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Abstract: As the frequency of extreme weather events rises, the resilience of power systems is
becoming increasingly important. This paper proposes a proactive microgrid management strategy
for enhancing the resilience of microgrids (MGs) based on nested Mixed Integer Linear Programming
problems with chance constraints. In the proposed method, MGs operate in a special operating mode
referred to as the “preparation mode” to protect the vital load and maximize resource operation
efficiency when an external grid outage warning is issued. The preparation mode problem is
formulated to reflect both the normal and emergency mode operation conditions. The on-event phase-
operation problem under emergency-mode operation conditions is nested within the pre-scheduling
problem under normal-mode operation conditions in the preparation mode. Further, according to
their importance, loads are divided into critical and non-critical ones in the problems. The former is
represented by a chance constraint, and the latter is represented by the expected cost of load shedding
in the cost function. The numerical examples demonstrate that the proposed preparation mode
enables the MG to guarantee a high chance that the critical load will survive and to lower the cost of
the non-critical load shedding with a minor increase in resource operation costs.

Keywords: microgrid; resilience; resource scheduling; chance constrained problem

1. Introduction

Increased extreme weather events caused by climate change raise significant concerns
about reliability in power system operation. Since 2002, about 58% of power outages
have been attributed to extreme weather events, and they can result in an average annual
economic loss of 18–33 billion dollars [1] in the United States. Hurricane Sandy in 2012
caused more than 7.5 million customers to lose electricity. The relevant economic loss
of hurricane Sandy was approximately 65 billion USD [2]. In February 2021, a massive
power-generation failure occurred in Texas because of severe winter storms across the state.
This storm caused 70% of the Texas population to suffer from power outages for 42 h on
average. The economic loss from the blackout and freeze was estimated to be between
80 and 130 billion USD, including both direct and indirect costs [3].

The “resilience” of the power system has drawn considerable attention from the power
industry to cope with such catastrophic events. In the context of power systems, resilience is
the ability of the system to withstand and recover from high-impact, low-probability events
by employing preventive and corrective actions [4,5]. Holistic operational strategies for
multiple phases are required to realize resilient power systems [6]. To this end, a microgrid
(MG) is a technically viable option that can improve power-system resilience because of
its unique functions. The MG can operate as a self-sufficient energy system because it
has its own energy resources. The MGs equipped with a central energy management
system can be operated for specific functions and increased energy efficiency through a
coordinated operation of energy resources [7,8]. On the one hand, a grid-connected MG
can serve as a power source to the main grid that contributes to improving the entire power
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system resiliency. On the other hand, the MG can improve its own resiliency when an
external outage occurs isolated from the main grid, and it can protect its critical loads [9,10].
Holistic system management strategies that span multiple phases, from infrastructure
hardening to system restoration from an event, are required to build a resilient MG. In the
pre-event phase, the MG identifies feasible events and hardens the current system or
installs new devices to prepare for these events. The MG employs proactive scheduling
decisions for its resources as the identified event approaches to ensure their availability to
supply critical loads during the event. During the on-event phase, the MG takes corrective
actions to minimize the effect of the event. The original system configuration can be
modified to restrict such an effect by re-dispatching the resources or conducting network
reconfiguration. The MG returns to the normal state and resynchronizes with the main
grid after the event ends [11,12]. Among these aforementioned strategies, the proactive
scheduling of the MG resources is the most cost-effective approach because it does not
require any associated capacity investment, which can be expensive. Therefore, many
researchers are interested in developing optimal operation schemes for enhancing the
resilience of MGs.

Energy management methods that can reduce the MG load interruption from the spec-
ified types of disasters have been reported in the existing literature [13,14]. The probability
that the MG load is not supplied because of the failure in power devices and facilities
caused by extreme floods was evaluated [13]. Further, the active energy management of
MG was proposed for minimizing the load loss in the worst case. In [14], the authors
suggested a method to schedule energy resources for a continuous power supply to a load
that can be interfered with by windstorms. To this end, Amirioun et al. [14] analyzed the
effect of high wind speed on power distribution facilities and wind power generators.

Many studies have proposed optimization models to enhance MG resilience for coping
with unspecified incidents [15–22]. Khodaei [15] developed an optimization formulation
for MG operations to minimize the power mismatch that can occur during the multiple
duration of the event and extended the model that considers forecasting errors of the
load and renewable energy generation in [16]. The authors of [17] studied an approach
to managing energy storage systems and distributed generators to guarantee sufficient
power resources when an event occurs. Further, Liu et al. [17] employed a two-stage robust
optimization to confirm that the availability of power resources takes precedence over
MG operating costs. A more balanced MG operation between ensuring load survivability
and reducing MG operating costs was pursued through a two-stage adaptive robust
optimization model in [18]. The authors of [19] suggested a novel optimization formulation
for a proactive MG operation that includes resilience cuts for the state of charge of energy
storage systems. Further, they considered the dynamic cost of load shedding to reduce
the likelihood of critical load curtailment. In [20], the authors demonstrated that a two-
stage stochastic programming approach could significantly mitigate the effect of natural
disasters by reflecting a wide range of uncertainties attributed to various factors in optimal
MG operation.

The authors of [21,22] suggested an MG operation to maintain supply capability
above a certain level during the on-event phase. They defined supply capability as the
probability that the net demand falls within the spinning reserve range provided by the MG.
The problem was formulated as a MILP with chance constraints in [21], and they assumed
the forecast error of the net load to be a Gaussian distribution. In [22], the authors extended
the problem of considering the reconfigurable capability of the MG during the on-event
phase. Younesi et al. [23] synthesized resilience indexes and developed a multi-objective
economic-resilience scheduling model for the microgrid. For the resilience enhancement,
the authors of [23] suggest the first objective function as the cost of the MG operation and
the second objective function as a combination of indices that include fragility, recovery
efficiency, voltage, and lost load.

