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Abstract: The many success stories of reinforcement learning (RL) and deep learning (DL) techniques
have raised interest in their use for detecting patterns and generating constant profits from financial
markets. In this paper, we combine deep reinforcement learning (DRL) with a transformer network
to develop a decision transformer architecture for online trading. We use data from the Saudi Stock
Exchange (Tadawul), one of the largest liquid stock exchanges globally. Specifically, we use the
indices of four firms: Saudi Telecom Company, Al-Rajihi Banking and Investment, Saudi Electricity
Company, and Saudi Basic Industries Corporation. To ensure the robustness and risk management
of the proposed model, we consider seven reward functions: the Sortino ratio, cumulative returns,
annual volatility, omega, the Calmar ratio, max drawdown, and normal reward without any risk
adjustments. Our proposed DRL-based model provided the highest average increase in the net worth
of Saudi Telecom Company, Saudi Electricity Company, Saudi Basic Industries Corporation, and
Al-Rajihi Banking and Investment at 21.54%, 18.54%, 17%, and 19.36%, respectively. The Sortino ratio,
cumulative returns, and annual volatility were found to be the best-performing reward functions.
This work makes significant contributions to trading regarding long-term investment and profit goals.

Keywords: stock trading; transformer; deep reinforcement learning; machine learning; Tadawul;
stocks; robotic advice; robotic strategies

1. Introduction

A competitive strategy for trading stocks is critical for investment businesses. It
can maximize capital to maximize performance, such as targeted return. Brokers usually
estimate the prospective return and risk of stocks to maximize returns; however, due
to the complex nature of stock markets, it is difficult for analysts to analyse all relevant
elements manually.

A commonly used buzzword in financial technology and asset management is “robotic
strategies and advice” (or “Robo-Advice”). This is based on artificial intelligence (AI), and
has transformed the business model for financial advisers and wealth managers. It refers to
a fast-growing new breed of digital offering that provides investors with personalized in-
vestment services through a platform that integrates interactive and intelligent components,
rather than making appointments with human advisors [1–3].

Machine learning (ML) and deep learning (DL) approaches can learn trading strategies
on the basis of historical data provided for each stock, and can extract more profitable
patterns that human traders cannot quickly discover. For an ML or DL model, feature
engineering is the act of applying domain knowledge to add more features to the input
data. However, with the increasing availability of data, ML techniques have revolutionized
and achieved great success across a broad spectrum of academic disciplines and practi-
cal scenarios, including medical forecasting, natural language processing (NLP), picture
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recognition, and so on. The extraordinary performance of machine learning approaches
is based on their capability to uncover complicated non-linear patterns and investigate
unstructured links without making prior assumptions. Naturally, the financial world and
strategy researchers have closely paid attention to the many theoretical developments and
practical application achievements of ML and DL techniques.

Deep reinforcement learning (DRL) is a branch of the ML field that is able to combine
two powerful techniques: Data-hungry deep learning (DL) and the older, process-oriented
reinforcement learning (RL). Traditional RL involves agents making decisions or interacting
in an environment through trial and error, where Markov decision processes (MDP) are
used to model the process. By acting in the environment, the RL agent earns a reward,
and the goal of this agent is to learn to choose those actions that maximize the expected
cumulative reward over time. In other words, by noting the results of the actions that it
executes in the environment, the agent tries to learn an optimized sequence of actions to
execute in order to reach its goal. Sutton and Barto, in their innovative work [4], laid the
foundation for a completely new field that would have a profound effect on neuroscience,
as well as ML methods. Generally, RL was used with few data, and its behaviour was
quite complex. More recently, however, due to the advent of deep neural networks, RL has
gained massive power to take on more complicated problems.

The Saudi Stock Exchange (Tadawul) is among the largest liquid stock exchanges
globally, which is the only entity in the Kingdom of Saudi Arabia authorized to act as
a Securities Exchange [5]. The Saudi Stock Exchange (Tadawul) achieved a total market
capitalization of SAR 12,178 trillion in the week ending 12 May 2022, placing it among the
top exchanges in the world [6]. Figure 1 depicts the share of foreign investors in the total
market capital, compared to Saudi investors; according to market data, foreign investors
owned 3.18% of the total market capitalization. Over 136 companies are listed on the
Tadawul. Based on the type of industry they operate in, these companies are divided into
21 categories, each of which has stock financial indices. As an example, Etihad Atheeb
Telecommunication, Saudi Telecom, Mobile Telecommunications Company Saudi Arabia,
and Etihad Etisalat are all listed under the Telecommunication Services industry and, so,
are included in the Telecommunication Services Index (TTSI), which serves as the stock
finance index.

Figure 1. Investor Ownership in Saudi Stock Exchange (Tadawul).

1.1. Contributions of the Paper

In this research, we integrate modern transformer deep learning (TDL) into a tra-
ditional deep reinforcement learning (DRL) architecture to process financial signals and
automated trading using data from the Saudi Stock Exchange (Tadawul). The proposed
transformer network allows for prediction of the best trading strategy without looking
back to track the price movements of stocks. Based on the data of four different indus-
trial indices of the Saudi Stock Exchange (Tadawul)—Saudi Telecom Company (7010),
Al-Rajihi Banking and Investment (1120), Saudi Electricity Company (5110), and Saudi
Basic Industries Corporation (2010)—the proposed method facilitates the optimal learning
of hyper-parameters by automatically selecting the best reward function to increase the
net worth and profit on the initial investment. Selection of the best reward function is
based on the maximum outcome of the network and return on investment, using a list of
seven reward functions; namely, the Sortino ratio, cumulative returns, annual volatility,
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omega, Calmar ratio, max drawdown, and normal reward without any risk adjustment.
The Sortino ratio reward function provided the highest average increase in net worth for
Saudi Telecom Company, Saudi Electricity Company, Saudi Basic Industries Corporation,
and Al-Rajihi Banking and Investment, at 21.54%, 18.54%, 17%, and 19.36%, respectively.

The main contributions of our work can be summarised as follows.

• We propose a Transformer DRL-based framework for stock trading. The model does
not require a sliding look-back window to track price movements, as it employs a
transformer network architecture to pick the best trading policy, which is automatically
identified by the intrinsic attention mechanism of the network.

• We enhance our data set by including several widely used and valuable trading techni-
cal indicators. With the addition of these technical indicators, we are able to augment
our data set with important relevant information, which is well-complemented by the
forecasted data calculated from our prediction model. Our proposed model benefits
from a good balance of observations using this combination of features.

• The proposed technique optimizes the reward during the training process by integrat-
ing risk-adjusted return metrics, including the max drawdown, Sortino ratio, Omega,
cumulative returns, annual volatility, Calmar ratio, and a normal reward function
without risk adjustment.

• The utilization of various reward functions provides abundant possibilities for ex-
ploring the policy space and prohibits the agent from taking an imperfect, but accept-
able action.

1.2. Outline of the Paper

The remainder of this paper is organized in the following manner. In Section 2, we
explain the different approaches to stock trading and how the increasing availability of data
has revolutionized ML techniques, which have achieved great success due to their ability
to uncover complicated non-linear patterns and investigate unstructured links without
making prior assumptions. In Section 3, the methodology and the proposed model are
explained, including topics such as the trading environment, state space, action space, the
data set employed in this study, processing of data, feature extraction, model architecture,
and learning algorithms. In Section 4, we provide details regarding the computational
cost, hyper-parameters used, and experiments performed during the training of the model.
In Section 5, we discuss the results of our experiments, along with the possible future
extensions of our work. Finally, we conclude our work in Section 6.

