
Citation: Luo, J.; Wu, W.; Xing, Q.;

Xue, M.; Yu, F.; Ma, Z. A Low-Latency

Fair-Arbiter Architecture for

Network-on-Chip Switches. Appl. Sci.

2022, 12, 12458. https://doi.org/

10.3390/app122312458

Academic Editors: Charles Tijus,

Kuei-Shu Hsu, Kuo-Kuang Fan,

Cheng-Chien Kuo, Teen-Hang Meen

and Jih-Fu Tu

Received: 18 October 2022

Accepted: 2 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Low-Latency Fair-Arbiter Architecture for
Network-on-Chip Switches
Jifeng Luo 1 , Wenqi Wu 1 , Qianjian Xing 1, Meiting Xue 2, Feng Yu 1 and Zhenguo Ma 1,*

1 College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
2 College of Cyberspace Security, Hangzhou Dianzi University, Hangzhou 310027, China
* Correspondence: 850501@zju.edu.cn

Abstract: As semiconductor technology evolves, computing platforms attempt to integrate hundreds
of processing cores and associated interconnects into a single chip. Network-on-chip (NoC) tech-
nology has been widely used for data exchange centers in recent years. As the core element of the
NoC, the round-robin arbiter provides fair and fast arbitration, which is essential to ensure the high
performance of each module on the chip. In this paper, we propose a low-latency fair switch arbiter
(FSA) architecture based on the tree structure search algorithm. The FSA uses a feedback-based
parallel priority update mechanism to complete the arbitration within the leaf nodes and a lock-based
round-robin search algorithm to guarantee global fairness. To reduce latency, the FSA keeps the lock
structure only at the leaf node so that the complexity of the critical path does not increase. Meanwhile,
the FSA achieves a critical path with only O(log4N) delay by using four input nodes in parallel. The
latency of the proposed circuit is on average 22.2% better than the existing fair structures and 8.1%
better than the fastest arbiter, according to the synthesis results. The proposed architecture is well
suited for high-speed network-on-chip switches and has better scalability for switches with large
numbers of ports.

Keywords: arbitration; network-on-chip; round-robin arbiter; switch schedule

1. Introduction

As the feature size of chips is reduced to the nanometer level, more processing elements
can be placed on a system-on-chip (SoC) [1]. In recent years, AMD-Xilinx has proposed a
SoC named the adaptable computing acceleration platform (ACAP) [2], which is a device-
global memory-mapped network-on-chip [3,4] that connects the components and fabric in
an integrated fashion. As the NoC unifies communication between the processor system,
FPGA fabric, memory subsystem and other hardened accelerator functions, it is widely
used in many complex systems, such as multi-core processing chips and large systems-
on-chip. As an important scheduling part in NoC, an arbiter is essential to provide fair
and reasonable services for shared resources, especially in high-speed network-on-chip
switches [5].

NoC switches generally consist of input ports, a schedule, a crossbar and output ports,
as shown in Figure 1. The round-robin arbiter (RRA) as a schedule is widely used in the
NoC switching system [6,7]. It aims to provide control signals to the crossbar switch fabric.
The RRA is placed on each output port to ensure that each input port can potentially request
connections to all output ports. When the crossbar receives the arbitration information from
the RRA, it opens the corresponding channel from the ingress to the egress. Thus, a packet
is transferred. Therefore, the arbiter must be fair to prevent port starvation. However,
the traditional switch is prone to a throughput limit because of the head-of-line (HoL)
blocking [8] phenomenon. There are many solutions to the HoL problem [9]. The two
most commonly used methods are virtual output queuing (VOQ) [10] and virtual channels
(VCs) [11,12]. Although VOQ and VC can deliver better performance, they are challenging

Appl. Sci. 2022, 12, 12458. https://doi.org/10.3390/app122312458 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312458
https://doi.org/10.3390/app122312458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5905-997X
https://orcid.org/0000-0001-6942-3042
https://doi.org/10.3390/app122312458
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312458?type=check_update&version=1

Appl. Sci. 2022, 12, 12458 2 of 12

to implement because both of them require a high clock frequency [13]. As the arbiter is
located in the critical pipeline stage [14] of the switch systems, the critical path of the arbiter
limits the performance of the system. Therefore, designers should focus on the low latency
and fairness of the arbiter.

Port0 Arbiter

Port31 Arbiter

Output Arbiter

Switch

Fabric

Crossbar

...

...
VOQ(0,0)

VOQ(0,1)

VOQ(0,31)

...