However, conservatively operating MGs to be ready for all unforeseen events can
be inefficient because this can lead to MGs having excess reserves, which is not econom-
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ical in most situations. Furthermore, huge events, such as hurricanes, tropical storms,
and blizzards, can typically be predicted at least 24–72 h in advance [6], and approxi-
mately 43.6 percent of events causing power outages and microgrid disconnections are
predictable [24]. Therefore, in order to achieve resilient and cost-effective MG operations,
it is crucial to establish a specified operating scheme for different operating conditions of
MGs: the pre-event, after-warning, and on-event phases. In [24], the authors suggested
an energy management method to procure adequate energy reserve for uninterruptible
power supply to the critical load based on the predicted natural disaster. However, this
study assumes that the levels of renewable generation and loads are given as determinative
parameters without taking into account their uncertainty. We present a resilience-oriented
MG operation strategy that proactively manages its energy resources to enhance the sur-
vival of important loads in anticipation of extended external grid outages. The goal is to
reduce the impact on critical loads after the event occurs and to achieve cost-effectiveness in
the MG operation by deliberately managing MG resources when a credible forecast of the
event occurrence times is provided. The main contributions of this work are summarized
as follows:

• Proposing a new formulation for proactive microgrid management strategy: We
propose an optimal resource scheduling method of the MG for resiliency enhance-
ment to protect loads according to their importance from predicted extreme events.
The scheduling of MG energy resources is optimized for minimizing the MG operation
cost while guaranteeing a very low probability of critical load interruption during an
event. We developed a nested chance-constrained programming model for dealing
with load interruption risks from the uncertainty in electricity loads and power gen-
eration from solar PV and wind at pre-event times. The MG operator increases the
possibility of an uninterrupted power supply to critical loads because the suggested
operating strategy integrates the MG operational cost and conditions for various times
when an outage can occur in the problem formulation.

• Modeling the expected load shedding: The expected load shedding (ELS) is evaluated
analytically. The ELS is discovered to be a nonlinear nonconvex function. However,
we find that the expected cost of load shedding (ECLS) included in the cost function is
a convex function if the forecasting errors of load and renewable generation follow a
Gaussian distribution. We find that ECLS, which is included in the cost function, is a
nonlinear convex function if the forecasting errors of load and renewable generation
follow a Gaussian distribution. The ECLS is calculated by the multiplication of ELS
and the probability of load shedding. The ECLS does not compromise the solvability
of the optimization problem. However, we approximate ECLS to be a piecewise linear
model for representing the problems as a mixed integer linear program (MILP).

• Demonstrating the effectiveness of the proposed proactive microgrid management
strategy: We conducted simulations using two cases—when the loads are (1) low
and (2) high during event periods—to verify the advantages of using the proposed
method to improve MG resilience. The proposed method can increase load surviv-
ability and reduce ECLS during the event periods by the proactive decision of the
battery and generator operations during the normal mode compared to the operation
without preparation.

The remainder of this paper is organized as follows. Section 2 describes the MG system
configuration and operations considered in this study. Sections 3 and 4 introduce the
optimization problem formulation for realizing the proposed energy scheduling method
and the numerical examples, respectively, verifying the effectiveness of the proposed
method. Finally, Section 5 concludes the paper.

2. System Description
2.1. Microgrid System

Figure 1 shows the microgrid test model considered in this study. The MG is composed
of loads, four controllable generators (CGs), renewable energy sources, and battery energy-
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storage systems (BESSs). CG refers to dispatchable gas and diesel generators whose output
can be adjusted according to instructions from a centralized MG operator. The loads are
categorized into classes A (critical load) and B (non-critical load) based on their importance.
Renewable energy sources such as wind turbines and PV systems are considered to be
non-controllable in this study. Therefore, the flexibility of CG and BESS is essential for
maintaining the balance between the supply and demand of MGs.

C
G 
1

Load A

PV

Load B

WTC
G 
2

C
G 
3

C
G 
4

Battery

Figure 1. The MG model considered in this study.

2.2. Microgrid Operation

The MG operates in three modes (normal, islanded, and restoration). We consider
an additional MG operation scheme known as “preparation mode”, which is specifically
designed to increase the resilience of the MG loads for external grid failures by the proactive
scheduling of the MG’s resources and devices (Figure 2).

Proactive action to prepare 
for emergency mode

Event alert

Normal mode operation problem Emergency mode operation problemPreparation mode operation

Normal mode

𝑃

MG

Pre-event phase

Resynchronized

Repaired and restored

After the event

𝑃

MG

Grid
-connected

Islanded mode

On-event phase

𝑃 = 0

MG

Grid
-disconnected

Event Alert

Figure 2. MG operation modes according to event phases [15,19] and the schematic of the preparation
mode of the MG operation.

In its normal operating mode, the MG provides power to its loads with the lowest
possible operating costs. Based on the predicted renewable energy generation and load,
the MG determines the schedules for generating resources and power exchange with the
external grid considering several physical constraints, such as the capacity of a point of com-
mon coupling and ramp rates of generating units. For the BESS, frequent charge/discharge
cycles can be restricted in the normal operating mode to prevent the battery cells from
degrading rapidly [24].

MG operation during the event periods is referred to as emergency mode. The main ob-
jective of the MG in this mode is modified for supporting critical loads using local resources
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because the MG is separated from the external grid. The physical constraints of the genera-
tor should be considered, as in the normal mode. However, some constraints can be relaxed
to handle emergency scenarios. For example, the restriction on the charge/discharge cycles
of BESS should no longer be considered in the emergency operation mode as the survival
of the load has a higher value than that of maintaining the BESS lifespan.

The preparation mode of the MG operation is developed as a proactive microgrid
management strategy to consider both the normal and emergency mode operation con-
ditions that can effectively improve the survivability of loads. Under the warning of an
external grid outage, the MG can enter the preparation mode and change the operating
states, and it can generate levels of its resources for the ongoing power supply to the load
after interruption. However, supporting all loads for the duration of the event may not
be economical or even viable, given the constrained local resources of the MG. Therefore,
the loads should be split into critical and non-critical loads and treated differently based
on their importance in the preparation mode. Therefore, a requirement for satisfying the
critical loads is a hard constraint of the problem, and meeting the non-critical loads is
treated as a soft constraint. Violating a constraint incurs a penalty in the objective function.

