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Abstract: Surface morphology and surface roughness are very important properties used to assess
the quality of grind-hardening surfaces. In this study, grind-hardening tests for 42CrMo steel were
designed using the response surface methodology to reveal the surface morphological characteristics
of the grind-hardening surface and the effects of grinding parameters on its roughness. The results
showed considerable grinding damage in both the cutting-in and cutting-out areas of the grind-
hardened surface, while the middle area was more stable. More specifically, the cutting-in area
showed much bonding and damage, while the cutting-out area showed more microcracks. Under the
conditions of this test, the surface roughness tended to increase with the increase in cutting depth and
workpiece feed speed. The effect of grinding line speed on the grind-hardening surface roughness
was not significant. The significance of the effects of grinding parameters on surface roughness
ranked as: cutting depth > workpiece feed speed > grinding speed. In turn, a response surface
methodology-BP neural network prediction model for the surface roughness of grind-hardening was
developed, whose feasibility and validity were confirmed by the experimental results. The model
achieved surface roughness prediction of the grind-hardening process with a mean relative error
of 2.86%.

Keywords: grind-hardening; surface morphology; surface roughness; response surface methodology;
BP neural network

1. Introduction

As one of the new integrated manufacturing technologies that have emerged in recent
years, the application area and value of the grind-hardening process have attracted much
attention worldwide. Two German scholars, Brinksmeier and Brockhoff, first proposed
grind-hardening: a new green composite machining process [1,2]. By directly utilizing
the heat generated during grinding for quenching of the workpiece surface, there is an
enhanced martensite transformation, intensive dislocations and a more desirable carbon
distribution on the surface. It is highly possible that the method can be used to incorporate
grinding and surface hardening into a single grinding operation to develop a cost-effective
production method [3].

Surface roughness is the main indicator for assessing the micro-geometric accuracy of
the machined surface and one of the important indicators for evaluating workpiece surface
quality. It has a considerable impact on the service life and performance of mechanical
parts, including fatigue strength, corrosion resistance, friction and wear properties, etc.,
especially those working under high temperature, high speed and high pressure [4,5].
For a given grinding system, the machined surface roughness depends mainly on the
settable grinding parameters and is inevitably affected by some random factors during
grinding [6]. Therefore, to further study the feasibility of grind-hardening and obtain
better surface quality, in-depth research on the influencing factors of surface roughness
and the influencing patterns is necessary. It is evident that establishing surface roughness

Appl. Sci. 2022, 12, 12680. https://doi.org/10.3390/app122412680 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412680
https://doi.org/10.3390/app122412680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122412680
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412680?type=check_update&version=2


Appl. Sci. 2022, 12, 12680 2 of 13

prediction models is of great significance for the integrity evaluation and quality control of
grind-hardening surfaces.

2. Research and Progress of Surface Roughness Prediction in Metal Processing

In recent years, experts and scholars have conducted experimental and predictive stud-
ies on the surface roughness of metal processing techniques such as milling, turning and
grinding. The commonly used methods included empirical formula prediction, response
surface regression analysis prediction, neural network prediction, genetic algorithms (GAs)
and et al.