VOQ(1,0)

VOQ(1,1)

VOQ(1,31)
...

re
q(
0,
0-
31

)
re
q(
1,
0-
31

)

grant(0,0-31) grant(31,0-31)...

...

da
ta
(0
,0
-3
1)

High Speed Network-on-Chip Switch

input port 0

input port 1

output port 0

output port 31

VOQ(31,0)

VOQ(31,1)

VOQ(31,31)

...
re
q(
31

,0
-3
1)

input port 31

Port1 Arbiter

output port 1

da
ta
(1
,0
-3
1)

da
ta
(3
1,
0-
31

)

...

...

...

Figure 1. Network-on-chip switch architecture.

In this study, we propose a new fair and fast switch arbiter called FSA. In FSA, the
grant signal is used for priority updates to ensure the fairness of the leaf node. Moreover,
to avoid the wrong update of the priority in the upper level, we propose using the lock
signal to modify the request passing to the upper level. Furthermore, low latency can be
guaranteed by using the priority logic in parallel.

This paper is organized as follows: Section 2 lists some typical arbiters and analyzes
their advantages and disadvantages. Section 3 describes the structure of the FSA and
demonstrates its fairness and high performance. Section 4 provides arbitration observation
experiment results for all arbiters. Finally, we conclude this paper in Section 5.

2. Related Works and Analyses

In high-speed switching systems, the performance of the arbiter is critical. In computer
network packet switching, studies have been conducted on the iterative round-robin
algorithm (iSLIP) [15] and dual round-robin matching (DRRM) algorithm [16]. Moreover,
Gupta and McKeown proposed two new programmable priority encoders (PPE) [17,18].
PPE is complicated for a simple round-robin arbiter; additionally, it is the centralized
rotating-priority-pointer design.

With the expansion of the network exchange scale, a centralized arbitration structure
becomes complex, which is detrimental to the implementation. To obtain better scalability,
the tree structure has been proposed. Chao et al. proposed the arbitration algorithm named
the ping-pong arbiter (PPA) [19], which features an O(log2N)-level tree structure. PPA
has good scalability and low latency, but its fairness cannot be satisfied under unbalanced
traffic [20]. As shown in Figure 2, when the number of input requests is less than N,
although the root node permanently grants evenly, leaf nodes and intermediate nodes

Appl. Sci. 2022, 12, 12458 3 of 12

will obtain unbalanced grants owing to unbalanced input. Consequently, this results in
different grant probabilities between different requests.

ppa
node

ppa
node

ppa
node

ppa
node

ppa
node

ppa
node

ppa
node

50% 50%

25% 25% 50% 0%

0 1 2 3 4 5 6 7

1 1 1 0 1 0 0 0

req gnt

12.5% 12.5% 25% 0% 50% 0% 0% 0%

Figure 2. Unfair example of PPA.

Another arbiter design using the similar research algorithm of “ping-pong”, called the
switch arbiter (SA), was proposed in [21]. It is constructed using the 4-input instead of the
2-input arbiter block. Theoretically, it can obtain a lower delay than PPA [22]. However,
in some special cases, the priority updates step-by-step results in an unfair situation. As
shown in Figure 3, the SA becomes unfair with non-uniformly distributed requests. For
example, when both channels 1 and 3 have data packets entering, supposing that the initial
priority is r1 > r2 > r3 > r0, channel 1 will be authorized first. Thereafter, the channel
priority order will be r2 > r3 > r0 > r1, and channel 3 will be authorized at this time.
Subsequently, the channel priority order becomes r3 > r0 > r1 > r2. At this time, channel 3
is still authorized, which means unfairness occurs.

11

11

channel_0

channel_1

channel_2

channel_3

Ring Counter
ack

0

1

2

3

0

1

2

3

1

2

3

Figure 3. Unfair example of an SA cell.

In addition, Zheng and Yang provided two main designs in the form of a parallel
round-robin arbiter (PRRA) and an improved PRRA (IPRRA) [23]. Based on their work, the
PRRA and IPRRA provide round-robin fairness for input conditions, whereas the IPRRA is
expected to reduce timing delay over the PRRA. PRRA and IPRRA consist of log2(n) + 1
levels of the binary tree. The lowest level nodes of the binary tree are called leaf nodes,
which are connected in series by a priority pointer. The highest node is called the root node,

Appl. Sci. 2022, 12, 12458 4 of 12

and the rest of the nodes are called intermediate nodes. Although PRRA and IPRRA can
provide fair arbitration, it significantly increases path delay.