3. Optimization Problem Formulations
3.1. Normal Mode Operation Formulation

Equation (1) expresses the objective function of the normal mode operation. In
Equation (1), XNM represents the set of decision variables related to the normal-mode
operation problem. The first and second terms indicate the cost of operating the control-
lable generating unit and the cost of power exchange with the main grid, respectively.
The last term represents the sum of the load shedding costs for classes A and B.

f NM(XNM) =
G

∑
g=1

T

∑
t=1

(Cgen
g · PNM

g,t + CSU
g · yNM

g,t + CSD
g · zNM

g,t )

+
T

∑
t=1

(PRBuy
t · PBuy.NM

t − PRSell
t · PSell.NM

t )

+
T

∑
t=1

(CLSA · PLSA.NM
t + CLSB · PLSB.NM

t ).

(1)

Equations (2)–(20) represent constraints related to the normal-mode operation. The
power balance of the system is represented by Equation (2), and Equations (3) and (4)
represent the load shedding.

G

∑
g=1

PNM
g,t + PWT

t + PPV
t + η·Pdch.NM

t − Pch.NM
t

+ PBuy.NM
t − PSell.NM

t ≥ PtA.NM
t + PtB.NM

t , ∀t.

(2)

PLSA.NM
t = PLA

t − PtA.NM
t , ∀t. (3)

PLSB.NM
t = PLB

t − PtB.NM
t , ∀t. (4)

Further, Equation (5) represents the output limit of the generating units. Equation (6)
indicates the ramp capability limit of the generating units. Equations (7) and (8) represent
the minimum start-up time and minimum stop time of the generating units, respectively.
Equations (9) and (10) represent the binary variables that indicate the start-up and shutdown
behavior of the generator, respectively.

uNM
g,t · Pmin

g ≤ PNM
g,t ≤ uNM

g,t · Pmax
g , ∀g,t. (5)

PNM
g,t−1 − RDmax

G ≤ PNM
g,t ≤ PNM

g,t−1 + RUmax
G , ∀g,t. (6)
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TOg−1

∑
to=0

uNM
g,t+to ≥ TOg(uNM

g,t − uNM
g,t−1), ∀g,t. (7)

TSg −
TSg−1

∑
ts=0

uNM
g,t+ts ≥ TSg(uNM

g,t−1 − uNM
g,t ), ∀g,t. (8)

yNM
g,t = max {(uNM

g,t − uNM
g,t−1), 0}, ∀g,t. (9)

zNM
g,t = max {(uNM

g,t−1 − uNM
g,t ), 0}, ∀g,t. (10)

Equations (11)–(18) are associated with the battery operations. The battery dynamics
are modeled through a linear model as shown in Equation (11). The maximum charging
and discharging power are restricted by the capacity of the power conversion system (PCS),
as shown in Equations (12) and (13), respectively. Further, Equations (14) and (15) constrain
the maximum allowable charging/discharging power according to the SoC level, SoCNM

t .
Equations (16) and (17) are introduced to prevent the battery from being charged and
discharged frequently, respectively, which extends the battery lifespan. Thus, once charging
begins, it must last for at least TCM hours, and once discharging starts, it must not be
terminated within TDM hours. Equation (18) indicates that charging and discharging must
not occur simultaneously within the ESS.

SoCNM
t = SoCNM

t−1 +
η·Pch.NM

t − Pdch.NM
t

Batc
· ∆t, ∀t. (11)

0 ≤ Pch.NM
t ≤ uchNM

t · PCSc, ∀t. (12)

0 ≤ Pdch.NM
t ≤ udcNM

t · PCSc, ∀t. (13)

SoCNM
t · Batc + η·Pch.NM

t · ∆t ≤ DoD · Batc, ∀t. (14)

Pdch.NM
t · ∆t ≤ SoCNM

t · Batc, ∀t. (15)

TCM−1

∑
tcm=0

uchNM
t+tcm ≥ TCM(uchNM

t − uchNM
t−1 ), ∀t. (16)

TDM−1

∑
tdm=0

udcNM
t+tdm ≥ TDM(udcNM

t − udcNM
t−1 ), ∀t. (17)

0 ≤ uchNM
t + udcNM

t ≤ 1, ∀t. (18)

Finally, the maximum permitted power exchange between the main grid and the
MG is shown in Equation (19). In Equation (19), power exchange between the main grid
and the MG is limited by the capacity of the substation at the point of common coupling.
Equation (20) indicates that all variables are positive.

0 ≤ PSell.NM
t , PBuy.NM

t ≤ Psub
c . (19)

pLSA.NM
t , pLSB.NM

t , ptA.NM
t , ptB.NM

t ≥ 0. (20)

3.2. Emergency-Mode Operation Formulation

The MG is considerably more vulnerable to unexpected fluctuations in loads and
renewable energy generation when it is disconnected from the main grid than that when
it is connected. Therefore, the MG operation in the emergency mode should consider the
uncertainty in loads and renewable energy generation captured by forecasting errors.

The objective function of the emergency-mode operation is expressed in Equation (21).
The objective function is constructed to minimize the sum of operating costs over all
periods of the islanded mode operation. The predicted start time of the outage (STO)
is the first time in the islanded mode operation. The continuous STO is set to operate
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the preparation mode MG conservatively, and it reflects some possible inaccuracies in
the STO. In Equation (21), XEM represents the set of decision variables related to the
emergency-mode operation problem.

f EM(XEM) =
L

∑
l=1
{

G

∑
g=1

STOl+Ts

∑
tsl=stol

(Cgen
g · PSTOl

g,tsl
+ CSU

g · y
STOl
g,tsl

+ CSD
g · z

STOl
g,tsl

)}

+
L

∑
l=1
{

STOl+Ts

∑
tsl=stol

(CELSA.STOl
tsl

+ CELSB.STOl
tsl

)}.

(21)

Equations (22)–(37) represent the emergency-mode operation conditions. The power
balance of the system in the emergency mode is represented by Equation (22), and load
shedding reflecting forecast error is captured by Equations (23) and (24).

