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Abstract: The beetle antenna search algorithm (BAS) converges rapidly and runs in a short time, but
it is prone to yielding values corresponding to local extrema when dealing with high-dimensional
problems, and its optimization result is unstable. The artificial fish swarm algorithm (AFS) can achieve
good convergence in the early stage, but it suffers from slow convergence speed and low optimization
accuracy in the later stage. Therefore, this paper combines the two algorithms according to their
respective characteristics and proposes a mutation and a multi-step detection strategy to improve the
BAS algorithm and raise its optimization accuracy. To verify the performance of the hybrid composed
of the AFS and BAS algorithms based on the Mutation and Multi-step detection Strategy (MMSBAS),
AFS-MMSBAS is compared with AFS, the Multi-direction Detection Beetle Antenna Search (MDBAS)
Algorithm, and the hybrid algorithm composed of the two (AFS-MDBAS). The experimental results
show that, with respect to high-dimensional problems: (1) the AFS-MMSBAS algorithm is not only
more stable than the MDBAS algorithm, but it is also faster in terms of convergence and operation
than the AFS algorithm, and (2) it has a higher optimization capacity than the two algorithms and
their hybrid algorithm.

Keywords: artificial fish swarm algorithm; beetle antenna search algorithm; hybrid algorithm;
mutation strategy; multistep detection

1. Introduction

Optimization refers to the study of problems with multiple feasible solutions and
selecting the best solution [1]. Similarly, an optimization algorithm refers to the optimal
scheme found in many schemes under certain conditions, such as finding the optimal super
parameter in a neural network such that the neural network can achieve optimal perfor-
mance. Intelligent optimization algorithms are widely used for optimization problems
in various fields. For example, the dynamic differential annealed optimization algorithm
and an improved moth-flame optimization algorithm were used to solve mathematical
and engineering optimization problems [2,3], the sunflower optimization algorithm was
proposed for the optimal selection of the parameters of the circuit-based PEMFC model [4],
and a novel meta-heuristic equilibrium algorithm was used to find the optimal threshold
value for a grayscale image [5]. Intelligent optimization algorithms are mainly divided
into four categories, namely, natural simulation optimization algorithms, evolutionary
algorithms, plant growth simulation algorithms, and swarm intelligence optimization algo-
rithms, among which swarm intelligence optimization algorithms is the most important [6].
Researchers observed the habits of animals with respect to foraging and communicating
with each other, described the characteristics of these animals with algorithms, and, finally,
developed the first swarm intelligence optimization algorithm.

Common swarm intelligence optimization algorithms include the Cuckoo Search
Algorithm (CSA) [7], the particle swarm optimization algorithm (PSO) [8], the Ant Colony
Optimization algorithm (ACO) [9], and the Firefly Algorithm (FA) [10]. Early on, scholars
proposed the Artificial Fish Swarm algorithm (AFS) [11], which was inspired by fish
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communities’ food-seeking, gathering, and following behaviors. The AFS algorithm can
achieve good convergence in the early stage, but the algorithm suffers from problems
such as a slow convergence speed and low optimization accuracy in the later stage [12].
Accordingly, scholars have been researching a solution to this problem. Zhang et al. [13]
dynamically adjusted the visual field and step size of the artificial fish and improved
the updating strategy of the position of the artificial fish. Liu et al. [14] used chaotic
transformation to initialize the positions of the individual fish in order to render the
fish more evenly distributed in a limited area. In addition, a physical transformation
model was built based on the relationship between motion and physical fitness. The
algorithm effectively improved the speed of convergence and the accuracy of optimization.
Li et al. [15] used the steepest descent method to update the artificial fish with the best
fitness values, instructed other artificial fish through the exchange of information between
the artificial fish, and accelerated the convergence speed of the artificial fish algorithm.
Later, a hybrid algorithm was created by Liu et al. [16], who introduced the movement
operator of the particle swarm algorithm in order to adjust the movement direction and
position of the artificial fish and enhance their ability to escape the local optimum. Li
et al. [17] introduced the gene exchange behavior of GA into the AFS algorithm to enhance
its ability to escape the local optimum and improve its search efficiency. Inspired by the
above methods, it has been found that the advantages of one algorithm can compensate for
the disadvantages of another algorithm.

In recent years, many optimization algorithms have been proposed by scholars.
Among them, Jiang was inspired by the feeding and mating behaviors of beetles and
proposed a new intelligent optimization algorithm based on these animals: the beetle
antenna search algorithm (BAS) [18]. Since the time and space complexity of the BAS
algorithm is lower and more efficient than that of the swarm intelligence algorithm, it
is also widely used in other fields, such as medicine [19], engineering design [20], and
image processing [21]. In addition, the BAS algorithm has obvious advantages over other
algorithms in terms of convergence speed, which addresses the problem posed by the slow
convergence speed of the AFS algorithm in the later period. However, the BAS algorithm,
employing a single beetle for optimization, is prone to yielding values corresponding to
a local extremum and has poor optimization stability. Therefore, is has been improved
by many scholars. Wang et al. [22] expanded a single beetle to a population of beetles,
optimized the step size update, and proposed a beetle swarm antenna search algorithm
(BSAS) that combines the swarm intelligence algorithm with the feedback-based step-size
update strategy. Zhao et al. [23] proposed an algorithm combining the BAS and GA to solve
the BAS algorithm’s susceptibility to yielding values corresponding to a local extremum in
the optimization of multimodal complex functions. Khan [24] used ADAM update rules to
adaptively adjust the step size in each iteration to improve the BAS algorithm.

