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Abstract: Increasing environmental concerns and legal regulations have led to the development of
sustainable technologies and systems in logistics, as in many fields. The adoption of multi-echelon
distribution networks and the use of environmentally friendly vehicles in freight distribution have
become major concepts for reducing the negative impact of urban transportation activities. In this
line, the present paper proposes a two-echelon electric vehicle routing problem. In the first echelon
of the distribution network, products are transported from central warehouses to satellites located
in the surroundings of cities. This is achieved by means of large conventional trucks. Subsequently,
relatively smaller-sized electric vehicles distribute these products from the satellites to demand
points/customers located in the cities. The proposed problem also takes into account the limited
driving range of electric vehicles that need to be recharged at charging stations when necessary. In
addition, the proposed problem considers time window constraints for the delivery of products to
customers. A mixed-integer linear programming formulation is developed and small-sized instances
are solved using CPLEX. Furthermore, we propose a constructive heuristic based on a modified Clarke
and Wright savings heuristic. The solutions of this heuristic serve as initial solutions for a variable
neighborhood search metaheuristic. The numerical results show that the variable neighborhood
search matches CPLEX in the context of small problems. Moreover, it consistently outperforms
CPLEX with the growing size and difficulty of problem instances.

Keywords: routing; two-echelon electric vehicle routing problem; variable neighborhood search;
large neighborhood search; Clarke and Wright savings

1. Introduction

After the industrial revolution, the increasing consumption of fossil fuels caused
numerous environmental and socioeconomic problems. In this context, it is considered a
prime objective to replace fossil fuel technologies in many sectors with more sustainable
technologies in order to reduce the amount of carbon dioxide released into the atmosphere.
Increasing environmental and economic concerns and the decisions taken by states to
reduce our dependence on fossil fuels have led to an acceleration of research and develop-
ment activities in this area. This also holds for the logistics sector, where new regulations are
introduced in order to reduce environmental problems. One of the most recent regulations
in this field is the decision approved by the European Parliament on 18 February 2019,
stating that the emissions of new trucks will need to be 30% lower in 2030 compared to
2019 emissions data [1].

In this context, sustainable city logistics emerged as a concept for reducing the negative
impact of urban transportation activities on society, the environment and the economy.
Sustainable city logistics is characterized by using environmentally friendly vehicles for
freight distribution and designing multi-tier transportation structures to eliminate prob-
lems caused by freight vehicles operating in cities. A growing number of logistics and
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e-commerce companies make use of environmentally friendly electric vehicles for distribu-
tion in urban areas due to their low noise and zero exhaust emissions; see, for example, [2].
Despite these advantages, the en-route charging necessity of electric vehicles due to a
limited driving range produces new difficulties for the planning and managing of logistics
activities. In fact, the ability to derive optimal charging plans for electric vehicles taking
into account the total time requirements and route distances is essential.

In this study, the issue of sustainable city logistics is addressed by means of a new
variant of the classical vehicle routing problem: the two-echelon electric vehicle routing
problem with time windows (2E-EVRP-TW). In two-echelon distribution networks, large
trucks transport products from central warehouses to satellites in the surrounding areas of
cities. Subsequently, smaller vehicles distribute goods from these satellites to customers
located in the cities. Electric vehicles are preferably used in the second echelon of such a
distribution network, as they are less noisy and have no exhaust emissions. In other words,
two-echelon distribution networks are advantageous for preventing large trucks entering
the cities and, in this way, reducing urban traffic jams, noise, and pollution. In addition to
these features, our 2E-EVRP-TW problem also considers time window (TW) constraints
for the delivery of goods to customers. Note that time windows can be used to control the
visiting times of the customers, which might be regulated by local jurisdictions, but also by
the customers themselves.

1.1. Our Contribution

First, we define the 2E-EVRP-TW problem by means of a three-index node-based
mixed-integer linear programming (MILP) model. Any general-purpose MILP solver, such
as CPLEX or Gurobi, may be used to solve this model. However, due to the multi-tier
structure of the distribution network, the limited driving range of electric vehicles, and
the time window constraints, the 2E-EVRP-TW problem is rather complex. In fact, our
computational experiments show that CPLEX is only able to solve small-sized problems to
optimality. Therefore, we also developed a variable neighborhood search (VNS) approach
to solve the problem. In addition, we developed an initial solution generation method based
on Clarke and Wright’s savings algorithm [3], considering 2E-EVRP-TW assumptions and
characteristics. The VNS approach makes use of this heuristic to obtain an initial solution.

VNS provides a powerful search performance by systematically changing neighbor-
hood structures (shaking) to avoid getting stuck in local optima and by intensifying the
search in the vicinity of the incumbent solution by applying local search. In addition to
the classical shaking and local search operators, we also utilize large neighborhood search
(LNS) operators known as “destroy and repair”, resp. “removal and insertion”, to enhance
the performance of VNS. In this context, note that, since (1) the problem dimension of the
first echelon is much smaller than that of the second echelon and (2) the first echelon does
not include any constraint, it can easily be solved using a savings heuristic. Therefore,
whenever the solution for the second echelon changes, the first echelon tours are generated
again by utilizing our Clarke and Wright savings heuristic.

Finally, a last contribution concerns the generation of new problem-specific benchmark
sets. This was necessary due to the lack of an available benchmark set for the 2E-EVRP-
TW problem.