Equations (23) and (24) define the expected cost of load shedding (ECLS) based on
the type of load. φε̂A

tsl
and φε̂B

tsl
represent the Probability density function (PDFs) of ε̂A

tsl
and

ε̂B
tsl

, respectively. Φε̂A
tsl

and Φε̂B
tsl

are the Cumulative density function (CDF) of ε̂A
tsl

and ε̂B
tsl

,

respectively. ε̂A
tsl

represents the sum of the forecast error. We assume the forecast error of
renewable generators to be independent Gaussian distribution with zero mean.

PELSA.STOl
tsl

and PELSB.STOl
tsl

represent the expected load shedding (ELS) based on the

type of load. These are nonlinear and nonconvex with respect to PtA.STOl
t and (PtB.STOl

t ).
However, ECLS, which is included in the objective function, is nonlinear and convex with
respect to PtA.STOl

t and (PtB.STOl
t ). A more detailed explanation is provided in Appendix A.

G

∑
g=1

PSTOl
g,tsl

+ PWT
tsl

+ PPV
tsl

+ η·Pdch.STOl
tsl

− Pch.STOl
tsl

≥ PtA.STOl
tsl

+ PtB.STOl
tsl

, ∀l,tsl
. (22)


CELSA.STOl

tsl
= CLSA ·Φε̂A

tsl
· (PELSA.STOl

tsl
), ∀l,tsl

.

where PELSA.STOl
tsl

= (PLA
tsl
− PtA.STOl

tsl
) + σ2 ·

φε̂A
tsl
(PLA

tsl
− PtA.STOl

tsl
)

Φε̂A
tsl

.
(23)


CELSB.STOl

tsl
= CLSB ·Φε̂B

tsl
· (PELSB.STOl

tsl
), ∀l,tsl

.

where PELSB.STOl
tsl

= (PLA
tsl
− PtB.STOl

tsl
) + σ2 ·

φε̂B
tsl
(PLB

tsl
− PtB.STOl

tsl
)

Φε̂B
tsl

.
(24)

We use piecewise linearized Equations (23) and (24) to represent the problems as MILP
because these equations have exponential terms. An example of piecewise linearization of
CELSA is illustrated in Figure 3.

−6 −5 −4 −3 −2 −1 0 1 2 3 4

(PLA−PtA)

0

1

2

3

4

C
E

L
S

A
 (

$
)

104

piecewise linearisation of CELSA CELSA

Figure 3. Piecewise linearization about CELSA.

For resilience enhancement, the critical load must be supplied power under fore-
casting uncertainty. By using chance constrained programming, the resulting decision
can guarantee the probability following a constraint [25]. The authors of [21,22,26], us-
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ing chance constrained programming to make decisions, guarantee the probability of the
incident to be greater than or equal to specific probability. With the same purpose, we
used chance constrained programming to make power transmitted to load A guarantee the
probability α%. This is represented in Equation (25). Equations (26)–(36) have the same
purpose as those from the normal-mode operation conditions, i.e., Equations (5)–(18). In the
emergency-mode operation problem, Equations (16) and (17) are ignored because reducing
ELS is more important than preventing the degradation of the battery life attributed to
repeated battery charging and discharging.

Φ−1
ε̂A

tsl

(1− α) ≥ PtA.STOl
tsl

, ∀tsl , ∀l . (25)

uSTOl
g,tsl
· Pmin

g ≤ PSTOl
g,tsl

≤ uSTOl
g,tsl
· Pmax

g ∀g, ∀l , ∀tsl (26)

PSTOl
g,tsl−1 − RDmax

G ≤ PSTOl
g,tsl

, ∀g,l , tsl > stol . (27)

PSTOl
g,tsl

≤ PSTOl
g,tsl−1 + RUmax

G , ∀g,l , tsl > stol . (28)

TOg−1

∑
to=0

uSTOl
g,t+to ≥ Tog(u

STOl
g,tsl
− uSTOl

g,tsl−1), ∀g, ∀l , tsl > stol . (29)

Tsg −
Tsg−1

∑
ts=0

uSTOl
g,tsl+ts ≥ Tsg(u

STOl
g,tsl−1 − uSTOl

g,tsl
), ∀g, ∀l , tsl > stol . (30)

ySTOl
g,tsl

= max {(uSTOl
g,tsl
− uSTOl

g,tsl−1), 0}, ∀g, ∀l , tsl > stol . (31)

zSTOl
g,tsl

= max {(uSTOl
g,tsl−1 − uSTOl

g,tsl
), 0}, ∀g, ∀l , tsl > stol . (32)

SoCSTOl
tsl

= SoCSTOl
tsl−1 +

η·Pch.STOl
tsl

− Pdch.STOl
tsl

Batc
· ∆t, ∀l , tsl > stol . (33)

SoCSTOl
tsl
· Batc + η·Pch.STOl

tsl
· ∆t ≤ DoD · Batc, ∀tsl . (34)

0 ≤ Pdch.STOl
tsl

, Pch.STOl
tsl

≤ PCSc, ∀tsl . (35)

Pdch.STOl
tsl

· ∆t ≤ SoCSTOl
tsl
· Batc, ∀tsl . (36)

0 ≤ CELSA.STOl
tsl

, CELSB.STOl
tsl

, PtA.STOl
tsl

, PtB.STOl
tsl

. (37)

3.3. Preparation-Mode Operation Formulation

The optimal MG operation in the preparation mode is formulated as nested MILP
problems with chance constraints. It is a combination of normal-mode and emergency-
mode problems. Further, the on-event problem under the emergency-mode operation
condition is nested in the pre-scheduling problem under the normal-mode operation
condition. In other words, with the decision-making of the pre-scheduling problem, normal-
and emergency-mode operations are determined together under the preparation-mode
problem. The cost function of the preparation mode, which is a sum of the normal-mode
and emergency-mode operating cost, is expressed as Equation (38).

min [ f NM(XNM) + f EM(XEM)] (38)

The objective function of the preparation mode is subject to constraints Equations (2)–
(20), Equations (22)–(37), and Equations (39)–(47).