Natarajan et al. adopted artificial neural networks (ANNs) and developed a surface
roughness prediction model for C26000 brass in dry cutting conditions on a CNC turning
machine, which (with the interacting terms) took into account the interactions between
the parameters and achieved an accuracy of 87.07%. Their study found feed speed as the
most influential parameter, followed by grinding speed and the depth of cut [7]. Ding et al.
established a machined surface roughness prediction model using fuzzy neural networks
based on the grinding wheel wear state and grinding parameters [8]. Gopan et al. com-
bined ANNs with GAs for a post-grinding surface roughness prediction and optimization
model [9]. Varma et al. selected the working speed, cutting depth and feed speed as input
parameters of the process and used an adaptive neuro-fuzzy inference system (ANFIS),
neural network and regression analysis to develop prediction models for surface roughness
and the metal removal rate during cylindrical grinding. Compared to neural networks
and regression analyses, the surface roughness predictions based on ANFIS agreed well
with the experimental results [10]. Chen et al. developed a surface roughness prediction
model for Ti-6Al-4V abrasive belt grinding, based on the response surface methodology,
and the average error between experimental measurements and model predictions was
6.08% [11]. Gao et al. designed microgrinding tests for composites based on the response
surface methodology, and their regression equation model (established by regression analy-
sis and removing the insignificant terms) could relatively accurately reflect the effects of
cutting depth, feed speed and spindle speed on surface roughness [12]. Bandapalli et al.
conducted experimental research and estimations on the surface roughness of high-speed
micro-end milling of titanium alloys using ANNs, group method data processing (GMDH)
and multivariate regression analysis (MRA), and their observed results showed that the
prediction accuracy of neural networks was higher than the other techniques [13]. Lin et al.
developed multivariate regression models (MRMs) and neural network prediction models
under various cutting conditions from low-speed to high-speed steady machining, and their
results showed that neural network models had higher prediction accuracy [14]. Lei et al.
applied empirical models and neural networks to predict the surface roughness for the
cryogenic milling of titanium alloys, and the comparative analysis of their results revealed
that the maximum relative error between experimental values and predictions by the neural
network model was 3.64%, and the error variation was small. Compared with the empirical
model, the neural network model had a higher prediction accuracy and generalization
ability, which could better predict the effect of each parameter on surface roughness [15].
Asiltürk et al. developed two prediction models based on ANNs and MRMs for predicting
the surface roughness of turning machining AISI 1040 steel. In both models, feed speed was
identified as the most significant factor affecting surface roughness, followed by the depth
of cut and line speed of cut. The results of their study showed that ANNs outperformed
MRMs [16]. Therefore, ANNs have achieved certain research results in the prediction of
surface roughness after machining. However, no research on the surface roughness predic-
tion of the grind-hardening process or related results has been reported. To this end, this
paper further explores the construction of a grind-hardening surface roughness prediction
model by regression analysis and BP neural network after obtaining raw data through
grind-hardening tests. Thus, the surface roughness formation and variation patterns can be
systematically revealed, and the surface roughness prediction of grind-hardening can be
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achieved. This study could provide a theoretical and experimental basis for the application
of the grind-hardening process.

3. Grind-Hardening Test Design Based on the Response Surface Methodology
3.1. Material Selection

As a structural alloy with high strength, high toughness, good hardenability and
mechanical properties, 42CrMo is widely used in the manufacture of mechanical products,
such as engine cylinders and deep well drilling rod joints. Its mechanical behavior and
chemical composition are presented in Tables 1 and 2.

Table 1. Mechanical behavior of 42CrMo steel.

Hardness
(HB)

Tensile Strength Rm
(MPa)

Yield Strength Rc
(MPa)

Reduction of Area ψ
(%)

Elongation
(%)

≤217 ≥1080 ≥930 ≥45 ≥12

Table 2. Chemical composition of 42CrMo steel (wt.%).

Composition wt.% Composition wt.%

C 0.38–0.45 Cr 0.90–1.20
Mo 0.15–0.25 Si 0.17–0.37
Mn 0.50–0.80 S ≤0.035
P ≤0.035 Cu/Ni ≤0.30

3.2. Test Parameter Setting

According to previous experimental studies on the grind-hardening mechanism, the
grinding parameters were set as follows: the grinding line speed vs. was 25 to 35 m·s−1;
the workpiece feed speed was 0.2 to 0.6 m·min−1; and the grinding depth was 0.2 to
0.4 mm. With the above grind-hardening parameters setting, the hardness of the high
hardening area of the grind-hardened layer was always in the range of 620 to 700 HV and
the average depth of the hardened layer was 1.9 mm, thus achieving a relatively good
hardening effect [17]. Therefore, the grinding parameters in this study were set as listed in
Table 3 to investigate the grind-hardening surface morphology and surface roughness of
42CrMo steel.

Table 3. Grinding parameters setting of grinding hardening test.