In order to solve the instability and low optimization accuracy at high dimensions
of the AFS and BAS algorithms, this paper proposes a hybrid algorithm comprising the
artificial fish swarm and beetle search algorithms (AFS-MMSBAS). The algorithm combines
the advantages of the BAS and AFS, of which the BAS algorithm is improved by using the
mutation of beetles and a multi-step detection strategy to improve optimization accuracy.
In the early stage, the AFS algorithm is used for a global search and convergence to a certain
extent; then, the improved BAS algorithm is used to accelerate convergence. The simulation
results show that the AFS-MMSBAS algorithm has significantly improved stability and
optimization compared with the AFS, MDBAS, and AFS-MDBAS algorithms.

2. Hybrid Algorithm of AFS and Improved BAS

To address the above problems, this section proposes the following algorithms:

(1) Improved BAS algorithm: The use of the mutation strategy and the multi-step detec-
tion strategy of the BAS are proposed to allow the beetle to escape the local extremum
value and accelerate convergence speed.
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(2) Hybrid of the AFS algorithm and BAS algorithm: The respective advantages of the
AFS and BAS algorithms are combined to improve the optimization stability of the
algorithm in high dimensions.

2.1. Mutation Selection Strategy of BAS

The BAS algorithm is prone to yielding values corresponding to a local extremum. In
order to make the beetle escape a local extremum, the application of a mutation strategy
to the beetle is proposed. In multi-dimensional problems, if each dimension changes
at the same time, the following principle applies: the higher the dimension, the lower
the probability that the newly generated individual is superior to the current individual.
Therefore, this paper proposes a method wherein each dimension changes separately. If
the beetle with the dimensional value changed is better than the one without a change, the
current beetle will be updated. Otherwise, the mutation operation is continued in the next
dimension—and so on—until the last dimension, as shown in Figure 1.
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In addition, in order to acquire better results, a single variation is expanded to multiple
variations. The beetle with the best fitness from multiple mutant beetles is selected, and the
next step is initiated. The variation process is shown in Figure 2.
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2.2. Multistep Detection Strategy

The choice of the initial step size has a great impact on the performance of the BAS
algorithm. If the initial step size is too large, the algorithm converges slowly. If it is too
small, it becomes easy to fall into the local extreme value and difficult to escape. The initial
step size is usually determined manually and is then gradually reduced under the effect of
a decreasing factor to achieve the goal of approaching the optimal value. Inspired by the
multi-directional detection strategy [23], this paper proposes its own multi-step detection
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strategy. This strategy dynamically increases or decreases the step size in the optimization
process and reduces the impact of the initial step size on the algorithm’s performance. The
basic idea is to expand and reduce the current step size by a certain multiple, move forward
according to different steps, and select the step size with the best fitness value for an update.
This method can accelerate the convergence speed and increase the possibility of escaping
local extremum. Figure 3 is a schematic diagram showing the multiple-step detection of
the beetles.
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Set the current iteration as i, the step size as stepi, and scale the step size according
to Formula (1), where step(−)i represents the shortened step size, ϕs is the reduction factor,

step(+)
i represents the extended step size, and ϕe is the amplification factor.{

step(−)i = ϕs ∗ stepi

step(+)
i = ϕe ∗ stepi

(1)

f (xi, s) is the fitness of the current beetle xi after a step length of s in a certain direction.
Execute f (xi, step), f

(
xi, step(−)i

)
, and f

(
xi, step(+)

i

)
at the same time, and then select the

step size corresponding to the optimal fitness stepb to update it according to Formula (2),
where δ is the step-decreasing factor

stepi+1 = stepb ∗ δ (2)

Pseudocode of multi-step detection strategy is shown in Algorithm 1.

Algorithm 1. Multi-step detection pseudo code

1. Inputs: steplist = narrow_step, step, enlarge _step

2. for each stepi of the steplist do

3. f it = f (x, stepi)

4. end for

5. select stepbest of corresponding to the best f it

6. do Formula (2)

7. return a new step

In addition, this paper initializes the step size of the beetle according to Formula (3) to
avoid manual interference

step = mean(abs(x))/3 +ϕ (3)
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wherein x represents the position of the initial beetle, δ represents the step-decreasing factor,
and ϕ is a constant to prevent the initial step from equaling 0.