PNM
g,stol−1 − RDmax

G ≤ PSTOl
g,tsl

, ∀g, ∀l , tsl = stol . (39)
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PSTOl
g,tsl

≤ PNM
g,stol−1 + RUmax

G , ∀g, ∀l , tsl = stol . (40)

TOg−1

∑
to=0

uSTOl
g,t+to ≥ Tog(u

STOl
g,tsl
− uNM

g,stol−1), ∀g, ∀l , tsl = stol . (41)

To(uNM
t − uNM

t−1 ) ≤
To−(j+1)

∑
to=0

uSTOl
tsl+to +

j

∑
k=1

uNM
t+j−k, ∀g, ∀l . (42)

Tsg −
Tsg−1

∑
ts=0

uSTOl
g,tsl+ts ≥ Tsg(uNM

g,stol−1 − uSTOl
g,tsl

), ∀g, ∀l , tsl = stol . (43)

Tsg −
To−(j+1)

∑
to=0

uSTOl
g,tsl+j+to +

j

∑
k=1

uNM
t+j−k ≤ Tsg(uNM

t − uNM
t−1 ), ∀g, ∀l . (44)

ySTOl
g,tsl

= max {(uSTOl
g,tsl
− uNM

g,stol−1), 0}, ∀g, ∀l , tsl = stol . (45)

zSTOl
g,tsl

= max {(uNM
g,stol−1 − uSTOl

g,tsl
), 0}, ∀g, ∀l , tsl = stol . (46)

SoCSTOl
tsl

= SoCNM
stol−1 +

η·Pch.STOl
tsl

− Pdch.STOl
tsl

Batc
· ∆t, ∀l , tsl = stol . (47)

In the preparation-mode operation problem, some decision variables of the emergency
mode are affected by the decision variables of normal-mode problems before the STO.
Thus, the preparation-mode operation problem needs to include constraints for considering
the relationship between the normal- and emergency-mode operation problems. The de-
cision variables in the emergency-mode operation affected by the decision variables in
the normal mode operation are SoC dynamics, on/off state, and output of generators.
Equations (39)–(47) indicate the relationship of decision variables between the emergency
normal mode operation.

Equations (39) and (40) represent the ramp capability’s limit relationship between the
normal- and emergency-mode variables about the generation output. Equations (41) and (44)
indicate the minimum startup/shutdown time relationships between the normal- and
emergency-mode variables in the generators’ on/off state. In constraints (42) and (44),
j = 1:To − 1, t = STO − j, tsl = stol . Equations (45) and (46) represent the startup and
shutdown binary variables’ relationship between the normal and emergency modes, re-
spectively. Equation (47) indicates the SoC relationship between the normal and emer-
gency modes.

4. Case Study

We set the optimization time to 48 h and performed simulations for two cases, consid-
ering the STO as a high load time and a low time period for evaluating the performance of
the proposed mode. Figure 4 shows the hourly forecasted electricity market price. Figure 5
shows the renewable generation and load.
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Figure 4. Hourly forecasted electricity market price.
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Figure 5. Forecasted renewable generation and load.

In the first case, the STOl are 18 h, 19 h, and 20 h. In the second case, the STOl are
27 h, 28 h, and 29 h. The parameters of CG used in the MG, namely generation cost,
minimum/maximum generation capacity, ramp up/down capability, startup/shutdown
cost, and minimum operating time (TO)/stop time (TS), are shown in Table 1. The param-
eters of ESS, namely the battery capacities, PCS capacities, and the minimum charging
time (TCM) and minimum discharge time (TDM), are shown in Table 2. The depth of the
discharge (DoD) is set to 0.9. In the MG, the capacities of solar photovoltaic and wind
turbine generators are 8.21 MW and 20.76 MW, respectively.

Table 1. Parameters of the controllable generators

Unit Gen. Cost
(USD/MWh)

Start Up/Down
Cost (USD)

Min./Max.
Capacity (MW)

TO/TS
(h)

Ramp Up/Down
Rate (MW/h)

G1 27.7 15/5 1/8 3/3 3
G2 39.1 45/8 1/4 3/3 2
G3 61.3 25/5 0.8/2 1/1 2
G4 65.6 10/2 0.8/2 1/1 2

Table 2. Parameters associated with ESS

Storage Capacity (MWh) TCM/TDM (h) PCS (MW)

ESS 24 3/3 12

The CLSA and CLSB are set as USD 9000 and USD 3000, respectively. At the forecast
error of load, the standard deviations are set to 8%. At the forecast error of renewable
generation, the standard deviations are set to 20%. α indicates the survival index of load A.
In the preparation mode, the survivability of the critical load must be above α%. The α is set
to 0.95.

4.1. Case 1 (STO = 18, 19, 20)

The case study compares the difference between the two methods of MG operation
(with and without preparation). Further, we evaluate the effect of proactive actions on the
load during the event periods.

Usually, proactive actions are realized by securing the available power through
rescheduling generators and maintaining the battery SoC. In Case 1, all generators in
the MG are scheduled for maximum output regardless of the preparation in the pre-event
time to supply a high load at the lowest cost in high electricity prices. In the pre-event time,
different operations of the MG with and without preparation are (Pdch.NM

t ) and (PBuy.NM
t ).

(Pdch.NM
t ) means the power discharged from the battery at t in the normal-mode operations.

(PBuy.NM
t ) means the power bought from the utility grid at t in the normal-mode operation.
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Figure 6 shows (Pdch.NM
t , (PBuy.NM

t ) and other dynamics of generators of the MG operation
with and without preparation.
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Figure 6. Pre-event MG operation without preparation and with preparation in case 1.