Grinding Parameters Parameters Setting

Grinding line speed vs (m·s−1) 25, 30, 35
Grinding depth ap (mm) 0.2, 0.3, 0.4

Workpiece feed speed vw (m·min−1) 0.2, 0.4, 0.6
Grinding way Down grinding

Cooling conditions Air cooling

3.3. Test Protocol Design

Before the grind-hardening process, the surface and sides of the specimens were finely
ground with a surface grinder and the edges and corners were resharpened with sandpaper.
The grinding wheel surface was sharpened and shaped with a diamond dresser. The
specific test preparations and conditions are presented in Table 4.

In this test, the Box–Behnken response surface methodology was used, and three
levels of each factor were recorded, namely, the workpiece feed speed, cutting depth and
grinding line speed. Based on the three-factor and three-level response surface methodology
guidelines, each factor had an equal chance of occurring at each level, and 12 trials were
conducted. Five more replicate tests at the 0 level of each factor were added, totaling
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17 tests. To ensure the accuracy of the test result prediction, three replicate tests were
conducted for each set of parameters. The experimental design is presented in Table 5.

Table 4. Experimental conditions.

Details Unit Type Notes

Grinding machine MKL7132 × 6/12 surface grinding machine Slow feed surface CNC grinder
Test material 42CrMo steel Better hardenability

Wheel WA60L6V White corundum grinding wheel Ceramic bonding agent
Specimen size Length 60 mm; Width 20 mm; Height 25 mm Quenched and tempered state
Grinding way One-way suitable grinding

Table 5. Design of experiments with response surfaces.

Samples Workpiece Feed Speed
vw (m·min−1)

Grinding Depth
ap (mm)

Grinding Line Speed
vs (m·s−1)

1 0.4 0.2 25
2 0.4 0.2 35
3 0.4 0.4 25
4 0.4 0.4 35
5 0.2 0.3 25
6 0.2 0.3 35
7 0.6 0.3 25
8 0.6 0.3 35
9 0.2 0.2 30

10 0.2 0.4 30
11 0.6 0.2 30
12 0.6 0.4 30
13 0.4 0.3 30
14 0.4 0.3 30
15 0.4 0.3 30
16 0.4 0.3 30
17 0.4 0.3 30

4. Analysis of Surface Morphology and Surface Roughness after Grind-Hardening
4.1. Surface Morphology Analysis

The surface morphology after grind-hardening was observed using an OLYMPUS-
DSX500 optical digital microscope (Figure 1). As shown in Figures 2–5, the specimen
surface after grind-hardening is not smooth and the grinding texture is coarse, with many
defects and damage, such as scratches and bonding.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

Figure 1. OLYMPUS-DSX500 optical digital microscope. 

In the cutting-in area of the grind-hardened surface, the grinding pattern is clear, and 

many grinding defects, such as bonding and breakage, can be observed. As the abrasive 

grains on the grinding wheel were sharp after dressing, their cutting effect was strong. As 

a result, they left clearer patterns in the cutting-in area. Due to the large grinding thick-

ness, the abrasive grains directly entered the cutting stage as soon as they came into con-

tact with the workpiece (skipping the slipping and plowing), and the chips could not be 

discharged in time. The combined action of excessive grinding force and grinding tem-

perature caused a series of physical and chemical reactions of the dislodged abrasive 

grains and chips, which adhered to the surface of the workpiece, resulting in bonding and 

burn. 

 
(a) (b) (c) 

Figure 2. Two-dimensional view of the surface morphology of sample No. 5 (20x). (a) cutting-in 

area; (b) middle area; (c) cutting-out area. 

   

(a) (b) (c) 

Figure 3. Three-dimensional view of the surface morphology of sample No. 5. (a) cutting-in area; 

(b) middle area; (c) cutting-out area. 

Figure 1. OLYMPUS-DSX500 optical digital microscope.



Appl. Sci. 2022, 12, 12680 5 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

Figure 1. OLYMPUS-DSX500 optical digital microscope. 

In the cutting-in area of the grind-hardened surface, the grinding pattern is clear, and 

many grinding defects, such as bonding and breakage, can be observed. As the abrasive 

grains on the grinding wheel were sharp after dressing, their cutting effect was strong. As 

a result, they left clearer patterns in the cutting-in area. Due to the large grinding thick-

ness, the abrasive grains directly entered the cutting stage as soon as they came into con-

tact with the workpiece (skipping the slipping and plowing), and the chips could not be 

discharged in time. The combined action of excessive grinding force and grinding tem-

perature caused a series of physical and chemical reactions of the dislodged abrasive 

grains and chips, which adhered to the surface of the workpiece, resulting in bonding and 

burn. 