2.3. Hybrid Strategy of FAS-MMSBAS Algorithm

The FAS-MMSBAS algorithm is composed of the BAS algorithm and the AFS al-
gorithm combined through a simple hybrid strategy. In the early stage, the AFS algo-
rithm is used for global optimization and fast convergence, and in the later stage, the
improved BAS algorithm is used to replace it and continue optimization. The hybrid
algorithm reduces the instability of the BAS algorithm caused by individual random
initialization to a certain extent, accelerates the convergence speed, and improves the
optimization accuracy. The most important consideration regarding the hybrid algorithm
is to determine when to end the AFS algorithm. If it is too early, the global optimiza-
tion ability of the AFS algorithm will be too small. If it is too late, it will converge
too slowly and waste time. Therefore, according to the characteristics of the AFS al-
gorithm, this paper proposes the termination of the AFS algorithm when the optimal
value remains unchanged or the convergence speed becomes significantly slow. The op-
timal individual obtained by the AFS algorithm is taken as the initial individual of the
BAS algorithm. The interruption rule of the AFS algorithm is shown in Algorithm 2:

Algorithm 2. FAS algorithm termination rule pseudo code

1. Input: parameters p and q

2. if the repeat times of best individual == q, or maximum iterations of AFS > q then

3. initial individual of the BAS = The optimal individual of AFS

4. end if

5. do Improve BAS

The parameters p and q are manually set values, where p represents the number of
iterations of the best value, and q represents the maximum number of iterations of the AFS
algorithm in the hybrid algorithm. When the fish swarm iterates p times and the optimal
position remains unchanged, the AFS algorithm ends. This means that the current fish
population may find the best value or fall into a local extreme value. In addition, because
the AFS algorithm converges slowly in the later period, if condition p is not met under
certain conditions, q is set as the termination condition of the AFS algorithm to avoid
wasting time. The implementation steps of FAS-MMSBAS algorithm are as follows:

Step 1. Set the initial parameters of the algorithm, including the populations, visual
properties, attempt number, crowding factor, steps of the fish, antenna number, antenna
length, and variation rate.

Step 2. Use the AFS algorithm to continuously optimize until the AFS iteration
termination condition is met.

Step 3. Take the best individual in the optimization stage of the AFS algorithm as the
initial position for the optimization of the beetle.

Step 4. Judge whether there is variation. If there is, go to step 5; if not, go to step 6.
Step 5. Allow the dimension to be mutated, until the end of the mutation.
Step 6. Perform multi-directional and multistep detection on the beetle; then, select

the best beetle to continue to move forward and update the current beetle step length and
whisker length.

Step 7. If the termination conditions are met, the algorithm is ended; if not, go to step 4.
Figure 4 provides a flow chart of the AFS-MMSBAS algorithm depicted according to

the above steps.
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3. Results and Analysis
3.1. Test Function and Evaluation Indicator

In order to verify the performance of the hybrid algorithm proposed in this paper,
11 typical test functions are selected for simulation experiments, as shown in Table 1,
including the function name, search range, optimal position, and optimal value. In addition,
Table 2 is a supplement to Table 1, which is used to show function expressions. f1~ f4 are
unimodal functions, which are used to test the optimization ability of the algorithm for a
single extreme value function. f5~ f10 are multimodal functions, which are used to test the
global search ability of the algorithm under multiple local extreme values and the ability
to solve complex optimization problems. f2 and f10 are non-partitioned functions with a
control relationship between dimensions; f4 is a noise function with random interference;
and f11 is a step function.

Table 1. Benchmark test functions.

Function Function Name Search Range Optimal Position Optimum Value

f1 Sphere xiε[−100, 100] (0,0, . . . ,0) 0
f2 Rosenbrock xiε[−50, 50] (1,1, . . . ,1) 0
f3 SchwefelP222 xiε[−10, 10] (0,0, . . . ,0) 0
f4 Quartic xiε[−1.28, 1.28] (0,0, . . . ,0) 0

f5 Rastrigin xiε[−5.12, 5.12] (0,0, . . . ,0) 0
f6 Griewank xiε[−600, 600] (0,0, . . . ,0) 0
f7 Ackley xiε[−32, 32] (0,0, . . . ,0) 0
f8 Levy and Montalvo 2 xiε[−5, 5] (1,1, . . . ,1) 0
f9 Schwefel226 xiε[−500, 500] (420.968746, . . . , 420.968746) −418.98288 × D

f10 Schaffer xiε[−100, 100] (0,0, . . . ,0) 0

f11 Step xiε[−100, 100] (0,0, . . . ,0) 0
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Table 2. Expressions of benchmark test function; this table is a supplement to Table 1.