In the MG operation without preparation, the battery discharge occurs when electricity
prices are high for supplying the load in the normal mode with minimal cost. At pre-event
times without preparation, Pdch.NM

t is 10.79 MW, 5.4 MW, and 2.7 MW and PBuy.NM
t is

1.81 MW, 6.56 MW, and 5.96 MW. In the MG operation with preparation, Pdch.NM
t does not

occur at pre-event times, (1) to prepare for the interruption of the external power supply
attributed to events and (2) to maintain the SoC of the battery at an appropriate level.
In the MG operation with preparation, instead of decreasing Pdch.NM

t , PBuy.NM
t increases at

pre-event times PBuy.NM
t . Thus, at the pre-event times, the sums of Pdch.NM

t and PBuy.NM
t

are 12.61 MW, 11.96 MW, and 8.66 MW in the MG operation without preparation.
In this section, the probability that the power delivered to a load is higher than the

actual load is called load survivability. We calculated the load survivability to evaluate the
effect of proactive actions on the load during the event periods. The formal expression of
the critical and normal load survivability is Φε̂A

tsl
(PLA

tsl
− PtA.STOl

tsl
) and Φε̂B

tsl
(PLB

tsl
− PtB.STOl

tsl
).

Figure 7 shows the different components of the MG operation based on a proactive
action at each event period in Case 1. In Case 1, the different components of MG operations
are SoC (%), load A survivability (%), and operating costs (USD ). The difference in load B
survivability appears very low in Case 1 because load A is large, and there is insufficient
power to transfer to load B regardless of preparation.

At the pre-event time, the SoC is 90%, 90%, and 90% with preparation and the SoC
is 45%, 22%, and 11% without preparation. For maintaining the SoC at a high level,
the preparation mode requires more PBuy.NM

t than without preparation when the electricity
price is relatively high. Thus, in the normal mode, the preparation mode has a higher
operating cost than the MG operation without preparation. The normal-mode operating
costs are USD 22,837 and USD 22,263 with and without preparation, respectively.

However, the emergency MG operation without preparation cannot adequately guar-
antee load A survivability because of the lack of available power during the event periods.
In the emergency MG operation without preparation, load A survivability is under 95%,
which excludes t = 24 of STO20. The minimum values of load A survivability are 67%, 39%,
and 24%, which appear the first time in each event period because the load decreases over
time. In the emergency MG operation with preparation, load A survivability is greater than
the set value of α%, which is equal to 95%. The load A survivability is 95%, which excludes
t = 23 and t = 24. The load A survivability values are 97%, 98%, and 99% at t = 23 of STO19
and t = 23, t = 24 of STO20. These load A survivability values are determined by reflecting
the ECLS of load A.
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Figure 7. Different components (SoC, load A survivability, and operating costs) of the MG operation
in accordance with proactive action at each event period in Case 1.

The emergency-mode operation costs contain the ECLS and the other generation costs.
These depend on the available power, such as the generation output capability and the
stored energy in the ESS secured at pre-event times. The emergency mode operation costs
without and with preparation are USD 156,555, USD 116,769, and USD 86,401, and USD
145,392, USD 90,315, and USD 47,795, respectively. The maximum values for the emergency
mode operation costs are shown at STO18 because the total load of the event periods is the
highest in STO18, STO19, and STO20. The maximum difference in the emergency mode
operation costs is shown at STO20 because the SoC difference is the highest at t = 19 in the
normal mode.

The simulation results in Case 1 show that the proposed method employs proactive
actions to ensure the survivability of the critical loads and lower the total operation cost,
which includes the ECLS. When comparing normal-mode MG operating cost, an additional
cost of USD 574 is incurred during normal mode to operate in preparation mode. However,
in the case of MG operation without preparation, there are cases where the critical load sur-
vivability under α% and operation costs for all STOl are higher than that of MG operation
with preparation. Table 3 shows the total MG operation costs in Case 1 according to STOl .

Table 3. Total MG operation costs according to STOl in Case 1.

STO18 STO19 STO20

with preparation USD 168,229 USD 113,152 USD 70,632
w/o preparation USD 178,818 USD 139,032 USD 108,664

Cost improvement 5.92% 18.61% 35.00%

4.2. CASE 2 (STO = 27, 28, 29)

At pre-event times in Case 2, regardless of preparation, the output of the generators
with relatively high fuel costs stopped, and the renewable generation and PBuy.NM

t supply
the loads. Further, the battery is operated to charge power with a low economic value and
to utilize it during times of high load and high electricity price. However, based on the
preparation, the output patterns of some generators with minimum downtime and SoC
are different. Figure 8 shows the optimization results between the two modes in Case 2 in
pre-event times.

In the normal MG operation without preparation, G1 and G2 shut off at t = 26 and
25. At t = 26, while PBuy.NM

t increases, all CG shuts off, and the battery starts charging
through renewable generation. At pre-event times, the normal MG operation without
preparation, PBuy.NM

t , is 0.25 MW, 11.09 MW, 7.63 MW, and 2.8 MW and Pch.NM
t is 0 MW,
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11.35 MW, 5.67 MW, and 2.84 MW. In the normal MG operation with preparation, G1
maintains the on-state, and the G2 shuts off at t = 24 for generating t = 27, 28, and 29
for STO27, STO28, and STO29, respectively. The battery starts charging at t = 25. It is
earlier than that in the normal mode of operation without preparation. At pre-event
times with preparation, PBuy.NM

t is 11.61 MW, 4.41 MW, 2.79 MW, and 0 MW; Pch.NM
t is

11.32 MW, 5.66 MW, 2.83 MW, and 1.42 MW. Therefore, in the MG operation mode with
preparation, the SoC is 68%, 79%, and 84%, which is 23%, 11%, and 6% higher than that of
the MG operation without preparation at pre-event times. As in Case 1, the preparation
requires more costs because of the uneconomical power adjustment of the generator and
for maintaining SoC at a high level. Therefore, the preparation mode has higher operating
costs in Case 2. The normal MG operating costs are USD 22,581 with preparation and USD
22,263 without preparation.
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Figure 8. Pre-event MG operation without and with preparation in Case 2.

The load survivability and total available power of CGs, considering minimum stop
time and ramp capability, are calculated to evaluate the effect of proactive actions on the
load during the event periods in Case 2. Table 4 shows the total available power of CGs at
each STOl .