In order to reduce the critical path delay (CPD) [24] of the arbiter, a gate-level circuit
was proposed named ping-lock arbiter (PLA) [25]. This is also an architecture based on
the “ping-pong” search algorithm. It improves the PPA structure to provide lower latency.
Meanwhile, in order to solve the unfairness caused by the “ping-pong” algorithm, a lock
structure is proposed to ensure the fairness of the tree structure. This lock structure exists
at every node, which will increase the PLA’s critical path delay and utilization.

3. Fair Switch Arbiter

The analysis of arbiters in related works showed that we should provide fair arbitration
and reduce arbitration delay to maximize switching throughput and performance for NoCs.

As mentioned before, a decentralized arbitration structure can perform better in a
large switching system. We proposed a novel arbiter based on the tree structure, which
divides and distributes the arbitration task to separate nodes, providing high-performance
arbitration with excellent scalability. Figure 4 shows the structure of a round-robin arbiter
with 32 requests as an example. The leaf node is the lowest level of the arbiter, whose
inputs and outputs are used as the interface of the whole arbiter. The outputs of other
nodes (i.e., ack) are connected to the node as an acknowledgment to grant the result of the
internal node or the leaf node to update their priority orders.

leaf node leaf node leaf node leaf node

internal node

leaf node leaf node leaf node leaf node

internal node

2x2 root node

req0[3:0]

grant0[3:0]

up_req ackgrant

req1[3:0]

grant1[3:0]

req2[3:0]

grant2[3:0]

req3[3:0]

grant3[3:0]

req4[3:0]

grant4[3:0]

req5[3:0]

grant5[3:0]

req6[3:0]

grant6[3:0]

req7[3:0]

grant7[3:0]

Figure 4. Round-robin 32-node binary tree structure.

3.1. Fair Round-Robin Arbiter Scheme

It is essential that an arbiter provides dynamic, fair arbitration. Consider an n-input
packet switch; herein, each input submits a one-bit request signal ri (0 ≤ i ≤ N − 1) to
every output, which indicates whether its packet is destined for the output. Each output
arbiter collects all request signals and computes binary grant outputs gi (0 ≤ i ≤ N − 1),
among which one input is granted to transmit packets. Assuming that in the previous
arbitration cycle gj = 1(if there is no gj = 1, j = N; if g0 = 1, j = N), and gis are set
as follows.

gi =

{
1, i = max {(j− a) | r(j−a) = 1, (0 < a ≤ j)}.
0, otherwise.

(1)

An arbiter guarantees fairness among masters by changing the priority of all the
requests. Initially, all ports obtain arbitration according to a certain priority order; if any
input obtains the grant signal, assumed to be ri, the priority vector is pointed to rk next
to ri.

Appl. Sci. 2022, 12, 12458 5 of 12

To search for the maximum j, we encoded different states, as shown in Table 1. Dif-
ferent states have different priorities to ensure the request that has the highest priority
can be met. Each state performs as a fixed priority arbiter (FPA) and priority vector as the
condition for jumping among states. Contrary to the SA, we used a loop state machine
with feedback, which can provide fair arbitration. As shown in Figure 5b, after a request is
granted in each arbitration cycle, the state jumps to ensure that the highest priority is passed
to the next request and the priority of the granted request is adjusted to the lowest point.

Table 1. State code description.

Priority State Priority Order

4’b0001 00 r3 > r2 > r1 > r0
4’b0010 01 r0 > r3 > r2 > r1
4’b0100 10 r1 > r0 > r3 > r2
4’b1000 11 r2 > r1 > r0 > r3

00 01

1011

ack

ack

ackac
k

00 01

1011

0001

0001

0010
10
00

00
01

1000
0100

0100
0010

10
000100

00
10

(a) (b)

Figure 5. State transition diagram: (a) SA cell; (b) FSA cell.