 
(a) (b) (c) 

Figure 2. Two-dimensional view of the surface morphology of sample No. 5 (20x). (a) cutting-in 

area; (b) middle area; (c) cutting-out area. 

   

(a) (b) (c) 

Figure 3. Three-dimensional view of the surface morphology of sample No. 5. (a) cutting-in area; 

(b) middle area; (c) cutting-out area. 

Figure 2. Two-dimensional view of the surface morphology of sample No. 5 (20×). (a) cutting-in
area; (b) middle area; (c) cutting-out area.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

Figure 1. OLYMPUS-DSX500 optical digital microscope. 

In the cutting-in area of the grind-hardened surface, the grinding pattern is clear, and 

many grinding defects, such as bonding and breakage, can be observed. As the abrasive 

grains on the grinding wheel were sharp after dressing, their cutting effect was strong. As 

a result, they left clearer patterns in the cutting-in area. Due to the large grinding thick-

ness, the abrasive grains directly entered the cutting stage as soon as they came into con-

tact with the workpiece (skipping the slipping and plowing), and the chips could not be 

discharged in time. The combined action of excessive grinding force and grinding tem-

perature caused a series of physical and chemical reactions of the dislodged abrasive 

grains and chips, which adhered to the surface of the workpiece, resulting in bonding and 

burn. 

 
(a) (b) (c) 

Figure 2. Two-dimensional view of the surface morphology of sample No. 5 (20x). (a) cutting-in 

area; (b) middle area; (c) cutting-out area. 

   

(a) (b) (c) 

Figure 3. Three-dimensional view of the surface morphology of sample No. 5. (a) cutting-in area; 

(b) middle area; (c) cutting-out area. 
Figure 3. Three-dimensional view of the surface morphology of sample No. 5. (a) cutting-in area; (b)
middle area; (c) cutting-out area.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 14 
 

   
(a) (b) (c) 

Figure 4. Two-dimensional view of the surface morphology of sample No. 7 (20x). (a) cutting-in 

area; (b) middle area; (c) cutting-out area. 

   
(a) (b) (c) 

Figure 5. Three-dimensional view of the surface morphology of sample No. 7. (a) cutting-in area; 

(b) middle area; (c) cutting-out area. 

In the middle area there is a section of a relatively stable and flat surface with local-

ized flow coating and pits. As the grinding wheel passed through the cutting-in area, the 

abrasive grains produced a certain degree of dullness and had no time to self-sharpen. 

Under high temperatures and pressure, the air holes of the grinding wheel were blocked 

by the chips that were not discharged in time, rendering the grinding wheel surface 

smooth. At this time, the metal in the vicinity of the grinding arc was in a plastic flow state 

due to the high temperature. Thus, the “smooth” state of the wheel was “copied” onto the 

grinding surface, creating a relatively flat machined area. Compared with the cutting-in 

area, the grinding temperature in the middle area increased further, and traces of flow 

coating of the metal material appeared in some areas. Meanwhile, as the hardness of the 

metal material reduced with the increasing temperature in the grinding area, and the 

chipped abrasive grains were not discharged in time, the grinding wheel “pressed” some 

of the chipped abrasive grains into the grinding area, creating craters. 

In the cutting-out area, numerous microcracks, breakages and folds appeared. The 

grinding wheel was worn badly and the air holes were clogged severely, resulting in fur-

ther increases in the grinding force and grinding temperature. In the final grinding area, 

as part of the grinding wheel that left the grinding surface, the metal grinding rate de-

creased suddenly. Consequently, the grinding force dropped sharply, causing a sudden 

increase in the unbalanced vibration of the grinding wheel and workpiece. When the 

grinding wheel was completely off the workpiece, the temperature dropped sharply, lead-

ing to the initiation and extension of microcracks. Microcracks are observed in both the 

longitudinal and transverse directions and are longer in the longitudinal direction (work-

piece feed direction). 