Function Name Expression

Sphere f1 =
D
∑

i=1
x2

i

Rosenbrock f2 =
D−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

SchwefelP222 f3 =
D
∑

i=1
|xi|+

D
∏
i=1
|xi|

Quartic f4 =
D
∑

i=1

(
ix4

i
)
+ random[0, 1)

Rastrigin f5 =
D
∑

i=1
[x2

i − 10cos(2πxi) + 10]

Griewank f6 = 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

[
cos
(

xi√
i

)]
+ 1

Ackley f7 = −20exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+ 20 + e

Levy and Montalvo 2 f8 = 0.1
{

sin2(3πx1) +
D
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xD − 1)2[1 + sin2(2πxD)

]}
Schwefel226 f9 = −

D
∑

i=1
xisin

(√
|xi|
)

Schaffer f11 = −
D−1
∑

i=1

(
x2

i + x2
i+1

)0.25
[

sin2
(

50
(

x2
i + x2

i+1

)0.1
)
+ 1
]

Step f10 =
D
∑

i=1
( f loor(xi + 0.5))2

Three indicators are selected in the experiment to evaluate the performance of
the algorithm:

(1) The mean, which is the average value of the algorithm run many times, reflecting the
quality of the solution. The closer the average value is to the optimal value, the better
the algorithm’s results.

(2) The standard deviation, which is the standard deviation of the optimal value and can
reflect the stability of the algorithm. The smaller the standard deviation, the better the
stability of the algorithm.

(3) The running time, in seconds, which is the average time of multiple runs of the algo-
rithm under the same environment and parameters, reflecting the running efficiency
of the algorithm.

The calculation formulas of the three evaluation indicators are shown in Formulas (4)–(6):

Mean =

∣∣∣∣∣ 1
N

n

∑
i=1

f (xi)

∣∣∣∣∣ (4)

Standard =

√
1
N

n

∑
i
( f (xi)−Mean)2 (5)

Time =
1
N

n

∑
i

ti (6)

3.2. Computational Complexity Analysis of FAS-MMSBAS Algorithm

The main improvement to the algorithms in this paper is that after the convergence of
the AFS algorithm becomes slow, the improved BAS algorithm is used to continue to search
for the optimal position. In the later stage, the optimization is changed from population
optimization to individual optimization, which reduces the complexity of the algorithm.
When the optimization problem dimension is D and the population number is N, the
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complexity analysis of the FAS-MMSBAS algorithm is as follows: the number of iterations
of the AFS algorithm is t1, the number of iterations of the MMSBAS algorithm is t2, and the
total number of iterations is T = t1 + t2. In the optimization stage of the AFS algorithm, the
computational complexity of initializing the artificial fish group is O(DN). In the iteration
process, the computational complexity of clustering behavior is O(DN2), and that of chasing
behavior is O(DN2); thus, the total complexity of this stage is O(DN) + O(2DN2)t1. In the
iteration process of the MMSBAS algorithm, the number of multi-directional detection
is c1, the number of multi-step detection is 3, the computational complexity of the multi-
directional multistep detection strategy is O(3c1D), the computational complexity of the
mutation strategy is O(D), and the total computational complexity is O(c2D)t2, c1 < c2.
Combined with the two stages, the total computational complexity of the algorithm can be
approximated as O(DN2)t1 + O(c2D)t2.

It can be seen from Table 3 that when the number of iterations is the same, the order of
algorithm complexity from low to high is BAS < AFS-DBAS < AFS-MMBAS < AFS.

Table 3. Algorithm complexity.

Algorithm Calculation Complexity Algorithm Calculation Complexity

AFS O(DN2) T AFS-DBAS O(DN2)t1 + O(c1D)t2
BAS O(D) T AFS-MMBAS O(DN2)t1 + O(c2D)t2

3.3. Simulation Experiment and Result Analysis

The algorithms’ comparison and analysis are arranged as follows: (1) first, compare
AFS-MMSBAS algorithm with two basic algorithms and the hybrid algorithm of the basic
algorithm based on different dimensions; (2) further analyze the stability and convergence
speed of the AFS-MMSBAS algorithm in high dimensions; and (3) compare the performance
of the AFS-MMSBAS algorithm and other related algorithms in high dimensions.

3.3.1. Parameter Setting

The relevant parameter settings with which to avoid the influence of different param-
eters on the algorithm are shown in Table 4. All experiments in this paper are based on
the PyCharm platform and were run on the Window10 (64 bit) operating system with the
processor configured as Inter (R) Core (TM) i5-5200U CPU @ 2.20GHz 2.20 GHz with a
memory of 12 GB.

Table 4. Initial parameters of AFS-MMSBAS algorithm.