Figure 6 shows the structure of the leaf nodes of the arbiter. The proposed leaf node
consists of a D flip-flop, four priority logic blocks, a MUX and a lock logic block. Four
priority logic blocks correspond to the different states in Table 1. This will result in up to
four different grant outcomes to choose from. The proposed architecture uses the previous
grant feedback as the priority signal to instruct the loop state machine jumps. As shown
in Table 1, each bit of the priority signal corresponds to a different output for a different
priority case. Furthermore, we proposed a lock signal as an indication for the leaf node to
complete a round of arbitration. When all requests from the leaf node are authorized, the
lock signal will be set. As shown in Figure 6b, when the lock signal is set, the req signal
passed to the upper layer is blocked. The definition of the lock logic is as follows.

lock = g0 + g1r0 + g2r1 · r0 + g3r2 · r1 · r0 (2)

up_req = lock
′ · any_req (3)

For example, in the initialization phase, the result of the first priority logic block will
be taken from the MUX. At this time, the state is 00, and the priority of four requests
is req[3] > req[2] > req[1] > req[0]. Supposing that only req[0] and req[2] want to be
authorized, the token at this moment is four (grant = 4’b0100, which indicates req[2] gets
authorized) because the req[2] has higher priority. In the next arbitration cycle, the grant
changes the priority signal to 4’b0100, and the state is jumped to 10. Thus, the arbiter
processes request signals following the execution order of the third priority logic block
in the current clock slot; req[1] indicates the highest priority. Considering the connection
of the requests, because neither req[1] nor req[3] makes a request, req[0] has the highest
priority and req[2] has the next highest priority. The lock signal is set when port 0 gets
authorized; at this time the priority signal and up_req signal are not updated.

Appl. Sci. 2022, 12, 12458 6 of 12

priority logic(3210)

priority logic(0321)

priority logic(1032)

priority logic(2103)

ack

M
U

X

req[3:0] grant[3:0]

priority

up_req

D-FF

Lock

Logic

en

(a)

(b)

lock
D-FF

up_req

grant[3:0]

ack

orreq[3:0]

M
U

X

update

lock

module

Figure 6. Block diagram of the FSA’s leaf node. (a) Leaf node. (b) Lock logic module.

In summary, the grant signal in the FSA block is for both the output and the feedback
that affect the priority transmission. Thus, the priority pointer can accurately point to the
next request. As the value of gj is determined by the value of gi, unfairness caused by
the port being selected twice in an arbitration cycle is prevented. Therefore, its fairness
is guaranteed.

3.2. Round-Robin Arbiter Tree

The FSA features an O(log4N)-level tree structure. Considering that the number of
ports is not a power of four, the level of the tree shown is as follows:

l = blog4N + 0.5c (4)

The tree structure is a decentralized framework that may disintegrate jobs into small
chunks and distribute them to different nodes for completion. Each node in the tree
structure is subdivided into leaf nodes, internal nodes and root nodes. Each node has the
ability to act independently as an arbiter. The leaf node is in charge of replying to the node’s
request while seeking authorization from the upper layer. The requests from the leaf nodes
are grouped by the internal node, and the requests from the corresponding lower-level
nodes are handled by the root node. The structure of the leaf node is shown in Figure 6,
and the internal and root nodes are shown in Figure 7. If blog2Nc is odd, the root node
uses the root2 node.

The FSA structure is shown in Figure 4; all nodes are connected using up_req and ack
signals. The leaf node receives a four-bit request signal in each arbitration cycle, selects the
authorization signal based on the priority signal and creates the up_req signal to request
authorization from the upper layer. The request signal is forwarded to the root node after
passing through a gathering of internal nodes. Thereafter, the root node acknowledges the
request and transmits the information to the lower-level node through the ack signal.

According to the analysis in Section 2, the tree structure is unfair for nonuniformly
distributed requests, as it utilizes a generic priority update mechanism. To address this

Appl. Sci. 2022, 12, 12458 7 of 12

unfairness, we suggested that every input of leaf nodes should be serviced once before the
priority vector of the higher-level node is updated. Therefore, the arbitration of the internal
node and root node should ensure that the priority is not updated until the lower-level
node completes its arbitration.

ack3

（a）

（b） （c）

ack

req3

req2

req1

req0

ack2

ack1

ack0

up_req

4x4

prefix

FPA

ack3req3

req2

req1

req0

ack2

ack1

ack0

4x4

prefix

FPA

req1

req0

ack1

ack0

2x2

prefix

FPA

Figure 7. Internal node and root node structure. (a) Internal node. (b) Root2 node. (c) Root4 node.