2. Related Work

As an active research field that has appeared recently, generating automated trading
stock trading signals based on the financial conditions of stock markets has become a
favoured venue among scientists conducting research studies from various perspectives. In
general, there are two approaches to stock trading: knowledge-based techniques, in which
trading strategies are designed on the basis of financial research, mathematical equations,
and/or on the experience of traders; and ML-based techniques, in which strategies are
learnt from the available historical data of stock indices [7]. Knowledge-based techniques
necessitate human reasoning and the indication of trends in stock data. As a result, they
take a lot of time and have flaws such as accuracy, consistency, and imperfections, limiting
their ability to generalize financial market strategies [8]. Due to the manual handling of
data, the quality of the knowledge-based methods need to be thoroughly examined prior
to implementation.

Multi-layer perceptrons (MLPs), hybrid artificial neural networks, and dynamic ar-
tificial neural network (DAN2) have been used by Guresen, Kayakutlu, and Daim [9] to
forecast the stock index of the NASDA. They described that the MLP model accurately
predicted the first movement as down, with a small difference of 0.54% between the actual
and predicted realized value (1747.17). They concluded that the MLP model is a useful and
powerful tool for the forecasting of stock movements. Long short-term memory (LSTM)
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networks can identify long-term dependences and avoid the gradient vanishing problem.
They make use of historical data through output, input, and forget gates. Convolutional
neural networks (CNNs) are a variant of the multi-layer perceptron (MLP) that excel in
pattern recognition, and which have increasingly been used for time-series analysis and
prediction. Selvin et al. [10] have implemented a recurrent neural network (RNN), CNN,
and LSTM to predict the future prices of stocks for three companies listed on the National
Stock Exchange (NSE). They used the sliding window approach to predict the values on a
short-term basis. The achieved the percentage error was 3.90% for RNN, 2.36% for CNN,
and 4.18% for LSTM. Related work is summarized in Table 1.

Table 1. Studies focused on the prediction of stocks using ML, DL, and DRL techniques.

Reference Year Data Set Model Application Results

Guresen et al. [9] 2011 NASDA stock MLP
DAN2
Hybrid ANN

Forecasting of stock
indices.

MSE: 0.54%

Selvin et al. [10] 2017 National Stock
Exchange

RNN
CNN
LSTM

Prediction of future
stock price

MSE
RNN: 3.90%
CNN: 2.36%
LSTM: 4.18%

Nikou et al. [11] 2019 iShares MSCI United
Kingdom

ANN, RF,
SVR, LSTM

Prediction of closing
price of stock

RMSE
ANN: 0.45
SVR: 0.34
RNN: 0.38
LSTM: 0.30

Malibari et al. [12] 2021 Saudi Stock
Exchange

Transformer
network

Prediction of closing
price of stock

Accuracy
over 90%

Moody et al. [13] 1998 S&P 500 stock index RRL Performance check of
RRL for trading and profit

Hold strategy: 0.34
Average strategy: 0.84
Voting strategy: 0.83

Xiong et al. [14] 2018 Dow Jones 30 stocks DRL Prediction of future
stock price

Annualized Std. Error
of 13.62%
Sharpe ratio : 1.79

Gudelek et al. [15] 2017 Google finance 2D-CNN Prediction of future
stock price

70%
accuracy

Wang et al. [7] 2017 Dow Jones 30 stocks Portfolio management deep Q-learning -

Deng et al. [16] 2017 Stock IF-contract Financial
Signal Representation
and Trading.

DRL 0.523 PR

Luo et al. [17] 2019 Stock IF-contract AI-trader’s performance CNN-DDPG -

Li et al. [18] 2020 10 US equities single-stock
trading strategies

DQN
Double DQN
Dueling DQN

DQN outperformed
the other two
techniques

Our Work 2022 Saudi Stock
Market(Tadawul)

4 stocks
trading strategies
Robo Advice

Decision Transformer An increase of around 20%
was seen in net worth

Nikou, Mansourfar, and Bagherzadeh [11] have used four ML and DL models to
predict the closing price of the iShares MSCI United Kingdom index. They implemented
artificial neural network (ANN), random forest (RF), support vector regression (SVR),
and LSTM models for forecasting. The experiment results showed that the LSTM model
enhanced the prediction performance of a DL model incorporating the emotional tendencies
of investors. Ugur Gudelek, Arda Boluk, and Murat Ozbayoglu [15] have used a 2D CNN
for trend identification, where evaluation of model performance yielded accuracy figures
of 72%, which is very promising.

The next important step involved a new architecture, Transformer [19], which uses
attention mechanisms that harness self-attention processes to analyse whole input series,
removing the issues that come with extended sequences. Malibari et al. [12] have proposed
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a Transformer neural network for predicting the closing price of Saudi stock exchange for
next trading day. Their proposed method used the self-attention mechanism for learning
non-linear and dynamic patterns of time-series data of stock indices. They achieved an
accuracy of over 90% in accurately predicting the closing price for the next trading day.

RL is an emerging area of artificial intelligence (AI) that has gained much success and
acceptance in various applications, including video games, manufacturing, robotics, and
aerospace. The concept of RL became prominent with the demonstrated success against
human champions in board games such as chess, go, and shogi (Japanese chess). The
beginning of RL can be traced back to the 1950s [4] and, since then, it has given rise to
a wide variety of fascinating applications in machine control and gaming. It was not
until 2013, when DeepMind researchers exhibited their application in Atari games, that it
outperformed humans in the majority of games [20]; in particular, Mnih et al. [21] have
released a paper, in 2015, demonstrating that a computer taught by Google’s DeepMind
team to play seven different Atari games, and defeated the best human players in three
of the games. After two years, they enhanced their model, employing it to play a total
of 49 different games, half of which performed beyond the human difficulty level [22].
Moody et al. [13] were the first to apply RL to financial transactions, proposing a recurrent
reinforcement learning (RRL) trading system in which the price is fed directly into the
model as learning features for training. Zarkias et al. [23] have established a unique price-
tracking approach to choose successful judgments, by re-structuring trading as a control
issue and learning trading methods based on the following of trends. They concluded that
the performance of a trading system (i.e., the buy and hold strategy) is best when using the
accumulated wealth and Sharpe ratio as reward functions, and that it provides less risky
results, when compared to maximum drawdown.

With the introduction of deep reinforcement learning, neural networks have brought
about a revolution in the field of RL—just as they did in every other area of artificial
intelligence research. Better performances and rich feature extraction can be attained
through the combination of deep neural networks and RL, yielding a robust model which
is able to learn a good policy without knowing the environment [24]. Deep reinforcement
learning (DRL) is a very appealing method and methodology in ML, as it works well in
dynamic environments such as financial markets (which are extremely dynamic), and can
more efficiently identify and learn single-stock trading patterns. Taghian et al. [24] have
outlined the following three significant advantages of deep reinforcement learning over
other ML techniques:

1. It does not require previous knowledge of the environment to understand the trade rules;
2. it can continually adapt to changing environmental scenarios; and
3. it prioritizes long-term advantages, rather than quick rewards.

The most recent implementations of DRL in financial markets involve continuous
or discrete state and action spaces, and utilize one of the following learning methods:
critic-only, actor-only, or actor-critic [25]. The critic-only method solves a discrete action
space problem, and is the most-utilized learning strategy. The critic-only technique is based
on using a Q-value function to learn the optimum action-selection strategy which can
maximize the expected future reward, considering the present state. Examples of critic-
only methods that focus on training an agent on one stock or asset are deep Q-learning
(DQN) and its subsequent modifications [26,27]. However, the critic-only technique has a
significant drawback, in that it can only be applied to discrete and finite state and action
spaces. This makes it impractical to manage an extensive stock portfolio, as stock prices are
continuous [28]. In the actor-only method, however, the agent is the one who immediately
discovers and learns the most effective strategy. Rather than learning the Q-value, a neural
network is taught the policy. This type of policy is basically a strategy specific to a state
based on the probability distribution. In particular, the actor-only method can handle
environments with a continuous action space [28].