4.2. Formation and Variations of Surface Roughness in Grind-Hardening 

The above grinding surface morphology analysis revealed a certain unevenness in 

the surface after grind-hardening. Therefore, five measurements were taken in the cutting-

in area, middle area and cutting-out area of the specimens during surface roughness meas-

urement and analysis under the OLYMPUS-DSX500 optical digital microscope. To reduce 

Figure 4. Two-dimensional view of the surface morphology of sample No. 7 (20×). (a) cutting-in
area; (b) middle area; (c) cutting-out area.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 14 
 

   
(a) (b) (c) 

Figure 4. Two-dimensional view of the surface morphology of sample No. 7 (20x). (a) cutting-in 

area; (b) middle area; (c) cutting-out area. 

   
(a) (b) (c) 

Figure 5. Three-dimensional view of the surface morphology of sample No. 7. (a) cutting-in area; 

(b) middle area; (c) cutting-out area. 

In the middle area there is a section of a relatively stable and flat surface with local-

ized flow coating and pits. As the grinding wheel passed through the cutting-in area, the 

abrasive grains produced a certain degree of dullness and had no time to self-sharpen. 

Under high temperatures and pressure, the air holes of the grinding wheel were blocked 

by the chips that were not discharged in time, rendering the grinding wheel surface 

smooth. At this time, the metal in the vicinity of the grinding arc was in a plastic flow state 

due to the high temperature. Thus, the “smooth” state of the wheel was “copied” onto the 

grinding surface, creating a relatively flat machined area. Compared with the cutting-in 

area, the grinding temperature in the middle area increased further, and traces of flow 

coating of the metal material appeared in some areas. Meanwhile, as the hardness of the 

metal material reduced with the increasing temperature in the grinding area, and the 

chipped abrasive grains were not discharged in time, the grinding wheel “pressed” some 

of the chipped abrasive grains into the grinding area, creating craters. 

In the cutting-out area, numerous microcracks, breakages and folds appeared. The 

grinding wheel was worn badly and the air holes were clogged severely, resulting in fur-

ther increases in the grinding force and grinding temperature. In the final grinding area, 

as part of the grinding wheel that left the grinding surface, the metal grinding rate de-

creased suddenly. Consequently, the grinding force dropped sharply, causing a sudden 

increase in the unbalanced vibration of the grinding wheel and workpiece. When the 

grinding wheel was completely off the workpiece, the temperature dropped sharply, lead-

ing to the initiation and extension of microcracks. Microcracks are observed in both the 

longitudinal and transverse directions and are longer in the longitudinal direction (work-

piece feed direction). 

4.2. Formation and Variations of Surface Roughness in Grind-Hardening 

The above grinding surface morphology analysis revealed a certain unevenness in 

the surface after grind-hardening. Therefore, five measurements were taken in the cutting-

in area, middle area and cutting-out area of the specimens during surface roughness meas-

urement and analysis under the OLYMPUS-DSX500 optical digital microscope. To reduce 

Figure 5. Three-dimensional view of the surface morphology of sample No. 7. (a) cutting-in area;
(b) middle area; (c) cutting-out area.

In the cutting-in area of the grind-hardened surface, the grinding pattern is clear, and
many grinding defects, such as bonding and breakage, can be observed. As the abrasive
grains on the grinding wheel were sharp after dressing, their cutting effect was strong. As
a result, they left clearer patterns in the cutting-in area. Due to the large grinding thickness,
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the abrasive grains directly entered the cutting stage as soon as they came into contact with
the workpiece (skipping the slipping and plowing), and the chips could not be discharged
in time. The combined action of excessive grinding force and grinding temperature caused
a series of physical and chemical reactions of the dislodged abrasive grains and chips,
which adhered to the surface of the workpiece, resulting in bonding and burn.