Based on the new priority strategy, first, the node granted all requests. As shown in
Equation (2), the lock signal indicates the completion of the node arbitration. We filtered out
the upward request signal through the lock signal, which can indirectly ensure the update
of the priority of the upper node. The proposed arbiter modified the up_req signal as in
Equation (3), to ensure that higher-level nodes could use the absolutely fair round-robin
arbiter [26] as follows.

gi =

{
1, i = max {j | rj = 1, (0 ≤ j ≤ N − 1)}.
0, otherwise

(5)

As shown in Figure 7, to achieve a shorter delay, we adopted the parallel prefix
FPA [27] as the structure of the internal node and root node, which can obtain log2N delay.
By defining a prefix pi:j, we could express priority encoding as a prefix operation:

pi:i = ri (6)

pi:j = pi:k · pk:j (7)

gi = ri · pi−1:0 (8)

The resulting signals of the parallel prefix FPA in the internal node have to be ANDed
with the ack signal, which is from the higher level, to indicate whether the result is valid or
not. The updated signal in the root node indicates that the arbitration is complete.

4. Implementation and Experiment

To evaluate the arbiter’s performance, we selected some classical arbiters to analyze
their critical paths and fairness [28]. Generally, the maximum delay path of the arbiter is

Appl. Sci. 2022, 12, 12458 8 of 12

from the time a leaf node launches an arbitration request to the upper layer to the time
the upper layer responds to the authorization signal. We calculated the number of 2-input
logic gates (3-input logic gates are counted as 1.5 unit gates) in the arbiters’ critical path.
The result is shown in Table 2. The SA and the FSA use 4-input cells to ensure that the
maximum delay increases with log4N and others grow with log2N.

Table 2. Complexity analysis of the arbiters.

Arbiter Critical Path Arbiter Logic Gate
(N = 256) Fariness

PPA 2log2(n) 16 unfair
SA 3log4(n) + 3 15 unfair

PRRA 4.5log2(n)− 1 35 fair
IPRRA 2.5log2(n) 20 fair

PLA 2log2(n)− 1 15 fair
FSA 3log4(n) + 2 14 fair

In order to assess their performances on ASICs, all arbiters were implemented in
structural RTL Verilog code and synthesized in a 90 nm process [29]. Since the synthesis
result depends on the target clock frequency, we employed the clock with different periods
and selected the worst path as the latency of the arbiters. Considering that most arbiters
use combinational logic as the input and output, the synthesis tool cannot correctly report
the worst path. Therefore, we implemented the D flip-flop before and after the structure.
The experimental module is shown in Figure 8.

D-FF D-FF

Arbiter

module

n
req[n 1:0]

n n n
grant[n 1:0]

Figure 8. Experimentalmodule.

The obtained delay is presented in Table 3 and Figure 9a. We list the most classic PPA
structures as a basis in the table in order to make it easier to find the advantages of each
structure. As shown in Figure 9a, the timing delays of SA and FSA grow with log4N, and
others grow with log2N. Except for PRRA, the other results were generally in line with our
expectations. The PRRA was optimized by the synthesizer using the 3-input logic gate, so
its critical path becomes 3log2(n)− 1. On a small scale, the FSA has a slightly longer delay
than SA; however, it has better latency on a large scale. Averagely, the FSA obtains the best
latency. Compared to the PLA, the FSA only keeps the locking structure at the leaf nodes,
and its complexity does not increase as the tree structure level increases. The FSA is faster
than other architectures on a wide scale, with a timing improvement of 8.1% over SA and
one of 22.2% over PLA, on average.

Table 3. Timing results of the arbiters (ns).

Port
Number

PPA [19]
(Unfair)

SA [21]
(Unfair) PRRA [23] IPRRA [23] PLA [25] FSA

N = 4 0.15 0.14 0.20 0.20 0.19 0.14
N = 8 0.21 0.20 0.26 0.25 0.24 0.21
N = 16 0.27 0.23 0.34 0.30 0.28 0.23
N = 32 0.34 0.29 0.40 0.36 0.33 0.26
N = 64 0.42 0.35 0.46 0.40 0.37 0.28

N = 128 0.50 0.37 0.54 0.48 0.43 0.33
N = 256 0.61 0.41 0.58 0.53 0.50 0.37
N = 512 0.68 0.45 0.67 0.61 0.54 0.42
Average 100% 76% 108% 98% 90% 70%

Appl. Sci. 2022, 12, 12458 9 of 12

0 100 200 300 400 500
0

0.2

0.4

0.6

Scale
(a)

C
ri

ti
ca

lP
at

h
D

el
ay

(n
s)

PPA SA PRRA
IPRRA PLA FSA

0 100 200 300 400 500
0

2

4

6

Scale
(b)

A
re

a(
um

2
·1

04)

Figure 9. Comparison of all arbiters. (a) Timing. (b) Area.