Parameter Value Parameter Value

population 30 antenna number 10
visual 6 antenna length step/5

attempt number 20 δ 0.95
crowding factor 0.618 variation rate 0.05

step of fish 0.6 p 40
iterations 800 q 0.65 × iterations

3.3.2. Performance Comparison in Different Dimensions

The AFS-MMSBAS algorithm is compared with the MDBAS, AFS, and AFS-MDBAS
algorithms under the same parameters. The performance of the algorithms is tested with
respect to the dimensions D = 10, D = 100, and D = 200 of the basic test functions. In order
to prevent the experimental results from being affected by randomness, each test function
is independently run 50 times. The other parameters are the same as those in 3.2.1. Finally,
the average value, standard deviation, and running time of the optimization results are
obtained. The experimental results are shown in Table 5, and the optimal results are shown
in bold.
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By analyzing Table 2, it can be seen that in low dimensions (D = 10), the MDBAS, AFS,
AFS-MDBAS, and AFS-MMSBAS algorithms have good optimization ability and stability
for most test functions. Among them, the MDBAS algorithm obtains the optimal mean
and standard deviation for f5, the AFS algorithm obtains the optimal mean and standard
deviation for f2 and f11, the AFS-MDBAS algorithm obtains the optimal mean and standard
deviation for f3 and f10, and the AFS-MMSBAS algorithm obtains the optimal mean and
standard deviation for f1, f4, f8, and f9. At low dimensions, each algorithm has certain
advantages over different functions, and the gap is not obvious.

Table 5. Comparisons of four algorithms regarding the optimization of test functions f1~ f11 .

Func. Algorithm
D = 10 D = 100 D = 200

Mean Standard Time Mean Standard Time Mean Standard Time

f1

MDBAS 4.5 × 10−32 1.91 × 10−32 1.008 9.16 × 102 3.98 × 102 3.481 4.91 × 104 7.16 × 103 7.045
AFS 0.627 0.154 94.87 3.08 × 102 51.4 149.8 4.43 × 103 5.14 × 102 213.4

AFS-MDBAS 8.37 × 10−28 2.28 × 10−27 13.25 7.51 3.64 68.92 2.0 × 103 2.99 × 102 82.17
AFS-MMSBAS 4.5 × 10−106 4.99 × 10−105 17.27 0.00814 0.00454 72.97 19.1 4.67 81.85

f2

MDBAS 4.62 × 102 9.69 × 102 1.341 3.92 × 106 4.23 × 106 4.911 5.21 × 108 1.58 × 108 7.65
AFS 67.3 18.6 105.5 3.57 × 104 2.29 × 104 166.4 1.84 × 106 3.99 × 105 253.7

AFS-MDBAS 1.25 × 102 3.12 × 102 4.46 1.74 × 103 1.23 × 103 83.17 1.58 × 106 6.05 × 105 130.7
AFS-MMSBAS 90.2 3.22 × 102 8.071 4.08 × 102 3.99 × 102 86.12 5.18 × 103 1.69 × 103 133.7

f3

MDBAS 0.0659 0.454 1.333 3.19 × 109 2.25 × 1010 4.979 1.94 × 1037 7.36 × 1037 7.355
AFS 2.01 0.345 131.9 1.32 × 102 3.56 130.1 2.67 × 102 5.52 180.0

AFS-MDBAS 4.99 × 10−14 1.26 × 10−13 15.71 38.1 4.93 23.63 1.41 × 102 9.85 32.26
AFS-MMSBAS 0.0925 0.0823 29.39 2.74 0.92 32.33 10.3 2.19 42.11

f4

MDBAS 0.195 0.118 1.561 23.3 4.8 4.958 2.59 × 102 48.0 7.638
AFS 0.388 0.142 134.5 71.1 18.5 176.7 3.21 × 102 81.9 317.8

AFS-MDBAS 0.196 0.0986 9.239 13.6 3.47 15.24 64.1 11.5 28.59
AFS-MMSBAS 0.0361 0.0244 13.04 1.18 0.311 20.11 3.43 0.7 42.35

f5

MDBAS 2.56 × 10−15 2.07 × 10−15 1.241 2.38 1.33 4.92 1.27 × 102 19.4 7.058
AFS 0.544 0.141 126.2 1.81 × 102 22.2 189.4 6.46 × 102 50.9 332.4

AFS-MDBAS 2.98 × 10−15 2.34 × 10−15 19.6 1.87 0.97 43.93 1.2 × 102 17.5 99.94

AFS-MMSBAS 2.66 × 10−15 3.17 × 10−15 28.56 3.45 ×
10−8

6.32 ×
10−8 47.26 0.00236 0.00541 108.7

f6

MDBAS 0.0565 0.0391 1.865 8.98 4.35 4.228 4.58 × 102 62.1 8.403
AFS 0.182 0.0285 64.83 1.43 × 102 1.0 × 102 41.34 1.48 × 103 79.3 60.52