In the middle area there is a section of a relatively stable and flat surface with localized
flow coating and pits. As the grinding wheel passed through the cutting-in area, the
abrasive grains produced a certain degree of dullness and had no time to self-sharpen.
Under high temperatures and pressure, the air holes of the grinding wheel were blocked by
the chips that were not discharged in time, rendering the grinding wheel surface smooth.
At this time, the metal in the vicinity of the grinding arc was in a plastic flow state due to the
high temperature. Thus, the “smooth” state of the wheel was “copied” onto the grinding
surface, creating a relatively flat machined area. Compared with the cutting-in area, the
grinding temperature in the middle area increased further, and traces of flow coating of the
metal material appeared in some areas. Meanwhile, as the hardness of the metal material
reduced with the increasing temperature in the grinding area, and the chipped abrasive
grains were not discharged in time, the grinding wheel “pressed” some of the chipped
abrasive grains into the grinding area, creating craters.

In the cutting-out area, numerous microcracks, breakages and folds appeared. The
grinding wheel was worn badly and the air holes were clogged severely, resulting in
further increases in the grinding force and grinding temperature. In the final grinding
area, as part of the grinding wheel that left the grinding surface, the metal grinding
rate decreased suddenly. Consequently, the grinding force dropped sharply, causing a
sudden increase in the unbalanced vibration of the grinding wheel and workpiece. When
the grinding wheel was completely off the workpiece, the temperature dropped sharply,
leading to the initiation and extension of microcracks. Microcracks are observed in both
the longitudinal and transverse directions and are longer in the longitudinal direction
(workpiece feed direction).

4.2. Formation and Variations of Surface Roughness in Grind-Hardening

The above grinding surface morphology analysis revealed a certain unevenness in
the surface after grind-hardening. Therefore, five measurements were taken in the cutting-
in area, middle area and cutting-out area of the specimens during surface roughness
measurement and analysis under the OLYMPUS-DSX500 optical digital microscope. To
reduce the measurement error, the maximum and minimum values of each area were
removed and the mean of the remaining measurement data was taken as the roughness
measurement result. The test matrix and surface roughness measurements are presented in
Table 6.

Table 6. Surface roughness Ra measurements of the test based on response surface methodology.

Samples 1 2 3 4 6 7 8 9

Ra(µm) 1.87 1.56 2.39 2.29 2.03 2.32 2.3 1.28

Samples 10 11 12 13 15 16 17

Ra(µm) 1.81 1.85 2.54 1.85 1.95 1.91 2.1

The influence patterns of each interaction term in the grinding parameters on the
surface roughness were obtained through the Box–Behnken response surface analysis, as
shown in Figures 6–8.
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Figure 6 shows the response surface and contour map of the surface roughness Ra
after grind-hardening at a cutting depth ap and workpiece feed speed vw when the grinding
speed is at the zero level, i.e., vs = 30 m·s−1. As can be observed from the response surface
plot, the surface roughness tends to increase gradually with the increase of cutting depth
and workpiece feed speed. According to the grinding mechanism, the increases in cutting
depth and workpiece feed speed increase the number of effective dynamic grinding edges
and the maximum undeformed chip thickness, which, in turn, increases the depth of
the grinding marks, the grinding force and the grinding heat. As a result, the plastic
deformation and stress of the material increase, thus rendering the surface increasingly
rough and uneven, i.e., the surface roughness Ra increases. According to the contour map,
the effect of the cutting depth on surface roughness is greater than that of the workpiece
feed speed under the parameters in this test.

Figure 7 shows the response surface and contour map of surface roughness after
grinding at different cutting depths and grinding line speed when the workpiece feed
speed is at the zero level, i.e., vw = 0.4 m/min.

Figure 8 shows the response surface and contour map of surface roughness after
grinding at different grinding line speeds and workpiece feed speeds when the cutting
depth is at the zero level, i.e., ap = 0.3 mm. As can be observed, with the increase in grinding
speed, the surface roughness shows a firstly decreasing and then increasing trend. However,
the changes are slight, and the influence is not significant. The reason for this is that as the
grinding speed increased, the per-unit-of-time grinding edge density on the contact surface
between the workpiece and the grinding wheel increased, and the maximum undeformed
chip thickness of the abrasive grains decreased. As a result, the grinding force decreased
and the surface roughness tended to decrease. However, due to the dimensional effect,
the chip strain increased and the grinding temperature tended to rise. Thus, the plastic
deformation increased, increasing the surface roughness instead. Therefore, the effect of
grinding speed on surface roughness is not significant under the parameters of this test.