The achieved areas are presented in Table 4 and Figure 9b. As shown in Figure 9b, since
the arbiters mentioned are decentralized structures, the area of each arbiter is grown linearly
with N. Owing to the more complex structure of the FSA’s leaf nodes, the proposed arbiter
did not achieve better outcomes in comparison to simple arbiters. The area reduction
in ASIC implementation was obtained using the parallel prefix FPA structure, which
simplified the structure of the upper node. Averagely, the PRRA has the smallest area
owing to its simple structure. The FSA performed better than SA, with 12.2% area reduction
on average.

Table 4. Area results of the arbiters (um2).

Port
Number

PPA [19]
Unfair

SA [21]
Unfair PRRA [23] IPRRA [23] PLA [25] FSA

N = 4 342 402 341 366 318 404
N = 8 827 958 785 783 865 1076
N = 16 1694 1930 1534 1540 1903 2015
N = 32 3288 3844 2582 2864 3765 3713
N = 64 6773 7722 5346 5977 7331 6936

N = 128 13,052 15,559 10,255 10,793 14,135 13,761
N = 256 25,113 30,826 21,121 21,482 28,231 26,704
N = 512 50,319 60,844 40,891 41,940 54,470 52,608
Average 100% 120% 81% 85% 109% 105%

Furthermore, we implemented the arbiters on Xilinx’s VC709 [30,31] development
board to evaluate the performance of the arbiter on the FPGA. As shown in Table 5, at
250 MHz, all of the arbiters can be realized under the condition of N = 256, and the delay
situation typically conforms to the trend under ASIC. However, only the FSA can achieve a
scale of 128 with a 400 MHz clock, and the SA can only achieve a scale of 64. The FPGA
results are reported in Table 6. The proposed arbiter uses 14% less LUT resources than PLA
and uses 17% less flip-flop than SA.

Appl. Sci. 2022, 12, 12458 10 of 12

Table 5. Performance and scale of FPGA.

Frequency PPA [19] SA [21] PRRA [23] IPRRA [23] PLA [25] FSA

250 MHz 256× 256
(3.6 ns)

256× 256
(3.5 ns)

256× 256
(3.9 ns)

256× 256
(3.7 ns)

256× 256
(3.7 ns)

256× 256
(3.4 ns)

300 MHz 256× 256
(3.3 ns)

256× 256
(3.2 ns)

64× 64
(3.3 ns)

128× 128
(3.1 ns)

256× 256
(3.3 ns)

256× 256
(3.1 ns)

400 MHz 32× 32
(2.3 ns)

64× 64
(2.4 ns)

16× 16
(2.3 ns)

32× 32
(2.4 ns)

16× 16
(2.4 ns)

128× 128
(2.4 ns)

Table 6. FPGA utilization (LUT/FF).

Port
Number PPA [19] SA [21] PRRA [23] IPRRA [23] PLA [25] FSA

N = 4 7/11 8/12 7/12 7/12 10/11 6/11
N = 8 21/23 22/28 18/24 20/24 25/23 27/24
N = 16 49/47 48/56 48/48 48/48 57/47 65/48
N = 32 104/95 106/116 96/96 93/96 127/95 122/96
N = 64 215/191 204/232 199/192 201/192 257/191 231/192

N = 128 432/384 449/468 393/384 389/384 532/384 447/384
N = 256 883/767 836/936 859/768 839/769 1102/767 904/768

Avg(LUT) 100% 97% 94% 93% 123% 105%
Avg(FF) 100% 122% 100% 100% 100% 100%

5. Conclusions

In order to ensure that high-performance network-on-chip switches can provide
efficient, reliable data exchange capabilities, we focused on improving the performance
of the arbiter, mainly in terms of fairness and low latency. The architecture we proposed
ensures that all input requests are treated fairly, which designs based on the “ping-pong”
algorithm cannot do. The FSA has an O(log4N) critical path delay and is the fastest
design, which is exactly what a high-performance switching system needs to be. The most
critical feature of our design is that we implemented the search algorithm in layers. We
implemented the parallel algorithm for achieving fairness at the leaf node and implemented
a high-speed parallel search structure at the upper layer. This will ensure that the FSA will
be more scalable in large switching systems. The proposed structure will perform better as
the system-on-chip’s performance is improved and more nodes are added to it.