AFS-MDBAS 0.104 0.0695 20.43 7.16 2.95 25.74 4.48 × 102 61.8 40.41
AFS-MMSBAS 0.0982 0.0579 28.48 0.335 0.0928 27.9 2.2 0.601 47.5

f7

MDBAS 0.279 0.666 1.663 18.3 0.339 4.346 19.1 0.18 8.062
AFS 2.37 0.234 153.1 12.6 0.327 248.0 17.9 0.276 321.0

AFS-MDBAS 0.25 0.612 19.04 11.1 0.902 74.87 18.1 0.529 92.61
AFS-MMSBAS 0.48 0.594 23.02 4.22 0.778 86.45 4.24 0.7 109.0

f8

MDBAS 0.0793 0.148 1.615 2.14 0.919 5.304 11.6 1.74 8.444
AFS 0.194 0.0669 104.6 31.4 1.1 137.7 78.4 2.25 241.9

AFS- MDBAS 0.0222 0.0392 12.69 16.5 12.7 21.91 75.5 7.33 28.76
AFS-MMSBAS 0.00154 0.0026 16.62 0.00294 0.00365 29.29 0.0111 0.00735 48.42

f9

MDBAS −2.35 × 103 3.84 × 102 1.136 −2.03 ×
104 1.15 × 103 4.789 −3.57 ×

104 1.67 × 103 7.777

AFS −3.11 × 103 2.59 × 102 119.6 −2.45 ×
104 4.59 × 102 201.1 −4.66 ×

104 9.21 × 102 311.3

AFS- MDBAS −2.4 × 103 3.64 × 102 13.19 −2.51 ×
104 7.1 × 102 96.28 −4.68 ×

104 9.3 × 102 169.5

AFS-MMSBAS −4.18 × 103 20.8 15.8 −4.12 ×
104 5.55 × 102 104.99 −8.01 ×

104 1.84 × 103 177.2

f10

MDBAS 0.0778 0.0691 3.582 0.172 0.164 11.01 0.279 0.162 19.64

AFS 0.00246 1.33 × 10−10 253.9 0.00246 2.02 ×
10−10 591.5 0.00246 1.75 ×

10−10 888.0

AFS- MDBAS 0.00246 2.85 × 10−17 24.41 0.00246 2.76 ×
10−17 89.42 0.00246 2.98 ×

10−17 109.7

AFS-MMSBAS 0.00246 4.56 × 10−9 27.2 0.00246 1.71 ×
10−10 95.4 0.00246 4.87 ×

10−11 149.5

f11

MDBAS 3.68 2.61 2.869 1.37 × 104 3.45 × 103 13.19 1.11 × 105 1.55 × 104 28.22
AFS 0.0 0.0 236.7 28.8 24.2 397.2 3.31 × 103 4.71 × 102 617.4

AFS- MDBAS 0.48 0.707 18.45 5.48 × 102 1.45 × 102 54.51 9.63 × 103 9.6 × 102 225.1
AFS-MMSBAS 0.06 0.24 21.12 1.87 × 102 57.7 61.78 2.08 × 103 7.05 × 102 271.2



Appl. Sci. 2022, 12, 13044 10 of 17

At high dimensions (D = 100, 200), the averages of the MDBAS algorithm and the
AFS algorithm are far greater than the optimal value, and the standard deviation is also
large, indicating that the optimization ability and stability of these two algorithms are poor.
For most functions, the averages and standard deviations of the AFS-MDBAS hybrid
algorithm are better than those of the separate MDBAS and AFS algorithms, which shows
that the hybrid algorithm improves the optimization ability and stability of the MDBAS
and AFS algorithms. The AFS-MMSBAS algorithm is an improvement of the AFS-MDBAS
algorithm. Although the algorithm is not the best at optimizing the functions f7, f9, f10,
and f11, it is not far behind the algorithm with the best performance. In general, the AFS-
MMSBAS algorithm proposed in this paper has better optimization ability and stability
with respect to high-dimensional problems.

Finally, under the same number of iterations, it can be seen that the running time of
the algorithm increases with the increase in dimensions. Moreover, whether at low or high
dimensions, the hybrid algorithm greatly shortens the running time compared with the AFS
algorithm. However, compared with the BAS algorithm, it greatly increases the running
time. The hybrid algorithm trades time for optimization capability and stability. The
running time relationship between algorithms is as follows: T (MDBAS) < T (AFS-MDBAS)
< T (AFS-MMSBAS) < T (AFS).

3.3.3. Stability Analysis of Algorithms

In order to observe and compare the stability of each algorithm at higher dimensions
more intuitively, functions f1 ∼ f11 are run 50 times in order to develop line graphs
(D = 200), as shown in Figure 5a–k. The more stable the curve, the better the stability of
the algorithm. The smaller the value of the curve, the better the optimization ability of
the algorithm.
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Figure 5. D = 200; comparison of stability of functions f1 ∼ f11. (a) Comparison of stability
of four algorithms for function f1; (b) Comparison of stability of four algorithms for function f2;
(c) Comparison of stability of four algorithms for function f3; (d) Comparison of stability of four
algorithms for function f4; (e) Comparison of stability of four algorithms for function f5; (f) Compari-
son of stability of four algorithms for function f6; (g) Comparison of stability of four algorithms for
function f7; (h) Comparison of stability of four algorithms for function f8; (i) Comparison of stability
of four algorithms for function f9; (j) Comparison of stability of four algorithms for function f10;
(k) Comparison of stability of four algorithms for function f11.