The goal behind the actor–critic strategy is to concurrently update both the Q-value
function and the policy through the actor and critic networks. The critic approximates the
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Q-value function, and the actor uses policy gradients to update the probability distribution,
as influenced by the critic. Actors become better at making better actions over time, and
critics become better at judging those actions in turn. When it comes to trading with an
extensive stock portfolio, the actor–critic technique has been shown to be capable of dealing
with various complex and challenging trading environments [28].

Wang et al. [7] have formulated a novel deep Q-learning-based strategy, in order to
build an end-to-end system to select optimal positions at each trading time step. Using
the Deep Deterministic Policy Gradient (DDPG) approach, Xiong et al. [14] have learned a
dynamic strategy for stock trading that beat the Dow Jones Industrial Average and min-
variance portfolio allocation. Li et al. [18] have investigated the effectiveness of three
Deep Q-network variants—including typical DQN, Duelling DQN, and Double DQN—in
learning single-stock trading strategies for 10 U.S. equities, and determined that the usual
DQN outperformed the other two techniques.

Due to the fact that there are several uncertainties in financial markets, such as changes
in the economic policy and misleading corporate information, the direction of the price will
be affected by market uncertainty and, so, it is critical to limit the noise coming from the
inputs. Deng et al. [16] have proposed a real-time financial signal representation model in
an environment which is totally unknown, which uses a recurrent deep neural network to
de-noise the price before being trained by RL. Luo et al. [17] have utilized two CNNs to
extract features with a DDPG model, in order to learn trading strategies on actual stock-
index future data. A novel trading agent developed by Li et al. [29] has been shown to be
able to automate the decision processes and set itself up for success in the dynamic financial
markets by using stacked de-noise auto-encoders and LSTM (SDAEs-LSTM). They used
SDAEs and LSTM as function approximators in order to extract features from high-noise
market, resulting in steady and risk-adjusted outcomes in stock and futures markets.

3. Methodology and Proposed Model

In this paper, the fundamental concept is modelling time-series data; that is, we
consider a sequence modelling problem. In particular, we wish to predict the next closing
price, given the previous sequence of (historical) closing prices and other data, by learning a
function that describes a temporal dynamics model. At every time step, the model receives
one more sequence element as input and, so, this function processes inputs of varying
lengths. This function is considered an auto-regressive sequence model, as the outputs of
the function depend on its previous outputs. The significant progress in sequence modelling
and NLP in recent years—notably with respect to pre-trained Transformer networks such
as BERT and GPT-x—has opened up the exciting idea of formalizing sequential decision-
making issues in the framework of reinforcement learning (RL). This integration, framing
RL as a sequence modelling problem and using a Transformer architecture, provides an
effective solution to the problem of long-term credit assignment. According to the long-term
credit assignment problem, traditional RL algorithms have difficulty in determining which
of the previously executed actions contributed to the return of an episode. However, with
the Transformer model, using its attention module allows us to explicitly find relationships
between states, actions, and rewards within a sequence, thereby resolving the long-term
credit assignment problem. The results presented later in this paper demonstrate the
effectiveness of our approach and provide empirical validation.

3.1. Preliminaries
3.1.1. Reinforcement Learning

Reinforcement learning (RL) is an area of ML that involves figuring out how software
agents should behave in a given environment. This is accomplished by determining what
actions should be taken, in order to accumulate the most rewards over a given course of
time. Every problem to be solved using RL starts with an environment and one or more
agents that can interact with that environment.
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The agent first makes observations of the environment, following which it constructs a
model of the present state of the environment and the anticipated values of actions that may
be taken inside the environment. Then, the agent executes the action determined to have
the most significant predicted value (reward), and is rewarded with a sum proportional to
the actual worth of the action they choose to do, determined according to the impact that
the action has on the environment. The underlying model of the RL agent may then be
improved through trial and error (also known as learning by reinforcement), allowing it to
eventually learn to perform behaviours that provide a higher level of rewards.

3.1.2. The Trading Environment

Typically, a human trader would examine many charts illustrating the price action
of a company, sometimes with a few technical indicators superimposed on top (see, e.g.,
Figure 2). Afterwards, they aggregate and evaluate this visual data to make a well-informed
judgment regarding the anticipated movement of the stock.

Figure 2. Stock Price Chart with technical indicators.

Our trading setting attempts to simulate human behaviour by permitting our agents
to monitor the observation or state space, which includes historical daily stock data—Open
price, High, Low, Close, and volume (OHLCV)—as well as a few other technical indicators
prior to executing (or not executing) a trade. Additional in-depth information on the state
of space may be found in Section 3.1.4 below. At each time step, the agent analyses the
action of price leading up to the current price and the position of their portfolio, in order to
make an informed choice about the next course of action. After the agent has assessed their
environment, they must take an action from its action space, including purchase a stock,
sell a stock, or hold (do nothing). Section 3.1.5 details the action space in more depth.

3.1.3. Reinforcement Learning as Sequence Modelling

The key assumption in this paper is that we will be able to model our environment in
the form of a Markov decision process (MDP), specified byM = (S ,A,P ,R) where s ∈ S
represents the state space, a ∈ A denotes the action space, P is the probability distribution
over transitions given by P(s′|s, a), and R(st, at) is the reward function. It is important
to note that a trajectory T = (s1, a1, r1, s2, a2, r2, · · · , st, at, rt) in the MDP represents a
sequence of states, actions, and rewards that correspond to the agent’s prior experience,
which are arranged sequentially. Making action predictions from past experience is the
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purpose of sequence modelling in RL [30,31]. The probability of reaching state s′ and
earning a reward r following the execution of an action a when beginning in state s is
given by:

Pr(â) = p(at|s1:t, a1:t, r1:t). (1)

3.1.4. State Space ∈ R32

The representation of the state s = [f, h, b] is a vector with 32 dimensions, comprised
of the following three components:

• Market Features f ∈ R28xD: Essentially, this is a set of features that is gathered for both
tickers and their corresponding market indices, including the transaction date, close
price, volume, and six technical indicators. As a result, the feature set includes both
the closing price of the ticker and the closing price of the linked index, except for the
transaction date, as the ticker and its index will have the same transaction date. Several
technical indicators generate multiple values (features) as a result of their calculations,
such as Moving Average Convergence Divergence (MACD), which generates two
(MCAD) values and a single line. In Section 3.3, we discuss the 28 market features
in detail.

• Held shares h ∈ Z+3xD
: The total number of shares that are owned in relation to the

stocks; this amount (which must be an integer) describes all of the shares possessed.
• Available Balance b ∈ R+: The amount of liquid assets that are accessible to be used

in the process of purchasing or selling a certain stock at each successive time step in
the process. This should either be positive or zero, and permitted activities should not
result in a balance that is negative.

3.1.5. Action Space

There will be a discrete number of action sets within the action space, and these action
sets cannot overlap. These action sets are utilized to buy a stock B, sell a stock S , or hold
(do nothing)H, where B ∪ S ∪H = {1, 2, · · · , D}. Furthermore, a continuous spectrum of
share quantities can be described as [−k, 1, 0, 1, · · · , k] where k and −k are the total number
of shares that we are able to buy and sell (0–100%, based on the Available Balance b and
Held shares h, respectively).