According to the contour maps in Figures 6–8, the effects of cutting depth and work-
piece feed speed on the surface roughness are consistent under the parameters of this test.
That is, the surface roughness tends to increase with the increase in cutting depth and
workpiece feed speed. According to the changes in contour curvature, it is clear that the
effect of cutting depth on surface roughness is greater than that of the workpiece feed speed.
At the same time, the effect of grinding line speed on surface roughness is not significant.

5. Construction and Validation of Surface Roughness Prediction Model for
Grind-Hardening
5.1. Response Surface Methodology—Quadratic Regression Prediction Model Construction

In this paper, an analysis of variance (ANOVA) was performed on the experimental
results, and the formation of a prediction model was attempted using regression analysis.
Although the F-test found that p = 0.0102 < 0.05, and the misfit term f = 0.0786 > 0.05,
indicating that the regression model developed was significant, the misfit term was not
significant. Thus, the regression prediction was feasible. However, the correction coefficient
of determination of the model had a value of R2 = 0.8571, the adjusted value was R2 = 0.7143,
the prediction of R2 was negative and the model predictions were poor. Thus, it was not
possible to build a response surface regression prediction model.

5.2. Response Surface-BP Neural Network Prediction Model Construction and Validation

BP neural network, also known as error-back propagation network (EBPN), was
proposed and developed by a group of scientists led by Rumelhart and McClelland in
1986. As a feed-forward network composed of nonlinear transform units, it systematically
solved the problem of learning connection weights in multilayer networks and proved to
be particularly suitable for fuzzy, nonlinear and ill-defined pattern characteristics [18]. In
grind-hardening, there are complex nonlinear mapping relationships between grinding
parameters (grinding line speed, cutting depth and workpiece feed speed) and surface
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roughness. Therefore, this paper proposed a BP neural network grind-hardening surface
roughness prediction model based on response surface experimental design. The prediction
model was be constructed in MATLAB software.

The BP neural network surface roughness prediction model developed in this paper
has a three-layer structure, as shown in Figure 9, i.e., an input layer, a hidden layer and
an output layer. The input samples are the three parameters of workpiece feed speed vw,
cutting depth ap and grinding line speed vs; i.e., the number of input nodes is 3. The output
sample is the surface roughness Ra; i.e., the number of output nodes is 1. The number of
nodes in the hidden layer of the BP neural network has a significant impact on its prediction
accuracy. Too few nodes may lead to low learning efficiency of the network (which requires
increasing the number of training sessions) and affect the accuracy of training. Too many
nodes increase the training time and could easily cause overfitting. The optimal number of
hidden layer nodes can be determined by referring to the empirical formula [19]:

p =
∣∣√n

∣∣+ a (1)

where p is the number of neurons in the hidden layer, n represents the number of input
layers, and a represents a random value.
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The number of nodes in the hidden layer was finally determined to be 11 according
to Equation (1) and the error calculation results, i.e., the BP neural network had a 3-11-1
structure. Specifically, the 1st to 11th neuron of the hidden layer were denoted as W1 to
W11, the weights between the input layer nodes and the hidden layer nodes were denoted
as Aij and the weights between the hidden layer and the output layer nodes were denoted
as Bjk. The BP neural network model flow chart is shown in Figure 10.

The above experimental results (in Table 6; Surface roughness Ra measurements of the
test based on response surface methodology) were used as sample data for the BP neural
network. Of these, 70% were randomly selected as the training set, 15% as the validation
set and 15% as the test set. The data samples were normalized to eliminate the effect of
magnitudes between sample parameters. The model expression is as follows.

xi* = (xi − xmin)/(xmax − xmin) (2)

In the equation, xi is the initial data, xi* is the data after normalization, i is the test
number, and xmax and xmin are the maximum and minimum values, respectively, in the
initial data.