1.2. Organization of the Paper

The rest of this paper is organized as follows: Section 2 presents the related literature.
A formal description of the new 2E-EVRP-TW problem, together with a mixed-integer
linear programming model, is provided in Section 3. The proposed solution approach is
described in Section 4. Section 5 reports computational experiments, and finally, Section 6
outlines our conclusions and future research directions.
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2. Related Literature

Recent decades have witnessed considerable research efforts concerning the vehicle
routing problem and its variations. Researchers and practitioners have put great effort
into modeling and designing efficient routing strategies considering requirements and
conditions that arise in real-life scenarios. Various extensions of vehicle routing problems
as well as recent advances and challenges are defined and presented in [4,5]. Moreover,
a broad taxonomy and a classification of publications available in the VRP literature
are provided in [6]. Apart from introducing new problem variations, researchers also
focused on developing solution methodologies to solve already existing problem extensions
efficiently. A taxonomic review of metaheuristic solution approaches for vehicle routing
problems and their variations is presented in [7]. The problem we address in this study
combines two main research lines: the one on electric vehicle routing problems (EVRPs) and
the one on two-echelon vehicle routing problems (2E-VRPs). Therefore, before presenting
works related to our 2E-EVRP-TW problem, we will first summarize the literature on the
EVRP and on the 2E-VRP.

Driven by environmental considerations and a growing interest in the use of alter-
native fuel in logistics, the related literature has focused on developing optimal routing
plans considering the limited driving range and en-route charging necessity of electric
vehicles. Respective publications either call the tackled problem an EVRP or, more gen-
erally, a green vehicle routing problem. A systematic review of green vehicle routing
problems is presented in [8,9]. The study presented in [10] is regarded as the pioneering
work that introduced route optimization of rechargeable vehicles to the literature. After
this preliminary work, several researchers presented variations of electric vehicle routing
problems together with solution methodologies. Erdoğan et al. [11] proposed a mixed-
integer programming model as well as two heuristic solution techniques for the generation
of routing plans for alternative fueling vehicles. Schneider et al. [12] extended the EVRP
by including time window constraints into the model. Moreover, they proposed a meta-
heuristic algorithm based on VNS and tabu search (TS). Aiming to develop more realistic
models and applications, Felipe et al. [13] and Keskin and Çatay [14] analyzed and utilized
multiple charging technologies with regard to different charging speeds and the partial
recharging of electric vehicles. Moreover, Montoya et al. [15] introduced a new model that
takes into account the non-linear charging time of batteries. They reported that the time
spent for charging batteries is non-linear, and ignoring this fact may cause the generation of
infeasible and/or costly solutions. Sadati and Çatay [16] recently introduced a multi-depot
green vehicle routing problem and developed a mixed-integer linear programming model.
They proposed a solution method based on VNS and TS and reported on the computational
properties of the algorithm. Duman et al. [17] proposed exact and heuristic algorithms
based on branch-and-price-and-cut and on column generation to solve the EVRP with TWs.

After Crainic et al. [18] introduced the concept of two echelons in the context of the
2E-VRP as a new concept to the literature, this line of research developed into one of
the most popular ones in the context of urban freight transportation [19]. The idea of
developing sustainable cities and transportation systems further increases the interest in
this field of research. Perboli et al. [20] proposed a mathematical model and math-based
heuristics for the 2E-VRP. Various researchers proposed exact solution approaches such as
branch-and-cut (see [21,22]) and branch-and-price methods (see [23,24]) as well as dynamic
programming [25] to solve various extensions of the 2E-VRP. However, with growing
instance size and problem complexity, researchers focused on approximate techniques
to solve these problems. Grangier et al. [26] proposed a heuristic based on large neigh-
borhood search (LNS) for the 2E-VRP with time window and satellite synchronization
constraints. Wang et al. [27] developed a matheuristic based on VNS and integer program-
ming. Moreover, Belgin et al. [28] formulated the 2E-VRP with simultaneous pickup and
delivery constraints as a two-index mixed-integer programming model and developed a
hybrid metaheuristic combining variable neighborhood descent and local search.
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The related literature on two-echelon electric vehicle routing problems is still rather
scarce. The study by Jie et al. [29] was one of the first works proposing a 2E-EVRP consider-
ing the option of battery-swapping stations (BSS). More specifically, instead of charging
empty batteries, the authors consider the possibility of swapping the battery of an electric
vehicle with a full one when needed. A hybrid algorithm combines column generation
and LNS to solve the proposed problem. At first, the battery-swapping scenario may seem
helpful to overcome deficiencies due to long battery charging times. Nevertheless, the
necessity of each BSS to maintain a certain number of spare batteries poses numerous
problems related to the environment, safety, logistics, and storage. Therefore, the EVRP
literature mainly focuses on the scenario of charging batteries instead of swapping them.
Another work in this line is the one by Breunig et al. [30] in which the authors extended
their previous work (see [31]) with the idea of using electric vehicles in the second echelon
of the distribution network. They proposed a metaheuristic approach based on LNS and an
exact mathematical programming algorithm that utilizes decomposition and pricing tech-
niques. Furthermore, Cao et al. [32] studied the design of a two-echelon reverse logistics
network for the collection of recyclable waste considering a mixed fleet of electric vehi-
cles and conventional vehicles. Instead of an integrated mathematical model the authors
present two separate models, one for each echelon. The hybrid genetic algorithm is tested
on a single-instance set. Wu and Zhang [33] developed a branch and price algorithm to
solve a 2E-EVRP. They tested the proposed solution approach on small and medium-sized
instances containing up to 20 customers and two charging stations. The performance
comparison shows that the proposed algorithm can provide optimal results faster than
CPLEX. Recently, Wang and Zhou [34] introduced a 2E-EVRP with time windows and
battery-swapping stations. They developed a MILP model that minimizes transportation,
handling, and fixed costs for the vehicles used in the first and second echelon, in addition
to battery-swapping costs. However, the time spent on battery swapping is not considered.
A VNS algorithm was proposed to solve large sized problem instances.