3.1.6. Reward Function

It is necessary to provide feedback to the agent through reward signals, in order to
teach it which behaviours are appropriate and inappropriate, depending on the context
in which they are performed. The agent’s trading approach is significantly impacted,
both directly and immediately, by this feedback [32]. In our case, the reward function
r = (s, a, s‘) the reward that the agent will earn after it has acted in each state. Our goal is
to encourage profits that are sustained over a long period of time, while controlling risk as
much as possible. The metrics we use to reward our agents are varied, thus promoting our
efforts to improve their performance. The measures covered here include the profit and loss
function (PnL), the Sharpe ratio, the Sortino ratio, and the Calmar ratio. PnL is a regularly
used metric in trading system research to examine the efficiency of reward functions in
RL [7,27,33]. Nonetheless, PnL does not consider the risks associated with making a profit.
As a result, the risk-adjusted return measure is presumed to be capable of accounting for
this factor.

• The Profit and Loss (PnL) The profit function is the one that of the most-used reward
functions. Its mathematical formula is as follows:

rt =

(
1 + at ×

pt − pt−1

pt−1

)
pt−1

pt−n
, (2)
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where pt is the closing price on the market at time t, while at is the agent’s action at the
same time t. Equation (2) is comprises of both one-day and long-term gross returns
over n periods.

• Volatility-Based Metrics: Sharpe and Sortino ratio According to [34], the Sharpe ratio
is a frequently used measure of the risk-adjusted return, which can indicate both profit
and volatility. The Sharpe ratio is calculated by dividing the average risk-free return
of the investor by the standard deviation of that return:

St =
Average

(
∑W

i=1 Ri

)
σ
(

∑W
i=1 Ri

) . (3)

At time t, the Sharpe ratio reward function is St, the daily return on multiple shares of a
stock is Ri, and return averages and standard deviations are estimated over returns for
periods of W, where W denotes the window size, which is used to calculate the average
and standard deviation of the returns. Despite this fact, the Sharpe ratio considers
volatility in portfolio values. However, the ratio equally regards both upward and
downward movements; that is, it also penalizes upward volatility [35–37]. As a matter
of fact, upward volatility (upwards price movement) contributes to positive returns,
while downward volatility causes losses. In contrast to the Sharpe ratio, the Sortino
ratio only considers downward volatility to be a risk, rather than overall volatility.
The upward volatility, therefore, is not penalized by this ratio. Mathematically, it is
formulated as follows:

SRt =
Average

(
∑W

i=1 Ri

)
σdown

(
∑W

i=1 Ri

) , (4)

where SRt and σdown represent the reward function of the Sortino ratio at time t and
the standard deviation of the daily return below zero for the period W, respectively.
According to the Sortino ratio, the volatility of the loss under the profit conditions
is the only factor considered, as the volatility of the loss under loss conditions is
irrelevant. Modern portfolio theory indicates that the Sharpe and Sortino ratios
represent high profits without significant volatility. Moreover, according to [38], the
Sharpe ratio and the Sortino ratio allow RL agents to perform significantly better over
other benchmarks.
However, neither the PnL, Sharpe ratio, or Sortino ratio metrics take into account
the maximum drawdown, defined as the maximum loss noted between a peak and
a bottom of a portfolio before a new peak is reached. It provides a measure of the
rate of change in price over a specified time period, and is an indicator of downside
risk [39,40]. A measure known as the Calmar ratio uses maximum drawDown only as
a method for quantifying risk [37], where a high Calmar ratio indicates better portfolio
performance [41].

3.2. Data

In this study, four different industrial indices were paired with individual firms to
illustrate the effectiveness of our proposed methodology: The telecommunication services
index (TTSI) paired with Saudi Telecom Company, the banking index (TBNI) with Al
Rajhi Banking and Investment, the materials index (TMTI) with Saudi Basic Industries
Corporation, and the utilities index (TUTI) with Saudi Electricity Company. For all selected
indices and companies, the data were obtained by utilizing the Google Finance API for
Sheets, covering the same time period of January 2017 through May 2022. Figure 3 depicts
how the entire data set was split. We used data from 1 January 2017, to 30 January 2020,
for training, and data from 1 February 2020, to 31 December 2020 for parameter tuning
and validation. Finally, we tested the performance of our model using trading testing
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data, which consisted of unknown out-of-sample data from between 1 January 2021 and
23 May 2022. Our agent continues to be trained as it trades, such that it can adapt to market
dynamics better. This is expected to help us to better exploit the trading data.

Figure 3. Data set split.

In Figure 4, the Tadawul All Share Index (TASI; depicted in blue) is compared to the
performance the four selected indices. It is possible to see the changes in each index during
the same period. TTSI, TMTI, and TBNI trended either upward or downward in an almost
identical direction to TASI. In contrast, for the TUTI index, which reflected movements in
the opposite direction, different movements were indicated. The Bank Index (TBNI) began
to reduce its gap with the Tadawul All Share Index (TASI) by the beginning of 2019, and
surpassed the Tadawul All Share Index by the end of 2021, mainly due to the growth of the
Saudi economy. In addition to being one of the 20 largest economies in the world, Saudi
Arabia is actively participating in the G20, due to its economic growth. The robust financial
system, the effective banking system, and the vast number of government companies run
by highly qualified Saudis have made Saudi Arabia one of the world’s most prominent
players in the global economy and oil markets.

The next step was to manually examine the stock performances during the training
and validation period. Figures 5–8 show the change in performance of each stock over the
course of the training and testing periods. The green vertical line indicates the start of the
validation phase, while the red vertical line indicates the beginning of the testing phase
(data not seen by the model).

Figure 5 for Saudi Telecom Company shows an upward trend beginning in 2017 and
continuing until the middle of 2019, at which point it begins to show a declining trend
that continued until the first quarter of 2020. In contrast, for Saudi Electricity Company,
Figure 6 shows a downward trend until the end of 2018, followed by drifting sideways
until the middle of 2020 and reversion to an upward trend beyond that point.

Furthermore, Figure 7 illustrates that the value of Al-Rajhi Banking and Investment
stock was maintained (upward trends), even during the COVID-19 pandemic, as a result
of strong financial standings. Over the past three years, the bank has issued bonus issues
twice. The most recent capital increase was in February 2012, when SAR 15 billion in
retained earnings were injected, and five shares were issued for every five held [42].

On the other hand, the stock price of the Saudi Basic Industries Corporation (Figure 8)
plunged from 130.40SR in May 2018 to 66.10SR in March 2020. Following a slow start
in March 2020, the stock entered April 2020 on a relatively high note, which gave way
to the recent downward trend. After beginning 2021 in the 104SR range, the stock price
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increased throughout the year and hit its current all-time high when it surpassed 134SR on
21 October 2021.

Figure 4. Comparison of performance of the four selected indices with that of the Tadawul All Share
Index (TASI).
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Figure 5. Behaviour of Saudi Telecom Company (7010) during the training and testing periods.
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Figure 6. Behaviour of Saudi Electricity Company (5110) during the training and testing periods.
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Figure 7. Behaviour of Al-Rajhi Banking and Investment (1120) during the training and
testing periods.
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Figure 8. Behaviour of the Saudi Basic Industries Corporation (1020) during the training and
testing periods.