Author Contributions: Conceptualization, J.L., Q.X. and F.Y.; methodology, J.L., W.W. and Z.M.;
software, J.L. and M.X.; validation, J.L., W.W. and Q.X.; formal analysis, J.L., W.W. and Q.X.; in-
vestigation, J.L. and M.X.; data curation, J.L.; writing—original draft preparation, J.L. and W.W.;
writing—review and editing, J.L., W.W., Q.X., M.X., F.Y. and Z.M.; visualization, J.L.; supervision,
Z.M.; project administration, Z.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 12458 11 of 12

References
1. Chakravarthi, V.S. A Practical Approach to VLSI System on Chip (SoC) Design; Springer: Berlin/Heidelberg, Germany, 2020.
2. Swarbrick, I.; Gaitonde, D.; Ahmad, S.; Gaide, B.; Arbel, Y. Network-on-Chip Programmable Platform in VersalTM ACAP

Architecture. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside,
CA, USA, 24–26 February 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 212–221.

3. Dimitrakopoulos, G.; Psarras, A.; Seitanidis, I. Microarchitecture of Network-on-Chip Routers; Springer: New York, NY, USA, 2015.
4. Soundari, D.; Ganesh, M.S.; Raman, I.; Karthick, R. Enhancing network-on-chip performance by 32-bit RISC processor based on

power and area efficiency. Mater. Today Proc. 2021, 45, 2713–2720. [CrossRef]
5. Das, T.S.; Ghosal, P.; Chatterjee, N. Virtual circuit switch based orderly delivery of packets in adaptive NoC routing. In

Proceedings of the 12th International Workshop on Network on Chip Architectures, Columbus, OH, USA, 13 October 2019;
pp. 1–6.

6. Aweya, J. Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems; IEEE Series on Mobile & digital Communication;
Wiley: Hoboken, NJ, USA, 2018.

7. Dananjayan, P.; Vanga, K.R. Low Latency NoC Switch using Modified Distributed Round Robin Arbiter. J. Eng. Sci. Technol. Rev.
2021, 14, 76–84.

8. Karol, M.; Hluchyj, M.; Morgan, S. Input Versus Output Queueing on a Space-Division Packet Switch. IEEE Trans. Commun. 1987,
35, 1347–1356. [CrossRef]

9. Mohtavipour, S.M.; Mollajafari, M.; Naseri, A. A novel packet exchanging strategy for preventing HoL-blocking in fat-trees.
Clust. Comput. 2020, 23, 461–482. [CrossRef]

10. Papaphilippou, P.; Sano, K.; Adhi, B.A.; Luk, W. Efficient Queue-Balancing Switch for FPGAs. In Proceedings of the 2021
International Conference on Field-Programmable Technology (ICFPT), Auckland, New Zealand, 6–10 December 2021; pp. 1–5.

11. Gangwar, A.; Sreedharan, R.; Prasad, A.; Agarwal, N.K.; Gade, S.H. Topology Agnostic Virtual Channel Assignment and Protocol
Level Deadlock Avoidance in a Network-on-Chip. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference
(DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 61–66.

12. Guo, Y.; Zheng, H.; Wang, J.; Xiao, S.; Li, G.; Yu, Z. A Low-Cost and High-Throughput Virtual-Channel Router with Arbitration
Optimization. In Proceedings of the 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications
(ICTA), Chengdu China, 13–15 November 2019; pp. 75–76.

13. Avani, P.; Agrawal, S. Efficient Dynamic Virtual Channel Architecture for NoC Systems. In Proceedings of the 2018 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018;
pp. 2502–2507.

14. Papaphilippou, P.; Meng, J.; Gebara, N.; Luk, W. Hipernetch: High-Performance FPGA Network Switch. ACM Trans. Reconfigurable
Technol. Syst. (TRETS) 2021, 15, 1–31. [CrossRef]

15. Mei, L.C.; Qiao, L.F.; Chen, Q.H.; Yang, L.; Yang, J. A Packet Dispatching Scheme with Load Balancing Based on iSLIP for Satellite
Onboard CIOQ Switches. In Lecture Notes in Electrical Engineering, Proceedings of the International Conference in Communications,
Signal Processing, and Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 77–85.