3. Problem Description and Mathematical Model

Given is a directed graph G = (N, A) in which the set of nodes (N) is composed of the
following four subsets: the set of central warehouses (ND), the set of satellites (NS), the set
of charging stations (NR), and the set of customers (NC). The set of arcs (A) includes (1)
arcs that connect central warehouses and satellites A1 = {(i, j)|i 6= j and i, j ∈ ND ∪ NS}
and (2) arcs that connect satellites, customers and charging stations A2 = {(l, m)|l 6= m
and l, m ∈ NS ∪ NR ∪ NC}. In other words, A1 contains the arcs of the first echelon, and
A2 contains the arcs of the second echelon. Traveling along an arc (i, j ∈ A1), (l, m ∈ A2),
has a cost/distance of d1ij, d2lm. Each customer i ∈ NC has a demand D2i and a time
window that indicates the earliest possible visiting time twei and the latest possible visiting
time twli. Two different fleets of vehicles, each one homogeneous in itself, serve in the first
and second echelons in order to meet customer demands. A fleet of large trucks V1 with
internal combustion engines are located in the central warehouse and carry products from
the central warehouses to the satellites, while a fleet of electric vehicles V2 are present at the
satellites and distribute products to customers (demand points). In the first echelon, a truck
k ∈ V1 starts its tour from a central warehouse, visits one or more satellites, and returns
to the central warehouse from which the tour started. The total amount of deliveries may
not exceed the load capacity Q1k of vehicle k. In the second echelon, an electric vehicle
e ∈ V2 starts its tour from a satellite, visits one or more customers and charging stations
if necessary, and returns to the satellite from which the tour started. The total amount of
deliveries cannot exceed the load capacity Q2e of electric vehicle e. A customer can only be
served by one electric vehicle. An electric vehicle starts its tour with a fully charged battery
(battery level BCe) and the vehicle’s battery is consumed in proportion to the distance
traveled. If a charging station is visited, the electric vehicle’s battery is fully charged up to
level BCe with a constant charging speed.
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Note that an electric vehicle may need to visit a charging station multiple times.
Therefore, set NR includes charging stations as well as copies of each charging station in
order to allow multiple visits to any charging station. The idea of using such dummy
vertices was introduced for the first time in [35] in order to permit multiple visits to
intermediate satellites. Moreover, this approach was adopted in [11] for a green vehicle
routing problem. Determining the number of copies of each charging station (ψ) is, however,
not a trivial task. An insufficient number of copies may prevent finding an optimal solution
due to not allowing a sufficient number of multiple visits of the same charging station. On
the other hand, an unnecessarily large number of copies of each charging station would
increase the model size, resulting in longer running times of the MILP solvers. As a result
of preliminary experiments on various instance sets, we set ψ to 3.

We developed a three-index node-based integer programming model for 2E-EVRP-TW.
Including the vehicles as a third index ensures that the model may be used for instances
that contain heterogeneous fleets with different vehicle characteristics. In the following,
we first introduce the notations, sets and problem data used by the MILP model. Subse-
quently, the model is outlined in terms of the decision variables, the objective function and
the constraints.

Notations and Sets
nd = number of central warehouses
ns = number of satellites
ncs = number of charging stations
ψ = number of copies of each charging stations
nc = number of customers
nv1 = number of available vehicles in the first echelon
nv2 = number of available electric vehicles
ND = set of central warehouses (node indices: 1, . . . , nd)
NS = set of satellites (node indices: nd + 1, . . . , nd + ns)
NR = set of charging stations and copies (node indices: nd + ns + 1, . . . , nd + ns + ncs ∗ ψ)
NC = set of customers (node indices: nd + ns + ncs ∗ ψ + 1, . . . , nd + ns + ncs + nc)
NDS = set of central warehouses and satellites (node indices: 1, . . . , nd + ns)

NRC =
set of charging stations and customers (node indices:
nd + ns + 1, . . . , nd + ns + ncs ∗ ψ + nc)

NSRC =
set of satellites,charging stations and customers (node indices:
nd + 1, . . . , nd + ns + ncs ∗ ψ + nc)

N =
set of central warehouses, satellites, charging stations and customers (node indices:
1, . . . , nd + ns + ncs ∗ ψ + nc)

V1 = set of large vehicles serving in the first echelon (|V1| = nv1)
V2 = set of electric vehicles |V2| = nv2

Problem data
d1ij = distance between node i and node j, (i, j ∈ NDS)

d2lm = distance between node l and node m, (l, m ∈ NSRC)
Q1k = loading capacity of large vehicle k ∈ V1
Q2e = loading capacity of electric vehicle e ∈ V2
M = a big number
BCe = battery capacity of electric vehicle e ∈ V2
ge = charging rate of electric vehicle e ∈ V2
D2i = demand of customer i, (∀i ∈ NC)
si = service time of customer i, (∀i ∈ NC)
twei = earliest visiting time of customer i, (∀i ∈ NC)
twli = latest visiting time of customer i, (∀i ∈ NC)
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Decision variables

xkij =

{
1 if vehicle k visits node j after node i in the first echelon
0 otherwise

∀k ∈ V1, ∀i, j ∈ NDS

yelm =

{
1 if vehicle e visits node m after node l in the second echelon
0 otherwise

∀e ∈ V2, ∀l, m ∈ NSRC

zli =

{
1 if customer l gets service from satellite i
0 otherwise

∀i ∈ NS, ∀l ∈ NC

U1kij ∈ {0, . . . , Q1k} ∀i, j ∈ NDS, ∀k ∈ V1
Amount of product in vehicle k traveling from node i to
node j (first echelon)