3.2.1. Data Pre-Processing

According to [43], adjusting the data pre-processing to accommodate ML algorithms
can significantly contribute to the performance of such algorithms, having a fundamen-
tal impact on their performance. It has been noted, however, that despite its critical
importance, this work is perceived as one of the most routine and laborious of all ML
activities [43,44]. There are several methods for pre-processing data, including Data Im-
putation, Data Normalization, and Feature Extraction. In the following, we describe the
various pre-processing steps.

3.2.2. Data Imputation

In many modern ML applications, understanding how to deal with incomplete data
sets is one of the most prominent issues. Missing data may be caused by various factors,
such as flawed acquisition method, worries about data privacy, lack of knowledge, non-
availability of information, and so on. This creates inconsistencies within the data set, hence
influencing the predictions. Silva-Ramirez et al. [45] have defined imputation as the process
of substituting estimated values for missing data points in a data set. Imputation can create
a complete and consistent data set through the reconstruction of missing data. According
to [46], missing data may be broken down into one of the three following categories:

1. Missing Completely at Random (MCAR): The missing data are not related to the
values of any other variable in the data set.

2. Missing at random (MAR): The probability of the missing values of a variable is
dependent on another variable in the data set, but not on that variable.

3. Missing Not at Random (MNAR): That missing values in a variable are closely related
to the variable and not the other variables in the data set. This is the most concerning
missing value.



Appl. Sci. 2022, 12, 12526 14 of 33

In our situation, there may be gaps in the data set due to missing stock data or technical
indicators. In this case, data imputation becomes critical for a comprehensive and consistent
data set, which will substantially influence prediction. In addition, it is a well-known fact
that the Tadawul stock markets are closed on the weekends (Friday and Saturday), on
national holidays, and on other days that are considered public holidays. This results in a
scenario in which price data pertaining to stocks are unavailable on specific days when the
market is closed. The loss of these data may result in loss of information. The handling of
missing data can be accomplished in several ways. However, we used linear interpolation
in all instances that did not have available stock data in our situation, which was done
to acquire an accurate data representation. The process of creating new data points from
existing ones is referred to as linear interpolation. This approach is one of the simplest
missing data methods available, as it only requires two known data points to calculate the
missing value.

3.2.3. Data Stationarity

According to [47], real-world data such as stock prices provide some of the most
complicated and challenging problems in forecasting. Real-world data are inherently
non-stationary, which means that their distributions change over time, making precise fore-
casting difficult. The data distribution may be utterly unpredictable due to non-stationary
data characteristics such as trends, seasonality, residual, random walks, and their combina-
tions. This is problematic for ML, as it goes against one of the foundational assumptions:
The training, validation, and test data sets are all drawn from the same distribution, and
every sample has an equally distributed distribution [48].

Looking more closely at Figures 4–8, it is evident that all of our indices and stocks ex-
hibited a trend. In fact, Augmented Dickey–Fuller is a frequently used method to determine
whether a time series is stationary or not [49]. Prior to carrying out the preceding step, we
used the statistics library module (statmodels.tsa.seasonal) to examine the characteristics
of the stock data. The time-series was divided into three components by this module, as
depicted in Figures 9–12, for each ticker: trend, seasonality, and residuals. Trends define the
overall direction of a series throughout time. Seasonality refers to patterns that are repeated
at regular intervals according to seasonal elements (e.g., annual, monthly, or weekly). After
eliminating the preceding components, the residual indicates the irregular component of
the time-series.

The bottom line is that our stock data contained noticeable trends and seasonality,
impacting the ability of our algorithm to predict the stock data accurately. This conclusion
was verified by the Augmented Dickey–Fuller test, a sort of statistical test known as a unit
root test. This test reveals how firmly a trend characterizes a time-series. The objective of
a statistical test is to assess whether or not a null hypothesis can be rejected, and the null
hypothesis for this test is that a unit root cannot represent the stock data and that it is not
completely stationary (i.e., it has some structure which is time-dependent). Alternatively,
the stock data may be stationary, thus rejecting the null hypothesis. Interpreting this result
is guided by the p-value obtained from the test. Whenever the p-value is less than a
threshold, we can reject the null hypothesis, demonstrating that the data are stationary.
Meanwhile, a p-value greater than the threshold indicates that the null hypothesis cannot
be rejected (non-stationary).

For the aim of confirming the stationarity of the stock data, the Augmented Dickey–
Fuller unit root test was carried out, and the outcomes of this test are shown in Table 2.
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Figure 9. Decomposition of 7010 Stock Data: Trend, Seasonal (Periodic), and Residual Components.

Table 2. Results of Augmented Dickey–Fuller (ADF) Unit Root Test.

Index/Stocks ADF Statistic p-Value Critical Values Decision

Telecommunication
Services Index(TTSI) − 1.161312 0.690013 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary

Saudi Telecom
Company (7010) −1.594104 0.486555 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary

Banks Index (TBNI) 1.187172 0.995896 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary
Al Rajhi Banking and
Investment
Corp(1120)

2.972744 1.000000 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary

Materials Index
(TMTI) −0.562991 0.879127 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary

Saudi Basic
Industries
Corporation (2010)

−1.878952 0.342027 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary

Utilities Index (TUTI) 0.334678 0.978881 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary
Saudi Electricity
Company (5110) −1.661178 0.451217 1%: −3.435 5%: −2.864 10%: −2.568 Failed to Reject Ho , Time-Series is Non-Stationary
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Figure 10. Decomposition of 5110 Stock Data: Trend, Seasonal (Periodic), and Residual Components.

Table 2 makes it quite clear that the null hypothesis was not rejected for the data of
indices and stocks, confirming that our data were not stationary. This can be observed by
the fact that the absolute value of the ADF-statistic was less that the absolute value of the
ADF-critic at the 1% level (3.592462), as well as by the fact that the p-values were higher
than 0.05. Data that are non-stationary can be handled using various techniques, including
differencing and transformation. The purpose of a difference is to eliminate variance in
the mean, where subtracting the current observation (xt) from the prior observation (xt−1)
yields the difference. The mathematical expression for differencing is as follows:

xt = xt − xt−1. (5)

Transformations, however, are used to stabilize non-constant variances by applying
some mathematical function to each time-series value to remove a pattern. The most
common transformation methods are log transforms, square roots, and power transforms,
including the Box–Cox transformation and the Yeo–Johnson transformation. In this study,
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we employ Yeo–Johnson transformations. Mathematically speaking, the Yeo–Johnson
transformation may be expressed as:

y(λ)i =



(
(yi + 1)λ − 1

)
/λ if λ 6= 0, y ≥ 0

log(yi + 1) if λ = 0, y ≥ 0

−
[
(−yi + 1)(2−λ) − 1

]
/(2− λ) if λ 6= 2, y < 0

− log(−yi + 1) if λ = 2, y < 0,

(6)

where yi denotes the observed feature transformed using a parameter λ. Maximum
likelihood is typically used to estimate λ in the Yeo–Johnson transformation, assuming
that the transformed variable follows a normal distribution [50]. Nonetheless, according
to [51], the application of a transform on its own does not necessarily cause the data to
become stationary. This conclusion was reached using the ADF test. Therefore, to make
data stationary, differencing was also applied in combination with the transform.

Figure 11. Decomposition of 1120 Stock Data: Trend, Seasonal (Periodic), and Residual Components.
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Figure 12. Decomposition of 2010 Stock Data: Trend, Seasonal (Periodic), and Residual Components.