For unimodal functions f1 ∼ f4, the fluctuation of the MDBAS algorithm (blue) and
the AFS algorithm (orange) is large, and the curve is far from the optimal value. Combined
with Table 5, it can be seen that the stability and optimization accuracy of the AFS-MDBAS
(green) and AFS-MMSBAS algorithm (red) are better than those of the individual algorithms.
This shows that the hybrid algorithm composed of the AFS and BAS algorithms achieves
superior performance for unimodal functions. For the multimodal functions f5 ∼ f10, the
advantages of the AFS-MDBAS algorithm in terms of stability and optimization accuracy
are not obvious compared with the AFS and MDBAS algorithms, but the advantages of
the AFS-MMSBAS algorithm are quite obvious. The curve is the most stable and is below
all the other curves, which further demonstrates that the AFS-MMSBAS algorithm has the
best stability and optimization ability.
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3.3.4. Analysis of the Convergence of the Algorithm

To observe the convergence of the improved BAS algorithm at high dimensions, the
convergence curve of functions f1 ∼ f11 when D = 200 is developed, as shown in Figure 6a–k.
It can be seen from the figure that the convergence curves of the three algorithms are
basically coincident in the early stage. Since the AFS algorithm is used for optimization
at this stage, the degree of convergence is basically the same. In the later stage, except
for functions f10 and f11, the convergence curve of the AFS-MMSBAS algorithm drops
faster than that of the AFS-DMBAS and AFS algorithms. This shows that the improved
BAS algorithm has better convergence speed than the MDBAS algorithm. In addition,
the convergence curve of the AFS-MMSBAS algorithm is lower than those of the other
algorithms, which also shows that the optimization ability of the algorithm is better than
that of the AFS-MDBAS and AFS algorithms.
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3.3.5. Comparison with Other Algorithms 

Figure 6. D = 200, functions f1 ∼ f11 convergence performance. (a) Comparison of convergence of
three algorithms for function f1; (b) Comparison of convergence of three algorithms for function f2;
(c) Comparison of convergence of three algorithms for function f3; (d) Comparison of convergence of
three algorithms for function f4; (e) Comparison of convergence of three algorithms for function f5;
(f) Comparison of convergence of three algorithms for function f6; (g) Comparison of convergence of
three algorithms for function f7; (h) Comparison of convergence of three algorithms for function f8;
(i) Comparison of convergence of three algorithms for function f9; (j) Comparison of convergence of
three algorithms for function f10; (k) Comparison of convergence of three algorithms for function f11.

3.3.5. Comparison with Other Algorithms

The above experiments verify that the stability and optimization ability of the AFS-
MMSBAS algorithm are better than the two basic algorithms with respect to high-dimensional
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problems. This section compares the AFS-MMSBAS algorithm with other related algo-
rithms, an Adaptive Dual-Strategy AFS algorithm based on the PSO algorithm (ADSAFS-
PSO) [16], and an Adaptive AFSA utilizing Gene Exchange (AAFSA-GE) [17]. The unimodal
function f1, noise function f4, multimodal functions f5 and f8, non-partitioned function f10,
and step function f11 are selected as test functions. The parameter settings are as follows:
population 50, crowding factor 0.75, attempt number = 5, dimensions D = 10 and D = 200,
and iterations 800. The other relevant parameters of the AFS-MMABAS algorithm are the
same as those in Section 3.3.1, and the other parameters of the PSOEM-FSA and AAFSA-GE
algorithms are the same as those in the references. Each algorithm runs independently 10
times. The experimental results are shown in Table 6, including the average, standard devi-
ation, the maximum and minimum of the optimization results, and the average running
time of the algorithm.

Table 6. Comparison between AFS-MMSBAS algorithm and other similar algorithms.

Func. Algorithm
D = 10 D = 200

Mean Standard Min Max Time Mean Standard Min Max Time

f1
ADSAFS-PSO 8.88 × 10−17 2.15 × 10−16 0 6.66 × 10−16 248.2 3.14 × 103 7.39 × 103 10.4 2.29 × 104 589.4

AAFSA-GE 1.81 × 10−147 3.54 × 10−147 6.81 × 10−148 1.81 × 10−146 186.4 1.9 × 103 2.44 × 103 8.5 8.31 × 103 428.1
AFS-MMSBAS 2.73 × 10−108 8.26 × 10−108 3.17 × 10−118 2.62 × 10−107 65.97 25.5 7.64 14.2 35.7 268.7

f4
ADSAFS-PSO 9.25 × 10−5 1.21 × 10−4 6.27 × 10−6 4.21 × 10−6 300.3 42.0 98.8 3.05 3.2 × 102 499.4

AAFSA-GE 5.08 × 10−63 1.02 × 10−61 1.8 × 10−64 6.52 × 10−61 242.3 5.14 2.47 0.41 10.4 314.2
AFS-MMSBAS 0.0463 0.0381 0.00754 0.134 39.39 3.66 0.603 2.74 4.51 88.24

f5

ADSAFS-PSO 3.55 × 10−16 1.12 × 10−15 0 3.55 × 10−15 293.0 63.7 39.6 16.0 1.32 × 102 462.2
AAFSA-GE 0 0 0 0 184.3 3.2 × 10−2 3.74 × 10−2 4.12 × 10−3 9.04 × 10−2 341.5