Table 4. Total available power of CGs at each STOl .

STO27 t = 27 t = 28 t = 29 t = 30

with preparation 10 MW 15 MW 16 MW 16 MW
w/o preparation 4 MW 6 MW 11 MW 14 MW

STO28 t = 28 t = 29 t = 30 t = 31

with preparation 11 MW 16 MW 16 MW 16 MW
w/o preparation 6 MW 11 MW 14 MW 16 MW

STO29 t = 29 t = 30 t = 31 t = 32

with preparation 14 MW 16 MW 16 MW 16 MW
w/o preparation 9 MW 14 MW 16 MW 16 MW

With preparation, most CGs can generate the maximum output in the emergency MG
operation. In the emergency MG operation without preparation, the total available power
of CGs is under the maximum output of CGs due to the minimum stop time and ramp
capability of G1 and G2. Without preparation, the total available power of CGs can be
maxed at t = 31. Figure 9 shows the different components of the MG operation based on
the proactive action at each event period in Case 2. The different components are SoC (%),
load A survivability (%), load B survivability (%), and operating costs (USD) in Case 2.
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Figure 9. Different components (SoC, load A survivability, load B survivability, and operating costs)
of MG operation based on the proactive action at each event period in Case 2.

In Case 1, the SoC continued to decline over time, where the load was relatively high.
However, in Case 2, the SoC increased at times when the load was very low. This means
that, at t = 31, t = 32, and t = 33, the surplus available power required to guarantee the
survivability of the increased load was adequately stored. An increase in SoC at t = 31,
t = 32, and t = 33 is observed in emergency MG operations with preparation because the
total available power of CGs can quickly reach its maximum with preparation.

The differences in load survivability between the two modes during the event periods
are caused by the SoC and total available power of CG at the pre-event time. The mean
values of load A survivability are 98.31% and 95.91% with and without preparation, respec-
tively. The mean values of load B survivability are 92.83% and 82.36% with and without
preparation, respectively. Load A survivability is greater than the setting value of α%,
which is equal to 95% regardless of preparation because the load is relatively low. Further,
the difference in load B survivability is low. However, a low difference in load survivability
significantly affects emergency MG operation costs. These costs without preparation are
USD 5037, USD 5905, and USD 9901, and those with preparation are USD 2407, USD 3580,
and USD 6312. Although available power difference is the most at STO27, since loads
increase significantly over time, the maximum values for the emergency-mode operation
costs and the maximum difference in the emergency-mode operation costs are shown at
STO29.

When comparing normal mode operating cost, an additional cost of USD 318 is
incurred during normal mode to operate in preparation mode. However, even without
preparation in Case 2, the critical load’s survivability is above α% during the event periods
due to the low load. Thus, the resilience-enhancement effect of the proposed method is
lower than that of Case 1. However, in event periods, there are differences in normal load
survivability, and operation costs for all STOl are higher than those of MG operation with
preparation. The simulation results in Case 2 show that the proposed method employs
proactive actions to ensure the survivability of normal loads and lower the total operation
cost, which includes the ECLS. Table 5 shows the total MG operation costs in Case 2
according to STOl .

Table 5. Total MG operation costs according to STOl in Case 2.

STO27 STO28 STO29

with preparation USD 24,988 USD 26,161 USD 28,893
w/o preparation USD 27,300 USD 28,168 USD 32,164

Cost improvement 8.47% 7.13% 10.17%
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5. Conclusions

A proactive microgrid-management strategy was proposed based on nested MILP
problems with chance constraints to enhance resilience during the event periods. In the
proposed method, the MG operates in preparation mode when an external grid outage
warning is issued. We formulated the preparation-mode problem as a nested chance-
constrained problem reflecting normal and emergency-mode operation conditions. The pre-
scheduling problem under normal-mode operation conditions includes the on-event phase
operation problem under emergency-mode operation conditions as a subproblem. In the
proposed method, proactive actions of the MG are realized by rescheduling the generator
and maintaining the high SoC of the battery.

The value of load shedding during event periods was reflected as ECLS in the proposed
method. Further, we reflected the critical load shedding value in chance constraints of the
preparation-mode problem. These induce MG to operate conservatively to ensure survivability.

It was confirmed that the proposed method efficiently and proactively determined the
operation of the battery and generator during the normal mode to improve resilience during
the event periods when compared to the MG operation without preparation. A comparison
of the operation with and without preparation indicated that the proposed method slightly
increased the operating cost in the normal mode but was effective in increasing the load
survivability and reducing the operating cost during the event periods. Further, we
find that the resilience improvement effect of the proposed method may vary depending
on the predicted start time of outages. When the predicted start times of outage are
high-load time periods, the survivability of critical loads during the event periods is
guaranteed above 95% in the proposed method but only guaranteed some time in MG
operation without preparation mode. Since all loads are high during the event periods,
the survivability of normal loads is low with and without preparation. When predicted
start times of outages are low-load time periods, since all loads are low during the event
periods, the survivability of critical loads is guaranteed to be above 95% regardless of
preparation. However, depending on the preparation, the survivability and ECLS of the
normal load are different during the event periods, and the proposed method shows
resilience enhancement.

In the proposed method, we assumed the predicted the start time of outages and
event duration. Therefore to maximize the efficiency of the proposed method, the event-
prediction information should be delivered to the centralized MG operator a few hours
before the actual event occurs. On the other hand, the proposed method may be less effec-
tive for events with predictable characteristics seconds or minutes before the event occurs.
Furthermore, the characteristics based on the load type and voltage were not considered in
the proposed method. In future studies, we plan to reflect on the characteristics of critical
loads in the proposed method and extend the proposed method for considering the voltage
by applying network constraints.
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Nomenclature
The following nomenclature are used in this manuscript:

Acronyms and Initialisms
MG Microgrid
ELS Expected Load Shedding
ECLS Expected Cost of Load Shedding
MILP Mixed Integer Linear Program
BESS Battery Energy-Storage Systems
STO Predicted Start Time of Outages
Ts Survival Times
ESS Energy Storage System
PCS Power Conversion System
CG Controllable Generator
PDF Probability Density Function
CDF Cumulative Density Function
Indices
t Index of time intervals, running from 1 to T.
l Index of STO, running from 1 to L.
tsl Index of survival time intervals, running from STOl to STOl + Ts.
g Index of controllable generators, running from 1 to G.
Parameters
DoD Depth of the discharge.
Pmin

g , Pmax
g Minimum/Maximum output of CGg.