U2elm ∈ {0, . . . , Q2e} ∀l, m ∈ NSRC, ∀e ∈ V2
Amount of product in vehicle e traveling from node l to
node m (second echelon)

BSCale ∈ [0, BCe] ∀l ∈ NSRC, ∀e ∈ V2
Battery level of electric vehicle e at arrival to node l

BSCdle ∈ [0, BCe] ∀l ∈ NSRC, ∀e ∈ V2
Battery level of electric vehicle e when departing from node l

D1j ∈ {0, . . . , ∑i∈NC
D2i} ∀j ∈ NS

Demand of satellite j ∈ NS
w1ki ∈ [0, twli] ∀i ∈ NDS, ∀k ∈ V1

Visiting time of node i by vehicle k (first echelon)
w2el ∈ [twel , twll ] ∀l ∈ NSRC, ∀e ∈ V2

Visiting time of node l by vehicle e (second echelon)

MILP model

Min ∑
k∈V1

∑
i∈NDS

∑
j∈NDS

d1ij ∗ xkij + ∑
e∈V2

∑
l∈NSRC

∑
m∈NSRC

d2lm ∗ yelm (1)

s.t. ∑
k∈V1

∑
i∈NDS

xkij = 1 ∀j ∈ NS (2)

∑
i∈NDS

xkij − ∑
i∈NDS

xkji = 0 ∀k ∈ V1, ∀j ∈ NDS (3)

∑
j∈NS

xkij ≤ 1 ∀i ∈ ND, ∀k ∈ V1 (4)

∑
i∈NS

∑
j∈ND

xkij ≤ 1 ∀k ∈ V1 (5)

xkij = 0 ∀k ∈ V1, ∀i, j ∈ ND (6)

∑
k∈V1

∑
i∈NDS

U1kij − ∑
k∈V1

∑
i∈NDS

U1kji ≤ D1j ∀j ∈ NS (7)

U1kji = 0 ∀i ∈ ND, ∀j ∈ NS, ∀k ∈ V1 (8)

U1kij ≤ Q1k ∗ ∑
k∈V1

xkij ∀i, j ∈ NDS∀k ∈ V1 (9)



Appl. Sci. 2022, 12, 1014 7 of 29

D1i = ∑
l∈NC

zli ∗ D2l ∀i ∈ NS (10)

∑
e∈V2

∑
l∈NSRC

yelm = 1 ∀m ∈ NC (11)

∑
l∈NSRC

yelm − ∑
l∈NSRC

yeml = 0 ∀e ∈ V2, ∀m ∈ NSRC (12)

∑
m∈NRC

yelm ≤ 1 ∀e ∈ V2, ∀l ∈ NS (13)

∑
m∈NRC

yeml ≤ 1 ∀e ∈ V2, ∀l ∈ NS (14)

∑
i∈NS

zli = 1 ∀l ∈ NC (15)

∑
e∈V2

yeli ≤ zli ∀i ∈ NS, ∀l ∈ NC (16)

∑
e∈V2

yeil ≤ zli ∀i ∈ NS, ∀l ∈ NC (17)

∑
i∈NS

∑
j∈NRC

yeij ≤ 1 ∀e ∈ V2 (18)

yelm + zli + ∑
s∈NS ,s 6=i

zms ≤ 2
∀e ∈ V2, ∀l ∈ NC, ∀m ∈ NC,

l 6= m, ∀i ∈ NS
(19)

∑
e∈V2

∑
l∈NSRC

U2elm − ∑
e∈V2

∑
l∈NSRC

U2eml ≤ D2m ∀m ∈ NRC (20)

U2eij = 0 ∀i ∈ NRC, ∀j ∈ NS, ∀e ∈ V2 (21)

U2elm ≤ Q2v ∗ ∑
e∈V2

yelm ∀l, m ∈ NSRC, ∀e ∈ V2 (22)

xkii = 0 ∀i ∈ NDS, ∀k ∈ V1 (23)

yell = 0 ∀l ∈ NSRC, ∀e ∈ V2 (24)

BSCale ≥ 0 ∀l ∈ NSRC, ∀e ∈ V2 (25)

BSCale = BCe ∀l ∈ NS, ∀e ∈ V2 (26)

BSCame ≤ BSCale − (h ∗ d2lm) ∗ yelm + BCe ∗ (1− yelm)
∀l ∈ NC, ∀m ∈ NSRC,

l 6= m, ∀e ∈ V2
(27)

BSCame ≤ BSCdle − (h ∗ d2lm) ∗ yelm + BCe ∗ (1− yelm)
∀l ∈ NSRC, ∀m ∈ NSRC,

l 6= m, ∀e ∈ V2
(28)

BSCale ≤ BSCdle ∀l ∈ NSRC, ∀e ∈ V2 (29)

BSCdle ≤ BCe ∀l ∈ NSRC, ∀e ∈ V2 (30)

BSCale = BSCdle ∀i ∈ NC, ∀e ∈ V2 (31)

BSCdle = BCe ∀l ∈ NR, ∀e ∈ V2 (32)