AFS-MMSBAS 2.31 × 10−15 1.88 × 10−15 0 5.33 × 10−15 57.49 8.01 × 10−4 8.37 × 10−4 1.89 × 10−4 3.04 × 10−3 190.6

f8
ADSAFS-PSO 0.0845 0.123 1.55 × 10−15 0.274 323.9 32.4 9.2 21.7 47.3 515.2

AAFSA-GE 2.48 × 10−10 1.28 × 10−6 4.9 × 10−11 4.9 × 10−9 203.1 3. 25 2.4 1.65 6.7 396.2
AFS-MMSBAS 0.00231 0.00297 6.7 × 10−7 0.00599 46.65 1.28 × 10−2 1.34 × 10−2 5.17 × 10−3 4.29 × 10−2 121.2

f10
ADSAFS-PSO 0.00246 2.46 × 10−19 0.00246 0.00246 275.2 0.00246 2.46 × 10−19 0.00246 0.00246 613.6

AAFSA-GE 0.00246 2.46 × 10−26 0.00246 0.00246 105.4 0.00246 2.46 × 10−24 0.00246 0.00246 401.2
AFS-MMSBAS 0.00246 4.56 × 10−9 0.00246 0.00246 52.92 0.00246 6.98 × 10−11 0.00246 0.00246 166.2

f11

ADSAFS-PSO 0.2 0.632 0 2.0 280.4 4.66 × 104 1.47 × 105 20.0 4.66 × 105 593.2
AAFSA-GE 0 0 0 0 112.3 4.41 × 103 5.3 × 103 7.0 6.27 × 103 387.4

AFS-MMSBAS 0 0 0 0 50.35 3.19 × 103 1.23 × 103 1.78 × 103 5.34 × 103 249.1

As seen from the table, at low dimensions, the three algorithms can converge to the
minimum value for functions f5 and f11, but the ADSAFS-PSO algorithm is more stable.
Moreover, the average value and standard deviation index obtained by the ADSAFS-
PSO algorithm are also better than the other two algorithms. In general, the AAFSA-
GE algorithm has the best optimization accuracy and stability at low dimensions, while
the AFS-MMSBAS and ADSAFS-PSO algorithms perform similarly. However, at high
dimensions, the average, standard deviation, and maximum index obtained by the AFS-
MMSBAS algorithm are superior to the other two algorithms. Therefore, the AFS-MMSBAS
algorithm has more advantages than the other algorithms. However, although the AFS-
MMSBAS algorithm has good optimization performance for most test functions, it has poor
optimization performance for f11 functions. This shows that the algorithm is not suitable
for the optimization of step functions.

In addition, the running time of the AFS-MMSBAS algorithm is the shortest.

4. Conclusions

In view of the advantages and disadvantages of the AFS algorithm and BAS algorithm,
this paper proposes a hybrid algorithm, AFS-MMSBAS, which combines the artificial fish
swarm and improved beetle antenna search algorithms. This hybrid algorithm involves the
use of a mutation strategy to increase the probability of a beetle escaping the local extreme
value and altering its course to a better direction. It also proposes a multi-step detection
strategy to improve the convergence speed of the algorithm by adaptively changing the
step size. Finally, a simple method is used to combine the AFS algorithm with the improved
BAS algorithm. In order to test that the AFS-MMSBAS algorithm is superior to its two
constituent algorithms, the AFS-MMSBAS algorithm is compared with the AFS, BAS, and
AFS-BAS algorithms at different dimensions. In order to further verify the advantages of
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this algorithm in dealing with high-dimensional problems, the AFS-MMSBAS algorithm
is compared with similar algorithms, namely, AAFSA-GE and ADSAFS-PSO. The experi-
mental results show that the AFS-MMSBAS algorithm can solve the problems of the poor
optimization and instability of the AFS and BAS algorithms at high dimensions, and that
it has a faster convergence speed during the later period. In a word, the AFS-MMSBAS
algorithm performs well in high-dimensional problem processing.

The algorithm proposed in this paper performs well for high-dimensional problem
optimization but performs poorly for some function problems, such as step functions.
In addition, the algorithm has poor ability to solve low-dimensional problems and has
great room for improvement. Therefore, in the future work, the authors plan to improve
the algorithm, specifically with respect to its ability to solve high-dimensional partial
function optimization and deal with low-dimensional problems. Further, it will be applied
to engineering practices.
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