3.2.4. Data Normalization

Data normalization is the process which involves changing the range of values in
a data set. When we utilize price and volume data, all stock data should fall within a
standard value range [12]. Generally, ML algorithms converge more quickly or perform
better when the data they are working with are close to being normally distributed and/or
when the scales on which they are working are the same. The activation function in an ML
algorithm, such as the sigmoid function, also has a saturation point, at which the outputs
become constant [12,52]. To use model cells effectively, one must normalize the inputs
before applying them. This operation was completed using the MinMaxScaler method
included in the scikit-learn package. When the MinMaxScaler algorithm is applied to a
feature, it takes the minimum value and subtracts it from each value in the feature. Then, it
divides the range by the result of this subtraction. Therefore, the range of a feature is the
difference between the highest possible value and the lowest possible value. The structure
of the initial distribution is kept intact through the use of this method by MinMaxScaler. In
particular, the input values were normalized by the MinMaxScaler such that they fall in the
range [0, 1].
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3.3. Feature Extraction

This subsection focuses on describing how features are extracted from the stock data,
which will be used later to perform the analysis. We start by outlining the selection of our
sets of features. In [45], feature extraction was defined as the process of obtaining derived
values (features) from the input data and producing unique and informative properties to
enhance the learning and generalization tasks of ML algorithms. Stock data are generally
subject to a high amount of noise, and we can reduce the effect of noise by using appropriate
technical indicators. These technical indicators can also provide a different perspective
on the market, based on their use, and provide a higher degree of predictive ability to
predict future price movements. Statistically, these characteristics should generally have
a reasonable correlation with market movements, which will complement our forecasted
data. Combining these features should lead to a nice mix of practical observations, from
which our model can benefit.

Inputs to a Transformer network are used to more effectively capture trends in the
stock market. These inputs include the daily closing price, trading volume, and six technical
indicators for each ticker and its linked index. These technical indicators have been
proposed by [53]. It is usual practice to classify technical indicators into four categories:
Volume, Volatility, Momentum, and Trend. Summaries of the technical indicators that were
utilized are given below:

1. Exponential moving average (EMA) These are utilized to reduce the noise and point
out the short- and long-term trends in time-series data. The exponential moving
average EMA (x, α) is generated by exponentially reducing the weight of observations
Xi regarding their distance from Xt using a weighted multiplier α.

EMA(xt, α) = αxt + (1− α)EMA(xt−1, α).

α =
2

N + 1

(7)

2. Money flow index (MFI): Based on price and volume, the money flow index de-
termines the amount of money moving into and out of a specific ticker, or, to put
it another way, if a given stock has been over-bought or over-sold. This is what is
known as a momentum indicator. When the MFI is over 80, it indicates an over-bought
condition; meanwhile, when it is below 20, it suggests an over-sold condition. The
MFI may be computed using the following formula:

MFI = 100− 100
1 + MFR

,

where MFR =
Positive Money Flow

Negative Money Flow

Money Flow =

(
High + Low + Close

3

)
Volume.

(8)

3. Relative strength index (RSI): This index is also used as a momentum indicator,
which determines whether a ticker is over-bought or over-sold by considering both
the velocity and magnitude of price fluctuations. Its value may vary anywhere
from 0 to 100, with low values indicating a stock that is being over-sold and high
values indicating an over-bought stock. The following formula may be used to easily
determine the value of this indicator:

RSI = 100− 100
1 + RS

,

where RS =
Average of Up closes

Average of Down closes
.

(9)
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4. Moving average convergence-divergence (MACD): The MACD is another indicator
used to illustrate the relationship between two exponential moving averages (EMAs):
Slow (θ1) and fast (θ2). According to [54], the moving averages are calculated based
on the following criteria: θ1 comprises 26 periods (market standard), θ2 consists of
12 periods (usual for the financial markets), θ1 − θ2 for constructing the MACD line.
Finally, the moving average is constructed using the MACD line (standardized with
9 periods). This indicator can be used to assess the trend-following momentum within
a stock. The formula for calculating this indicator is:

MACD = EMA(θ1)− EMA(θ2). (10)

5. Commodity channel index (CCI): The commodity channel index (also abbreviated as
CCI) is a type of trend indicator that calculates the difference between the average of
historical prices and the current price value. When the CCI is greater than zero, the
current price is higher than the average value of historical prices; conversely, when the
CCI is lower than zero, the price is lower than the historical average. A reading above
100 is above the buy threshold, and that below − 100 is below the sell threshold.

CCI =
1

0.015
Ptypicalprice − SMA(Ptypicalprice)

MAD(Ptypicalprice)
, (11)

where SMA is the simple moving average and MAD is the mean absolute deviation.
6. Ichimoku: The Ichimoku Hinko Hyo indicator identifies the trend direction and

determines accurate support and resistance levels. There are five main components of
the Ichimoku Cloud indicator that provide reliable trade signals: Kijun-Sen, Senkou
Span B, Senkou Span A, Tenkan-Sen, and Chiou Span.

A Python library for technical analysis [55] was used to calculate these technical
indicators based on raw stock data, comprised of opening price, the closing price, the low
price, the high price, and the trading volume.

3.4. Decision Transformer Model

Traditional deep reinforcement learning agents are trained to optimize decisions to
achieve the optimal return. At every time step, an agent observes the environment and
decides what action to take to help itself achieve a higher return magnitude in future
interactions. For this study, we trained an RL agent using Decision Transformers [30] as
our base model. A decision transformer is a type of sequence model that forecasts future
behaviour by taking into account both Return-To-Go (RTG) and previous interactions
between an agent and its environment.

A Decision Transformer produces optimal actions by mapping diverse experiences to
their respective return magnitudes during training, as opposed to conventional RL, which
computes policy gradients or fits value functions. Using a variety of experiences when
training an agent increases the model’s exposure to a wide range of trading variations,
thereby helping it to derive useful trading rules that will enable it to succeed under any
given circumstance. In this case, based on the desired return (reward), past states, and
actions, the Decision Transformer will be able to generate any return value in the range
it has observed during training, including the optimal return. By using this Decision
Transformer model, we can generate future decisions based on the desired return (reward),
past states, and actions.

We summarise the model architecture in Figure 13, where returns, states, and actions
are incorporated into modality-specific linear embeddings, and a positional episodic time
step encoding is also added. The model processes a trajectory,
T = (s1, a1, r1, s2, a2, r2, ....st, at, rt), in order to learn meaningful patterns. Rather than
directly feeding rewards, the models are fed with the sum of future rewards, resulting in
trajectory representations which can be trained and generated by autoregressive methods.
The return of the trajectory determines the initial Return r1. During training, at time step t,
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the model uses the tokens from the last transformer context length (K), which is a hyperpa-
rameter, to predict at using a cross-entropy loss function, and the average of the losses is
computed at each time step. Throughout the evaluation, we specify the initial state s1 and
the target return r1. The model then generates the action at. Upon executing the generated
action, the target reward is subtracted from the achieved reward to determine the next state.
This process continues until the episode ends.

Figure 13. Model Architecture.

4. Experiments and Analysis

In this section, we describe the setup utilized for our experiments, present the numer-
ical results of our model on the selected stocks, and test the algorithm against different
spread settings to investigate the usefulness of the model. The objective of this section is to
validate our approach with respect to the Saudi stock market. In our opinion, our approach
can be applied to other financial markets with little modification.

4.1. Hyperparameters

A transformer’s performance is affected by various parameters, including its dimen-
sionality, the activation functions, the number of embeddings, hidden states, learning
rate, and the number of attention heads within the attention layer. These parameters are
referred to as hyperparameters. Optimizing hyperparameters can be achieved through dif-
ferent techniques, including grid-search, Bayesian, random, and genetic algorithms, among
others [56,57]. The high computational costs precluded us from performing a systematic
hyperparameter tuning. Parameter pruning is a common method for reducing the model
search and hyperparameter optimization times [56]. As part of our experiment, we cloned
the same hyperparameters as the Decision Transformer [30], in order to quickly find an
initial parameter set. In Table 3, all hyperparameter values and descriptions are provided.
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Table 3. Values of various hyperparameters used in our Model.