∑
l∈NSRC

U2elm = ∑
l∈NSRC

U2elm ∀m ∈ N
′
R, ∀e ∈ V2 (33)

w1ki = 0 ∀i ∈ ND, ∀k ∈ V1 (34)

w1kj ≥ w1ki + d1ij + si −M ∗ (1− xkij) ∀i ∈ NDS, ∀j ∈ N
′
S, ∀k ∈ V1 (35)

w2ej ≥ w1ki + d1ij + si −M ∗ (1− xkij)
∀i ∈ NDS, ∀j ∈ N

′
S, ∀e ∈ V2,

∀k ∈ V1
(36)

w2ej ≥ w2ki + d2ij + si −M ∗ (2− yeij − ∑
h∈NDS)

xkhi)
∀i ∈ N

′
S, ∀j ∈ NSRC, ∀e ∈ V2,

∀k ∈ V1
(37)
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w2em ≥ w2el + d2lm + sl −M ∗ (1− yelm) ∀l, m ∈ NRC, ∀e ∈ V2 (38)

w2em + d2lm ∗ yelm + gv ∗ (BCe − BSCale)−
(M + gv ∗ BCe) ∗ (1− yelm) ≤ w2em

∀l ∈ N
′
R, ∀m ∈ NSRC,

l 6= m∀e ∈ V2
(39)

w1ki ≥ twei ∀i ∈ NDS, ∀k ∈ V1 (40)

w2el ≥ twel ∀l ∈ NSRC, ∀e ∈ V2 (41)

w1ki ≤ twli ∀i ∈ NDS, ∀k ∈ V1 (42)

w2el ≤ twll ∀l ∈ NSRC, ∀e ∈ V2 (43)

The objective function (1) minimizes the total distance traveled by all utilized vehicles
in both echelons. Constraint (2) guarantees that each satellite will be visited by a truck.
Constraints (3) and (12) ensure the balance of flow for the satellites and customers, re-
spectively. Constraints (4) and (5) ensure that vehicles in the first echelon are used only if
needed. Constraint (6) does not allow direct transportation between central warehouses
if there is more than one warehouse. Constraints (7) and (20) guarantee that the demand
of each satellite and customer is met by the vehicles serving in the relevant echelon, re-
spectively. Constraints (8) and (21) ensure that no product remains in the vehicle when
returning to the central warehouse in the first echelon and to the satellite in the second
echelon, respectively. Constraints (9) and (22) indicate that the vehicle capacity cannot be
violated. Constraint (10) determines each satellite’s demand to be the total demand of those
customers served by the relevant satellite. Constraint (11) guarantees that each customer is
visited only once. Constraints (13) and (14) ensure that vehicles in the second echelon are
only used when they are needed. Constraint (15) ensures that each customer is served by
only one satellite. Constraints (16), (17), and (19) ensure that each electric vehicle completes
its tour at the same satellite from which it started the tour. Constraint (18) guarantees that
each electric vehicle can provide service through only one satellite. Constraints (23) and (24)
prevent returning to the node from which a vehicle just departed. Constraints (25)–(32) are
battery state constraints. Constraint (33) states that the load of a vehicle is the same when
arriving and departing from a charging station. Constraints (34)–(39) calculate arrival and
departure times considering service and battery charging times. Moreover, constraints (40)–
(43) restrict the visiting time of each customer with respect to the time windows. Finally,
constraint (44) defines variable domains.

The classical VRP is NP-Hard [36]. The multi-tier distribution structure (two echelons)
and additional limitations such as the driving range of electric vehicles and customers’
time windows further increase the complexity. As the computation time required to solve
such complex problems to optimality increases dramatically with a growing instance
size, most approaches from the related literature for similar problems are approximate
techniques, especially in the context of large-sized problem instances. In this study, we
propose an approach based on VNS to solve the 2E-EVRP-TW. Algorithm 2 presents the
general structure of the proposed algorithm. It starts with the application of a modified
version of the Clarke and Wright Savings Algorithm to obtain an initial solution quickly and
efficiently. Subsequently, shaking and local search procedures are applied to improve the
initial solution. However, before describing the proposed algorithm, we first explain how a
solution S is represented, and subsequently we outline an extended objective function used
to handle infeasible solutions.

4. Solution Approach

In the following, we first provide the representation of solutions and the description
of an extended objective function for dealing with infeasible solutions. Then, an extended
Clarke and Wright algorithm is provided, followed by the description of the VNS procedure.
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4.1. Solution Representation and Extended Objective Function

In our implementation, a solution S is represented by two sets of routes: R1 and R2.
Each route τ1 ∈ R1 starts from a central warehouse, visits one or more satellites from
NS, and returns to the same central warehouse. Each route τ2 ∈ R2 starts from a satellite
s ∈ NS, visits a sequence of locations/nodes v ∈ NRC, and returns to the same satellite.
Figure 1 shows an exemplary solution for a 2E-EVRP-TW instance with a single central
warehouse, two satellites, three charging stations and five customers. The solution contains
one route in the first echelon (τ11) and two routes in the second echelon (τ21 and τ22).

Node Indexes:

Solution 𝑺 = 

0 1 2 3 4 5 6 7 8 9 10

Central 
Warehouse

Satellites Charging Stations Customers

𝑅1 = τ11: 0 − 1 − 2 − 0

𝑅2 =
τ21: 1 − 7 − 3 − 9 − 1

τ22: 2 − 10 − 4 − 8 − 6 − 2

Figure 1. Example of a solution for a small 2E-EVRP-TW instance with a single central warehouse,
two satellites, three charging stations and five customers.