After several tests and training, the training process of the BP neural network is shown
in Figure 11. The mean square error (MSE) of BP training is 0.00855 and the correlation
coefficient (R) is 0.9697. The surface roughness Ra’ was predicted using the proposed
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model. The predictions, test values and prediction errors are shown in Table 7. According
to the prediction results, only one prediction has a relative error of 10.78% and the rest
of the predictions have relative errors below 10%, with a mean relative error of 2.86%. A
comparison of the measured and predicted values is shown in Figure 12.
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Table 7. Test values, predicted values, absolute errors and relative errors.

Grinding Parameters
Test Values Ra

(µm)

Predicted
Values Ra’

(µm)

Absolute
Errors (µm)

Ra’−Ra

Relative Errors
(%)

|Ra’−Ra|/Ra
vw (m·min−1)

X1
ap (mm)

X2

vs
(m·s−1)

X3

0.4 0.2 25 1.87 1.8716 0.0016 0.09%
0.4 0.2 35 1.56 1.5676 0.0076 0.49%
0.4 0.4 25 2.39 2.3944 0.0044 0.18%
0.4 0.4 35 2.29 2.3067 0.0167 0.73%
0.2 0.3 25 2.26 2.4033 0.1433 6.34%
0.2 0.3 35 2.03 2.4926 0.2426 10.78%
0.6 0.3 25 2.32 2.3168 −0.0032 0.14%
0.6 0.3 35 2.30 2.3413 −0.0087 0.37%
0.2 0.2 30 1.28 1.2608 −0.0192 1.50%
0.2 0.4 30 1.81 1.9064 0.0964 5.33%
0.6 0.2 30 1.85 1.8625 0.0125 0.68%
0.6 0.4 30 2.54 2.5583 0.0183 0.72%
0.4 0.3 30 1.85 2.0879 0.1379 7.07%
0.4 0.3 30 2.06 2.0879 0.0279 1.35%
0.4 0.3 30 1.95 2.0879 −0.0621 2.89%
0.4 0.3 30 1.91 2.0879 0.1779 9.31%
0.4 0.3 30 2.10 2.0879 −0.0121 0.58%
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Three sets of data were selected for grind-hardening tests again, and the measured and
predicted values are shown in Table 8. Since the relative errors are below 10%, the BP neural
network can predict the surface roughness after grind-hardening with good accuracy. Thus,
the developed response surface methodology-BP neural network prediction model is ready
and reliable in predicting the surface roughness based on the grind-hardening parameters.

Table 8. Test values of grind-hardening compared with the predictions of BP neural network.

Grinding Parameters
Test Values

Ra (µm)
Predictions Ra’

(µm)

Absolute
Errors (µm)

Ra’−Ra

Relative Errors
(%)

|Ra’−Ra|/Ra
vw (m·min−1)

X1

ap
(mm)

X2

vs
(m·s−1)

X3

0.4 0.4 30 2.15 2.0750 −0.075 3.49%
0.2 0.2 35 1.75 1.8957 0.1457 8.33%
0.4 0.3 25 2.23 2.2165 −0.0135 0.61%

6. Conclusions

In this study, grind-hardening tests were designed based on the response surface method-
ology, theoretical analysis was conducted and the prediction model for the surface roughness
of grind-hardening was developed. The following conclusions have been obtained:
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(1) Uneven morphology exists on the surface after grinding, which can be roughly divided
into the cutting-in, middle and cutting-out areas. In the cutting-in area, the grinding
texture is clearer, with much bonding and trace damage. In the middle area, the surface
is relatively flat, with a small amount of bonding and some damage. In the cutting-out
area, the grinding texture is coarse, with more microcracks and grinding damage.

(2) Under the conditions in this test, the surface roughness tends to increase with the
increase of cutting depth and workpiece feed speed, while the variation over the
grinding line speed is not significant.

(3) The effects of grinding parameters (grinding line speed, workpiece feed speed and
cutting depth) on grinding surface roughness in order of significance are cutting depth
> workpiece feed speed > grinding line speed.

(4) It was not possible to build a response surface regression prediction model. The
response surface methodology-BP neural network-based surface roughness prediction
model for grind-hardening is established, which has a mean relative error of 2.38%
(only one has an error of 10.86%) thus, it can be used to predict the surface roughness
after grind-hardening. This study could provide a theoretical and experimental
basis for the engineering applications and grinding surface quality improvement of
grind-hardening.
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