Hyperparameter Value

State dimensionality The state size for the DRL environment
Action dimensionality The size of the action space = 3
Number of hidden layers 12
Number of attention heads 12
Learning Rate 0.001
Optimizer GELU
Batch size 256
Dropout probability 0.1
Layer normalization epsilon 1 × 10−5

Additionally, the hyperparameters and model architecture remained constant through-
out the experiments.

4.2. Model Training

We discuss model training in this section. The model was trained using a fixed
data set D including the previously gathered trajectory data. From the data set, the
Decision Transform extracted n mini-batches of length K for each stock and created token
embeddings before normalizing them through the normalization layers. Tokens were also
embedded with the embedded time step at each step. GPT was then used to process the
tokens. A forward pass was applied to each mini-batch in the architecture, which predicts
the action (i.e., whether to sell, buy, or hold). Accordingly, the loss between the prediction
and the subsequent actual action in the data set was calculated as Cross-Entropy (CE) loss.

We used seven different reward functions during model training. The technique
proposed in this paper is able to automatically choose the best-performing reward func-
tion on the basis of the model performance. Based on the selection of reward functions,
model hyperparameters optimization is carried out. We used the Sortino ratio, omega,
the Calmar ratio, normal, max drawdown, cumulative returns, and annual volatility as
reward functions, where the cumulative returns indicate the total return at the end of the
trading phase; annual volatility and maximum drawdown are indicators of a model’s
robustness; the Sortino ratio is a popular statistic that considers both return and risk; the
Calmar ratio is a risk-quantification measure calculated based on the max drawdown; and
the normal reward function is the reward without risk adjustment, calculated as the current
net worth—the net worth after the ticker is sold or bought.

The performance of the model under the outcome of net worth is illustrated in
Figures 14–17 for each stock, based on the Sortino ratio, the Calmar ratio, omega, and
annual volatility reward functions. In the case of the Saudi Telecom Company (Figure 14),
the Sortino ratio demonstrated the best reward function, with a maximum net worth ex-
ceeding 16% of the initial balance of $10,000 and an average over 17%. For Saudi Electricity
Company (Figure 15), the performance under the Sortino ratio and annual volatility was
the same. Both showed a maximum net worth of slightly over 35%. However, in the last
few months, the Sortino ratio outperformed the annual volatility. Saudi Basic Industries
Corporation (Figure 17) showed a maximum net worth of slightly over 12% of the initial
account balance for the annual volatility reward function. However, Al-Rajihi Banking and
Investments showed the highest annual volatility ratio, with a net worth of more than 13%.
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Figure 14. Outcome of 7010 stock net worth during model training with different reward functions
(Initial portfolio value $10,000).

Figure 15. Outcome of 5110 stock net worth during model training with different reward functions
(Initial portfolio value $10,000).
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Figure 16. Outcome of 1120 stock net worth during model training with different reward functions
(Initial portfolio value $10,000).

Figure 17. Outcome of 2010 stock net worth during model training with different reward functions
(Initial portfolio value $10,000).

Figures 18–21 illustrate the outcome of target return during model training. As the
goal of model was to maximize the profit over a long period of time, each reward function
attempted to increase the return on the initial value of a portfolio (i.e., $10,000 for each
company). For Saudi Telecom Company (Figure 18), at the start of training (around the
samples of one year), all reward functions performed equally. From the middle of year
2018, the Sortino ratio and cumulative return increased the value of return by 12% of
the initial value. However, in the end, the Sortino ratio demonstrated the best reward
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function, with a maximum net worth exceeding 16% of the initial value. In the case of Saudi
Electricity Company (Figure 19), annual volatility and normal reward function showed
equal performance, with a return value slightly over 11% of the initial investment. For the
stocks of Al-Rajihi Banking and Investment (Figure 20), cumulative returns showed the
highest return value, exceeding 18% of the initial account balance. In the case of Saudi Basic
Industries Corporation (Figure 21), the highest return (of more than 14%) was observed for
the Sortino ratio reward function.

Figure 18. Outcome of 7010 stock target return during model training with different reward functions
(Initial portfolio value $10,000).

Figure 19. Outcome of 5110 stock target return during model training with different reward functions
(Initial portfolio value $10,000).
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Figure 20. Outcome of 1120 stock target return during model training with different reward functions
(Initial portfolio value $ 10,000).

Figure 21. Outcome of 2010 stock target return during model training with different reward functions
(Initial portfolio value $ 10,000).

4.3. Complexity Analysis

The Decision Transformer was quadratically scaled by the sequence length (L) fac-
tor required for atom functioning of the transformer attention technique—namely, the
canonical dot-product—which led the time complexity and memory consumption per layer
to be O(L2) [58,59]. Under certain circumstances, this is an issue that can be critical to
achieving the goal of solving experimental tasks under certain computational settings, as
the complexity may lead to significantly longer average response times.
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5. Discussion

In this section, we discuss the performance of our model on the out-of-sample test
data set, the limitations of our work, and future research directions. During the training
of the model, our technique automatically selected the best reward function to increase
the net worth and profit on the initial investment. This automatic selection of the best
reward function allowed the model to learn the optimal hyperparameters. According to our
discussion in the previous section, the Sortino ratio, max drawdown, annual volatility, and
cumulative returns showed the best performance for both outcomes (i.e., net worth and
target return). All of these reward functions ensure the robustness of the model, along with
risk management in the return. The performance associated to all the reward functions,
along with their descriptions, are summarized in Table 4. The average increase in the net
worth of each stock is also provided in the table. The Sortino ratio showed the highest
average increase in the case of all stocks, with an average increase of 21.54% for Saudi
Telecom Company, 18.54% for Saudi Electricity Company, 17% for Saudi Basic Industries
Corporation, and 19.36% for Al-Rajihi Banking and Investment.

Note that, in the reinforcement network, failures are represented by agents not achiev-
ing the target return. These failures were analysed using the following return functions:
Sortino ratio, max drawdown, annual volatility, and cumulative return. All of these reward
functions ensure the robustness of the model, in addition to risk management on the return.

Table 4. Reward functions used in this work, in order of their performance (best to worst from top
to bottom).

Reward Function Description
Average Increase in Net worth

7010 5110 2010 1120

Sortino ratio Measures the risk on return by
penalizing downside volatility 21.54% 18.54% 17% 9.36%

Cumulative returns Indicates the total return at the end of
the trading phase. 8.02% 10.61% 12.92% 14.57%

Annual volatility
Indicator of model robustness and
shows the annual standard deviation of
portfolio return.

7.84% 10.61% 12.92% 14.57%

Calmar ratio Risk quantification measure. High ratio
indicates better portfolio performance. 1.02% 5.81% 10.90% 4.75%

Omega Weighted gain to loss probability ratio
at a specific value of expected return. 8.12% 0.61% 2.92% 1.57%

Max Drawdown Weighted gain to loss probability ratio
at a specific value of expected return. 0.024 1.61% 1.28% 0.07%

Normal Reward without risk adjustment. 10.02% 1.68% 15.46% 2.67%

Figures 22–24 show the results for net worth on the testing data samples. Saudi
Telecom Company (Figure 22), Saudi Electricity Company (Figure 23), and Saudi Basic
Industries Corporation (Figure 24) showed maximum increases of 13%, more than 14%,
and slightly over 13% of the initial net worth, respectively. These results indicate that our
model can effectively predict the trading of stocks to maximize profit in the long run, as
the net worth follows an increasing trend for almost 10 months in each case. Notably, even
with a slight decrease in the value for a few months, the trend of net worth began increasing
again. Hence, our model is effective for trading suggestions to provide profit for long-term
investments by balancing risk.
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Figure 22. 7010 stock net worth prediction on test data set (Initial portfolio value $10,000).