The usefulness of allowing the algorithm to visit unfeasible solutions during the search
process has already been recognized in the metaheuristics community, especially in the
field of evolutionary computation [37]. In this work, we do this in a similar way as in [12]
in the context of the EVRP. In particular, the extended objective function that evaluates both
feasible and unfeasible solutions by means of penalty values for capacity, battery, and time
windows violations is defined as follows:

fext(S) = f (S) + ωcPcap(S) + ωbPbat(S) + ωtwPtw(S) (44)

Here, f (S) refers to the objective function of the 2E-EVRP-TW problem, that is, the
sum of the distances traveled by all utilized vehicles from the first and the second echelon.
Furthermore, Pcap(S), Pbat(S) and Ptw(S) denote the capacity, battery and time windows
violations in solution S. In this context, the function for calculating the capacity violations
of a solution S with m routes in the first echelon and n routes in the second echelon is
defined as follows:

Pcap(S) =
m

∑
i=1

max
{(

∑
j∈τ1i

D1j
)
−Q1, 0

}
+

n

∑
k=1

max
{(

∑
l∈τ2k

D2l
)
−Q2, 0

}
(45)

In words, if the total demand of the satellites (resp. the customers) on a route exceeds
the vehicle capacity, the capacity violation of the route is determined as the difference
between the vehicle capacity and the total demand of the route. Otherwise, it is set to zero.
Note that, in an abuse of notation, j ∈ τ1i refers to a satellite j visited by route τ1i and
l ∈ τ2k refers to a customer l visited by route τ2k.

Next, the total battery violation of a solution S, Pbat(S), is calculated using
Equations (46) and (47):

Pbat(S) =
n

∑
k=1

Pbat(τ2k) , where (46)

Pbat(τ2k) = ∑
l∈τ2k

∣∣min{BSCale, 0}
∣∣ (47)

That is, this function sums (for all second echelon routes τ2k) the battery level viola-
tions of the electric vehicles at the arrival to all nodes l ∈ τ2k. Hereby, the term node refers
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to customers and charging stations. Finally, similar to the approach used to calculate Pbat,
Ptw is calculated using Equations (48) and (49):

Ptw(S) =
n

∑
k=1

Ptw(τ2k) , where (48)

Ptw(τ2k) = ∑
l∈τ2k

max
{

w2ei − twli, 0
}

(49)

These three penalty terms are added as a weighted sum to the original objective
function value (see Equation (46)). The corresponding three weights are denoted by ωc, ωb
and ωtw. At the start of the VNS algorithm, all three weights are set to an initial value pinit.
Then, they are dynamically updated between pmin and pmax. More specifically, if any of
three terms (capacity, battery, and time windows violations) are greater than zero for piter
successive iterations, the respective penalty weight is increased by p+ > 0. On the other
hand, if the respective solution is feasible in terms of any of three constraint violation types,
the respective weight is decreased by means of a division by p− > 1.

4.2. Initial Solution Construction

The VRP literature offers numerous heuristic approaches in order to construct initial
solutions to different VRP variants. The Clarke and Wright (C&W) savings algorithm
is one of the most commonly used methods because of its simplicity, performance, and
ease of adaptation to different problem variants. This study proposes a savings-based
initial solution construction algorithm that considers the multi-tier transportation structure
and additional constraints (capacity, battery, and time windows) of the 2E-EVRP-TW.
Algorithm 1 provides a high-level pseudo-code of this procedure.

First, each customer is assigned to the nearest satellite. After this assignment, set
Ns

C ⊆ NC contains all customers assigned to satellite s, for all s ∈ NS. Note that, with this
assignment, an indirect time window arises for each satellite based on the customer’s time
windows. Assume, for example, that goods are transported from central warehouse 0 to
satellite s, and then from satellite s to customers i and j, that is, i, j ∈ Ns

C. As illustrated in
Figure 2, the electric vehicle must depart from satellite s before a certain time in order to be
able to visit customers within their time windows. Therefore, the large truck in the first
echelon must deliver goods to satellite s no later than twls := min{twlv − d2sv | v ∈ Ns

C}
such that the electric vehicle is able to visit customer i and j before twli and twlj, respectively.

𝑡𝑤𝑙𝑖𝑡𝑤𝑒𝑖

𝑑2𝑠𝑖

𝑡𝑤𝑙𝑠= 𝑡𝑤𝑙𝑖- 𝑑2𝑠𝑖

𝑡𝑖𝑚𝑒

Satellite - 𝒔

Central Warehouse - 𝟎

Customer - 𝒊

𝑑10𝑠

Customer - 𝒋

𝑑2𝑠𝑗

𝑡𝑤𝑙𝑗𝑡𝑤𝑒𝑗

Figure 2. An illustration of the indirect time windows arising for a satellite depending on the
customers it must serve. Note that time windows are indicated in green color.

After calculating time windows for each satellite, first, the routes for the large vehicles
in the first echelon and, second, the routes for the electric vehicles in the second echelon
are constructed using the savings heuristic. In the following, we explain the steps for
constructing the routes for the electric vehicles in the second echelon. In particular, for each
satellite s ∈ NS the following steps are applied:
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1. A set of direct routes R2 = {(s − i − s) | i ∈ Ns
C} is created. However, note that

not all of these single-customer tours are necessarily battery feasible. If this occurs,
a charging station with the minimum insertion cost is inserted into the route. To
achieve this, first, for each charging station r ∈ NR the cost Cinsert(r) of inserting r
between satellite s and customer i is calculated as Cinsert(r) = d2sr + d2ri − d2si. Then,
a charging station r′ ∈ NR such that Cinsert(r′) ≤ Cinsert(r) for all r ∈ NR is inserted
into the infeasible route. Only one charging station is allowed to be inserted to fix
infeasibility. In the unique case that the battery infeasibility cannot be eliminated
despite charging station insertion, the relevant tour is removed, and the customer in
the tour is added to the initially empty list of unvisited customers Lu.