16. Han, K.E.; Song, J.; Kim, D.U.; Youn, J.; Park, C.; Kim, K. Grant-Aware Scheduling Algorithm for VOQ-Based Input-Buffered
Packet Switches. ETRI J. 2018, 40, 337–346. [CrossRef]

17. Gupta, P.; McKeown, N. Designing and implementing a fast crossbar scheduler. IEEE Micro 1999, 19, 20–28. [CrossRef]
18. Mirhosseini, A.; Sadrosadati, M.; Aghamohammadi, F.; Modarressi, M.; Sarbazi-Azad, H. BARAN: Bimodal Adaptive

Reconfigurable-Allocator Network-on-Chip. ACM Trans. Parallel Comput. 2019, 5, 1–29. [CrossRef]
19. Chao, H.; Lam, C.; Guo, X. A fast arbitration scheme for terabit packet switches. In Proceedings of the Seamless Interconnection

for Universal Services, Global Telecommunications Conference, GLOBECOM’99, (Cat. No.99CH37042), Rio de Janeiro, Brazil, 5–9
December 1999; Volume 2, pp. 1236–1243.

20. Khan, A.A.; Mir, R.N.; Din, N.U. Adaptive hybrid arbiter design for real-time traffic-aware scheduling. Circuit World 2021, 48,
185–203. [CrossRef]

21. Shin, E.S.; Mooney, V.J.; Riley, G.F. Round-Robin Arbiter Design and Generation. In Proceedings of the 15th International
Symposium on System Synthesis, Kyoto, Japan, 2–4 October 2002; Association for Computing Machinery: New York, NY, USA,
2002; pp. 243–248.

22. Monfared, J.R.; Mousavi, A. Design and simulation of nano-arbiters using quantum-dot cellular automata. Microprocess Microsyst.
2020, 72, 102926. [CrossRef]

23. Zheng, S.Q.; Yang, M. Algorithm-Hardware Codesign of Fast Parallel Round-Robin Arbiters. IEEE Trans. Parallel Distrib. Syst.
2007, 18, 84–95. [CrossRef]

24. Ahmed, A.B.; Fujiki, D.; Matsutani, H.; Koibuchi, M.; Amano, H. AxNoC: Low-power Approximate Network-on-Chips using
Critical-Path Isolation. In Proceedings of the 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
Torino, Italy, 4–5 October 2018; pp. 1–8.

25. Monemi, A.; Ooi, C.Y.; Palesi, M.; Marsono, M.N. Ping-lock round robin arbiter. Microelectron. J. 2017, 63, 81–93. [CrossRef]
26. Turko, T.; Uhring, W.; Dadouche, F.; Fesquet, L. An Asynchronous Fixed Priority Arbiter for High througput Time Correlated

Single Photon Counting Systems. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 765–768.

http://doi.org/10.1016/j.matpr.2020.11.550
http://dx.doi.org/10.1109/TCOM.1987.1096719
http://dx.doi.org/10.1007/s10586-019-02940-2
http://dx.doi.org/10.1145/3477054
http://dx.doi.org/10.4218/etrij.2017-0057
http://dx.doi.org/10.1109/40.748793
http://dx.doi.org/10.1145/3294049
http://dx.doi.org/10.1108/CW-10-2020-0268
http://dx.doi.org/10.1016/j.micpro.2019.102926
http://dx.doi.org/10.1109/TPDS.2007.253283
http://dx.doi.org/10.1016/j.mejo.2017.03.004

Appl. Sci. 2022, 12, 12458 12 of 12

27. Thakur, G.; Sohal, H.; Jain, S. Design and Analysis of High-Speed Parallel Prefix Adder for Digital Circuit Design Applications.
In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4
July 2020; pp. 095–100.

28. van Pinxten, J.; Geilen, M.; Hendriks, M.; Basten, T. Parametric Critical Path Analysis for Event Networks With Minimal and
Maximal Time Lags. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2697–2708. [CrossRef]

29. Gayathri, S.; Taranath, T.C. RTL synthesis of case study using design compiler. In Proceedings of the 2017 International
Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India,
15–16 December 2017; pp. 1–7.

30. Virtex-7 XT VC709 Connectivity Kit. Available online: https://docs.xilinx.com/v/u/en-US/ug966-v7-xt-connectivity-getting-
started (accessed on 1 December 2022).

31. Taraate, V. ASIC and FPGA Synthesis. In Advanced HDL Synthesis and SOC Prototyping; Springer: Berlin/Heidelberg, Germany,
2019; pp. 159–172.

http://dx.doi.org/10.1109/TCAD.2018.2857360
https://docs.xilinx.com/v/u/en-US/ug966-v7-xt-connectivity-getting-started
https://docs.xilinx.com/v/u/en-US/ug966-v7-xt-connectivity-getting-started

	Introduction
	Related Works and Analyses
	Fair Switch Arbiter
	Fair Round-Robin Arbiter Scheme
	Round-Robin Arbiter Tree

	Implementation and Experiment
	Conclusions
	References