Figure 23. 5110 stock net worth prediction on test data set (Initial portfolio value $10,000).

Figure 24. 2010 stock net worth prediction on test data set (initial portfolio value $10,000).

It is evident from the results that our algorithm is capable of generating consistent
profit, considering all the transactions. Moreover, among the reward functions, the Sortino
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ratio, cumulative returns, and annual volatility were the best, based on their performance
and parameter optimization. One can use the proposed technique for the prediction of stock
trading for other companies, using these reward functions, or the model can be further
optimized, according to their data.

In the future, we intend to work on strengthening our model by enhancing it to detect
times of crisis, such that it can make decisions which are risk-averse under crisis situations.
We will also implement and test our technique for other trading strategies, such as break-
even and trailing stop, using data from other stocks. We also hope to predict the best
trading time using our technique for bullish and bearish trading markets.

Comparison with Related Works

Many significant breakthroughs at the frontier of machine learning have relied on
large and diverse data sets and benchmarks, such as the General Language Understanding
Evaluation (GLUE) benchmark, which provides a suite of tools to evaluate the perfor-
mance of NLP models across a variety of modern NLU tasks. However, the potential of
enormous and diverse data sets and benchmarks in reinforcement learning (RL) is yet to
be established [60,61]. The current practice is to collect RL data sets and create custom
environments that are task-specific. As a result, the generalization capabilities of RL mod-
els are challenged [62,63]. In a nutshell, three variables that influence the learnt policy’s
generalization potential have been identified [62]: Training set size, neural network size,
and regularization. Therefore, we compare our work to others by focusing on the reward
function outcome. The findings of the comparative study are summarized in Table 5.

With the Ensemble of Identical Independent Evaluators (EIIE) architecture, [64] an
agent model for portfolio management (trading) based on ANN-based deep-learning (multi-
layer ANN) has been developed. The data utilized comprised observations over 5283 days
for 415 stocks in the S&P 500 stock market index, spanning twenty-one years from 1998 to
the end of 2018. The reward function was based on Sharp and differential Sharpe ratios.
Over a five-year test period, the model generated a trading policy that produced a return
of 328.9% and a Sharpe ratio of 0.91. By optimizing stock trading strategies, Yang et al. [28]
have created another deep reinforcement architecture model to increase investment return.
Three actor–critic-based algorithms were used in the model: Proximal Policy Optimization
(PPO), Advantage Actor Critic (A2C), and Deep Deterministic Policy Gradient (DDPG).
Through use of this ensemble approach, it can adapt to changing market conditions by
inheriting and incorporating the best characteristics of the three algorithms. A 7-year data
set of 30 Dow Jones stocks was used to evaluate the model. The model performance resulted
in a 70.4% cumulative return, Sharpe ratio of 1.3, and −9.7% maximum drawdown.

Théate and Ernst [65] have proposed the Trading Deep Q-Network algorithm (TDQN),
a deep reinforcement learning (DRL) technique for determining the optimum trading
position by maximizing the resultant Sharpe ratio performance. The model was evaluated
by analysing 30 stocks from a variety of industries in North America, Europe, and Asia, in
order to determine how well it performs. With an initial investment of $100,000, the TDQN
algorithm achieved good results from both earnings and risk mitigation standpoints. In
the case of Apple stock, for example, the execution of the TDQN trading strategy yielded
a Sortino ratio of 1.84 with an annualised return of 32%. On Tesla stock, the performance
reached 0.359 in Sortino ratio and an annualized return exceeding 12%. In general, the
TDQN algorithm achieved an average Sharpe Ratio of 0.401 for all 30 stocks.
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Table 5. Comparative Performance Analysis of Our Model with Other Models.

Reference Year Data Set Rewards Performance

Huotari et al. [64] 2020 415 stocks in the S&P 500 stock Sharpe
Differential Sharpe ratios

return: 328.9%
Sharpe ratio: 0.91

Yang et al. [28] 2020 30 Dow Jones stocks Portfolio value change Turbulence return: 328.9%
Sharpe ratio: 0.91

Théate and Ernst [65] 2021
30 stocks from
a variety of industries in
North America, Europe, and Asia

Daily Returns

All 30 stocks
Sharpe Ratio: 0.401
APPL
Sortino ratio: 1.84
Annualised return: 32%
Tesla
Sortino ratio: 0.35
Annualised return:12%

Our Work 2022 4 stocks from Saudi Stock Market (Tadawul)
Sortino ratio,
Cumulative Returns,
Annual Volatility

Net worth: 20%
Sortino ratio: 21.54%
Cumulative Returns: 14.5%
Annual Volatility: 11.1%

6. Conclusions

In this research, we integrated modern transformer deep learning (TDL) into a tradi-
tional deep reinforcement learning (DRL) architecture for the processing of financial signals
and automated trading. The transformer network in the proposed technique allowed
the algorithm to predict the best trading strategy without looking back to track the price
movements of stocks. Based on the data of four different industrial indices of the Saudi
Stock Exchange (Tadawul), the proposed method provided the optimal learning of hyper-
parameters by automatic selection of the reward function, based on the maximum outcome
of the network and return on investment. Of the seven considered reward functions, the
Sortino ratio, cumulative returns, and annual volatility performed the best. The Sortino
ratio provided the highest average increases in net worth for Saudi Telecom Company,
Saudi Electricity Company, Saudi Basic Industries Corporation, and Al-Rajihi Banking
and Investment (21.54%, 18.54%, 17%, and 19.36%, respectively); cumulative returns pro-
vided 8.02%, 10.61%, 12.92%, and 14.57% average increases in net worth for Saudi Telecom
Company, Saudi Electricity Company, Saudi Basic Industries Corporation, and Al-Rajihi
Banking and Investment, respectively; and annual volatility provided 7.84%, 11.1%, 5.92%,
and 7.47% average increases in net worth for Saudi Telecom Company, Saudi Electricity
Company, Saudi Basic Industries Corporation, and Al-Rajihi Banking and Investment,
respectively. Considering the average increases in return and net worth, the proposed
algorithm can be used in trading for long-term investment plans to gain profits.

In traditional deep reinforcement learning, agents are trained to optimize decisions
to achieve the optimal return. At every time step, an agent observes the environment and
decides which action to take to help itself achieve a higher return magnitude in future
interactions. A Decision Transformer (DT), on the other hand, forecasts future behaviour
by considering both intended future returns and previous interactions between the agent
and its environment. By leveraging a causally masked Transformer, we produced optimal
actions by mapping diverse experiences to their respective return magnitudes during
training, as opposed to conventional RL, which computes policy gradients or fits value
functions. Using a variety of experiences when training an agent increases the model’s
exposure to a wide range of trading variations, thereby helping it to derive useful trading
rules that will enable it to succeed under any given circumstance. However, as Transformers
scale quadratically with input size, the generation of optimal actions requires rather long DT
response times. The implication of this approach naturally increases the time complexity;
however, we anticipate that the parallelization of this approach on traditional or massively
parallel architectures (e.g., GPUs) may allow for a reduction in the time complexity of our
approach; this is expected to inform our future work.
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