2. Subsequently, a savings list formed by all possible pairs of nodes (customers and
charging stations) together with their respective savings values is generated. A pair
of nodes (i, j ∈ NRC | i 6= j) must fulfill the following conditions to be included in
the savings list: (1) node i and node j must belong to different routes, and (2) both
i and j must be directly connected to the satellite in the route to which they belong.
With regard to the calculation of the savings value s2ij for two nodes i and j, the
literature offers various enhancements and extensions. In this study, we have utilized
the formulation introduced by [38]:

s2ij = d2si + d2sj − λd2ij + µ|d2si − d2sj|+ γ
D2i + D2j

D
(50)

Note that, according to this formula, both the distances between nodes as well as
the customer demands have an influence on the route construction process. More
precisely, the first four terms of Equation (50) are based on the distances between nodes,

while the last term (
(D2i+D2j)

D
) takes into account the customer demands. Hereby, D2i

and D2j refer to the demands of customers i and j, while D indicates the average
demand of customers in Ns

C \ Lu. As a result, tours that include customers with higher
demands are prioritized during tour merging operations and vehicle capacities are
used more effectively. Finally, note that the so-called route shape parameter λ adjusts
the selection priority based on the distance between customers i and j [39], while µ
is used to scale the asymmetry between customers i and j [40]. Parameter γ weights
the demand information. Note that well-working values for these parameters are
obtained by parameter tuning which is presented in Section 5.2. Finally, the savings
list is sorted according to non-increasing savings values.

3. At each iteration, the two routes that contain a pair of nodes (i, j) with the highest
savings value s2ij are selected from R (e.g., τ21, τ22). Then, the chosen routes are
merged by connecting nodes i and j. All of the merging scenarios are graphically
illustrated in Figure 3. Based on the way in which nodes i and j are connected to the
respective satellite, one or both of the routes must be reversed in order to be able to
connect nodes i and j. In this context, note that the reversed version of a tour τ21 is
denoted by rev(τ21). If the merged route is infeasible in terms of vehicle capacity or
time windows, the route is eliminated, and merging continues considering the pair of
nodes with the next-highest savings value. If the merged route is battery infeasible, a
charging station r with a lowest insertion cost is inserted between node i and j (e.g.,
<s - . . . - i - r - j - . . . -s>). In these cases in which the route is still infeasible after
charging station insertion, it is eliminated, and merging continues with the next pair
of customers from the savings list. This procedure is repeated while the savings list is
not empty. After merging, some of the charging stations that were previously added
to the routes may become redundant. These charging stations are removed from the
merged route.

4. Update the savings list as described in step 2 and repeat step 3 until no further pairs
of tours can be merged.
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5. Finally, the customers in Lu (the list of unvisited customers) are inserted into the
constructed tours using the greedy insertion operator, which is described in detail in
Section 4.3.3.

Case 1:

Case 2:

Case 3:

Case 4:

< s − i −⋯− s > < s − j −⋯− s > ∶

< s − i −⋯− s > < s −⋯− j − s > ∶

< s −⋯− i − s > < s − j −⋯− s > ∶

< s −⋯− i − s > < s −⋯− j − s > ∶

< 𝐬 −⋯− 𝐢 − 𝐣 − ⋯− 𝐬 >

𝝉𝟐𝟏 𝝉𝟐𝟐 Merged Route
rev(𝝉𝟐𝟏) - 𝝉𝟐𝟐

rev(𝝉𝟐𝟏) - rev(𝝉𝟐𝟐)

𝝉𝟐𝟏 - 𝝉𝟐𝟐

𝝉𝟐𝟏 - rev(𝝉𝟐𝟐)

Figure 3. Graphical illustration of route merging in the C&W savings heuristic.

Algorithm 1 Modified C&W Savings Heuristic for the 2E-EVRP-TW

1: Assign customers to the nearest satellite
2: Determine the latest possible visiting time (twls) for each satellite s ∈ NS
3: Construct first echelon routes using the savings heuristic
4: for each satellite s do
5: Create back-and-forth tours for each customer i ∈ Ns

C (s− i− s)
6: if the created tour is infeasible in terms of the battery constraints then
7: Insert a charging station using the greedy CS insertion operator (see Section 4.3.3)
8: if the tour is still infeasible then
9: Discard the tour and add the customer to the unvisited customer list Lu

10: end if
11: end if
12: Generate the savings list and sort it in descending order based on the savings values
13: while savings list is not empty do
14: Merge the two tours with the greatest savings value
15: if vehicle capacity or time window constraints are violated then
16: Discard the tour and remove the corresponding pair of customers from the

savings list
17: else
18: if the merged tour is infeasible in terms of the battery constraint then
19: Insert a charging station with a minimum insertion cost
20: if the tour is still infeasible then
21: Discard the tour and remove the pair of customers from the savings list
22: else
23: Accept the merged tour and update the saving list
24: end if
25: else
26: Accept the merged tour and update the saving list
27: end if
28: end if
29: end while
30: Insert all customers from Lu into the constructed tours using the greedy customer

insertion operator (see Section 4.3.3)
31: end for

Finally, note that the same procedure is applied to construct routes for the large
vehicles in the first echelon. In this case, all aspects related to batteries and charing stations
are removed from the heuristic procedure.

