grouping confusion matrix in MORPH-II.

Group1: 16–30 Group2: 31–45 Group3: 46–60+

Group1: 16–30 97.8 1.4 0.8

Group2: 31–45 1.8 96.6 1.6

Group3: 46–60+ 3.2 2.78 94.02

Table 6. Facial age grouping confusion matrix in Adience.

0–2 4–6 8–13 15–20 25–32 38–43 48–53 60−

0–2 66.90 24.35 8.50 0.25 0 0 0 0

4–6 21.44 63.03 14.36 1.17 0 0 0 0

8–13 2.57 15.36 62.97 18.76 0.34 0 0 0

15–20 0 0.79 16.56 64.20 15.97 2.48 0 0

25–32 0 0 0.74 13.73 65.35 19.15 1.03 0

38–43 0 0 0 0.8 18.38 61.78 17.46 1.58

48–53 0 0 0 1.82 3.46 15.28 60.29 19.15

60− 0 0 0 0.44 4.53 10.63 19.16 65.24
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3.4. Facial Gender Alignment Analysis

An experimental comparison of age grouping with and without gender-aligned con-
ditional probability is shown in Figure 7. This shows that the proposed method using
gender-aligned conditional probability outperformed the other without gender-aligned
conditional probability based on both MORPH-II and Adience datasets. The recognition
rate was improved by about 8% based on the Adience dataset. This demonstrates that facial
gender and age exhibit a mutual influence and interaction and it is helpful to study them
together to improve the recognition rate.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 15 
 

 

38–43 0 0 0 0.8 18.38 61.78 17.46 1.58 

48–53 0 0 0 1.82 3.46 15.28 60.29 19.15 

60− 0 0 0 0.44 4.53 10.63 19.16 65.24 

3.4. Facial Gender Alignment Analysis 

An experimental comparison of age grouping with and without gender-aligned con-

ditional probability is shown in Figure 7. This shows that the proposed method using 

gender-aligned conditional probability outperformed the other without gender-aligned 

conditional probability based on both MORPH-II and Adience datasets. The recognition 

rate was improved by about 8% based on the Adience dataset. This demonstrates that 

facial gender and age exhibit a mutual influence and interaction and it is helpful to study 

them together to improve the recognition rate. 

 

Figure 7. Age grouping with and without gender-aligned conditional probability. 

4. Conclusion and Future Work 

We present a novel deep-learning-enhanced multi-task random forest method for fa-

cial gender and age recognition. The facial robust features are extracted using multi-in-

stances and multi-scale deep learning, and the facial gender and age are recognized to-

gether using a multi-task random forest. The proposed approach achieves good results 

owing to transfer learning, multi-instance multi-scale learning and multi-task conditional 

random forest learning. The multi-instance multi-scale learning features can alleviate the 

problem of intra-person variation, such as low image resolution, illumination and occlu-

sion; the multi-task random forest can alleviate the inter-subject variations existing due to 

different personal attributes, such as gender, ethnic backgrounds and level of expressive-

ness. 

In the future, we plan to consider other factors in our model. In reality, facial age is 

not only related to gender, but also to other attributes, such as ethnicity, expressions and 

poses, etc. If we can take all facial attributes into account and learn the relationship be-

tween the attributes and age, it will definitely help us to improve the facial age grouping 

accuracy. In addition, using the interdependence between face attributes, multi-task learn-

ing can identify multiple attributes, such as gender, race, age, expression and the pose of 

a face at one time, to achieve the goal of a double win. 

Author Contributions: Conceptualization, H.L. and L.Y.; methodology, H.L. and M.W.; validation, 

H.L., L.Z. and G.J.; formal analysis, H.L. and M.W.; writing—original draft preparation, H.L. and 

M.W.; writing—review and editing, L.Z., G.J. and N.X.; supervision, M.W., G.J. and N.X.; funding 

acquisition, M.W. All authors have read and agreed to the published version of the manuscript. 

Funding: This work is supported by the natural science foundation of Hubei province, grant num-

ber No. 2021CFB388, the outstanding young and middle-aged science and technology innovation 

Figure 7. Age grouping with and without gender-aligned conditional probability.

4. Conclusions and Future Work

We present a novel deep-learning-enhanced multi-task random forest method for facial
gender and age recognition. The facial robust features are extracted using multi-instances
and multi-scale deep learning, and the facial gender and age are recognized together using
a multi-task random forest. The proposed approach achieves good results owing to transfer
learning, multi-instance multi-scale learning and multi-task conditional random forest
learning. The multi-instance multi-scale learning features can alleviate the problem of intra-
person variation, such as low image resolution, illumination and occlusion; the multi-task
random forest can alleviate the inter-subject variations existing due to different personal
attributes, such as gender, ethnic backgrounds and level of expressiveness.

In the future, we plan to consider other factors in our model. In reality, facial age is not
only related to gender, but also to other attributes, such as ethnicity, expressions and poses,
etc. If we can take all facial attributes into account and learn the relationship between the
attributes and age, it will definitely help us to improve the facial age grouping accuracy.
In addition, using the interdependence between face attributes, multi-task learning can
identify multiple attributes, such as gender, race, age, expression and the pose of a face at
one time, to achieve the goal of a double win.
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