TOg, TSg Minimum operating/stop time of CGg.
Cgen

g Generation cost of CGg.
CSU

g , CSD
g Start up/Shut down cost of CGg

RUmax
g , RDmax

g Maximum ramping up/down rate of CGg.
Batc Battery capacity.
PCSc PCS capacity.
Psub

c Capacity of substation.
TCM, TDM Minimum charging/discharging time of the battery.
η Charging and discharging efficiencies of the battery.
PWT

t , PWT
tsl

Wind power forecast at t and tsl .
PPV

t , PWT
tsl

PV generation forecast at t and tsl .
PLA

t , PLB
t Demand forecast of Load A/Load B at t.

PLA
tsl

, PLB
tsl

Demand forecast of Load A/Load B at tsl .

PRSell
t , PRBuy

t Electricity selling/buying price to/from main grid at t.
CLSA, CLSB Load shedding cost for Load A/Load B Shedding.
STOl lth predicted start time of outage t.
Binary variables
uNM

g,t Commitment status identifier of CGg at t in normal mode.
yNM

g,t Startup identifier of CGg at t in normal mode.
zNM

g,t Shutdown identifier of CGg at t in normal mode.
uchNM

t , udcNM
t Identifier of charging/discharging state at t in normal mode.

uSTOl
g,tsl

Commitment status identifier of CGg at tsl in STOl.

ySTOl
g,tsl

Startup identifier of CGg at tsl in STOl .

zSTOl
g,tsl

Shutdown identifier of CGg at tsl in STOl .
Continuous variables
PNM

g,t Power generation from CGg at t in normal mode.

PBuy.NM
t , PSell.NM

t Power bought/sold from/to utility grid at t in normal mode.
Pch.NM

t , Pdch.NM
t Power charged/discharged to/from the battery at t in the normal mode.

SoCNM
t State of charge of the battery at t in the normal mode.

PtA.NM
t , PtB.NM

t Power transferred to Load A/Load B at t in the normal mode.
PLSA.NM

t , PLSB.NM
t Amount of Load A/Load B shedding at t in the normal mode.
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PSTOl
g,tsl

Power generation from CGg at tsl in STOl .

Pch.STOl
tsl

,Pdch.STOl
tsl

Power charged/discharged to/from the battery at tsl in STOl .
SoCSTOl

tsl
State of charge of battery at tsl in STOl .

PtA.STOl
tsl

, PtB.STOl
tsl

Power transferred to Load A/Load B at tsl in STOl .
PELSA.STOl

tsl
, PELSB.STOl

tsl
Amount of Expected Load A/Load B shedding at tsl in in STOl .

CELSA.STOl
tsl

, CELSB.STOl
tsl

Expected cost of Load A/Load B shedding at tsl in STOl .

Appendix A. Modeling Expectation of Load Shedding

Load shedding occurs when the power transmitted to the load is less than the amount
of the load. The forecasted amount of load shedding is the difference between the load
amount and the power transmitted to the load, and it can be defined as in Equation (A1).

LSFC
t = max(Loadt − PtL

t , 0) (A1)

Since the forecast values for load and renewable energy are used at the operational plan-
ning stage, the actual load shedding value considering the forecast error is as Equation (A2).
εt represents the sum of the load forecast error and renewable energy forecast error.

LSactual
t = max((Loadt − PtL

t )− εt, 0) = max(LSFC
t − εt, 0) (A2)

PELS
t represents the conditional expected load shedding that exists when LSFC

t is
greater than εt, and PELS

t is calculated as in Equation (A3). We assumed that εt follows a
Gaussian distribution. In Equation (A3), φεt represents the PDF of εt and Φεt represents the
CDF of εt.

PELS
t (LSFC

t ) =
1

P(LSFC
t − εt >= 0)

∫ LSFC
t

− inf
(LSFC

t − εt) · φεt dεt

=
1

Φεt(LSFC
t )

{ ∫ LSFC
t

− inf
LSFC

t · φεt dεt −
∫ LSFC

t

− inf
εt · φεt dεt

}
= LSFC

t +
σ2 · φεt(LSFC

t )

Φεt(LSFC
t )

(A3)


where

∫ LSFC
t

− inf LSFC
t · φεt dεt = LSFC

t ·Φεt(LSFC
t )− LSFC

t ·Φεt(− inf)

where
∫ LSFC

t
− inf εt · φεt dεt = −σ2 · (φεt(LSFC

t )− φεt(− inf))

Here, PELS represents the nonlinear nonconvex function. However, the ECLS included
in the objective function of optimization problem is a nonlinear and convex function.
The ECLS is defined as multiplying PELS by CLS and Φεt , which means the probability that
LSFC

t is greater than εt, PELS
t . The ECLS is expressed as Equation (A4).

CELS
t = CLS ·Φεt · PELS(LSFC

t )

= CLS
{

LSFC
t ·Φεt(LSFC

t ) + σ2 · φεt(LSFC
t )

} (A4)

Equation (A5) represents first derivative for Equation (A4). The second derivative for
Equation (A4) is expressed as Equation (A6). The CLS is a positive parameter and φεt(LSFC

t )
is always positive. Therefore, the modeled CELS

t is convex for all LSFC
t .

dCELS
t

dLSFC
t

= CLS
{

Φεt(LSFC
t ) + LSFC

t · φεt(LSFC
t )− LSFC

t · φεt(LSFC
t )

}
where

dφεt(LSFC
t )

dLSFC
t

=
− LSFC

t · φεt(LSFC
t )

σ2

(A5)
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dCELS
t

d(LSFC
t )2

= CLS · φεt(LSFC
t ) (A6)
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