4.3. Variable Neighborhood Search for the 2E-EVRP-TW

The initial solution constructed by our version of the C&W savings heuristic from
above is used as input for a variable neighborhood search (VNS) approach outlined in
the following. VNS was proposed by [41] to solve complex combinatorial optimization
problems. Unlike other algorithms based on local search, VNS uses multiple neighborhood
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structures and makes use of them during the search based on a set of pre-defined rules.
This dynamic search mechanism allows the algorithm to intensify the search in the vicinity
of good solutions, but also to diversify the search in order to avoid getting stuck in local
optima. In particular, intensification is achieved by applying a local search procedure
in order to reach locally optimal solutions, while shaking operators are used in order to
diversify the search process and to explore different neighborhoods. For these reasons, the
choice of appropriate neighborhood structures/operators for local search and for shaking is
crucial. So far, VNS has shown state-of-the-art performance for a wide range of optimization
problems, including the facility layout problem [42], scheduling problems [43–45], portfolio
optimization [46,47], assembly and disassembly line balancing [48] and various routing
problems [49–52].

Algorithm 2 presents a pseudo-code of our implementation of VNS for the 2E-EVRP-
TW. The proposed algorithm starts by taking an initial solution Sinit as input. Then, the
neighborhood structures used for shaking Nshake

k , (k = 1, . . . , kmax) and the ones used
for local search Nlocal

h , (h = 1, . . . , hmax) are determined. These neighborhood structures
will be explained in detail in following sections. However, note that, in addition to rather
standard inter-route and intra-route operators, our VNS also makes use of so-called destroy-
and-repair operators for the shaking step. Operators such as these ones were mostly
introduced in the context of approaches based on large neighborhood search (and very
large neighborhood search) algorithms and have shown to be highly useful for exploring
large search spaces [53]. In particular, the reconstruction of a partially destroyed solution
using various reinsertion operators has the potential to produce solutions that may have
been difficult to reach otherwise. Concerning the specific case of VRP problems, removing
rather large components of a solution and reinserting them into other positions of the
solution may help reduce the number of routes and the number of vehicles, respectively.

After obtaining the initial solution Sinit, both the current solution Scur and the best-
so-far solution Sbs f are initialized to Sinit. At each main iteration of VNS, the shaking
neighborhoods are randomly ordered. This order is then used until the current neighbor-
hood utilized for shaking (indicated by k) is the kmax-th neighborhood. Next, a random
solution Sshake is chosen from the current shaking neighborhood k. In case this neighbor-
hood is a removal/destroy operator, the partially destroyed solution must subsequently be
repaired with an insertion operator; see lines 15–17 of Algorithm 2. After re-constructing
the first echelon tours of Sshake using our C&W savings algorithm (line 18), local search is
applied to Sshake. For this purpose we applied the variable neighborhood descent (VND)
method shown in Algorithm 3. In the VND phase, a set of local search operators are applied
to Sshake in a predefined and fixed order. In this context, note that after each application of
a shaking and/or a local search operator, the first echelon routes must be reconstructed
since satellite demands may have changed.

In a basic VNS, only improved solutions are accepted. However, in the context of
problems with many unfeasible solutions, this may cause the algorithm to get stuck during
the search process. Therefore, we have adopted the method introduced by [54] for the
solution acceptance decisions (lines 20–29). Based on this method, while improved solutions
are always accepted, non-improving solutions are accepted with a certain probability paccept.
At each iteration, function ClcAcceptanceProbability() calculates paccept as follows:

paccept =
e(−( fext(Slocal)− fext(Scur)))

T
(51)

Here, fext(Scur) and fext(Slocal) are values of the extended fitness function of the
current solution and of the solution after local search, respectively. Lastly, T refers to
the actual temperature value. At the beginning, T is initialized to an initial temperature
Tinit which is decreased by t− at each main iteration of VNS (see line 30). In this way,
while a non-improving solution is more likely to be accepted early during the search, the
probability of accepting non-improving solutions will decrease with a growing iteration



Appl. Sci. 2022, 12, 1014 14 of 29

number. However, in case no improved solution was found during iter_nimax iterations, T
is reset to Tinit in order to enhance diversification.

Algorithm 2 VNS for the 2E-EVRP-TW

1: input: an initial solution Sinit
2: Sshake : Solution obtained after shaking
3: Slocal : Local solution after VND
4: Scur : Current solution
5: Sbs f : Best-so-far solution
6: iter_ni : The number of non-improving solutions
7: iter_nimax : The maximum iteration limit for non-improving solutions
8: Determine set of neighborhood structures for shaking {Nshake

k | k = 1, . . . , kmax} and
local search {Nlocal

h | h = 1, . . . , hmax}
9: Scur, Sbs f ← Sinit

10: while the computational time limit is not reached do
11: Create π of the shaking neighborhoods Nshake

k
12: Set k← 1
13: while k ≤ kmax do
14: Apply shaking: Choose Sshake from Nshake

π(k) (Scur), the π(k)th shaking neighborhood
of Scur

15: if Nshake
π(k) is a removal/destroy operator then

16: Repair Sshake
17: end if
18: Re-construct first echelon tours using C&W savings algorithm
19: Apply local search: Slocal ← VND(Sshake)
20: paccept ← ClcAcceptanceProbability( fext(Scur), fext(Slocal), T)
21: ρ← rand()
22: if fext(Slocal) < fext(Sbs f ) then Sbs f ← Slocal
23: if fext(Slocal) < fext(Scur) or ρ < paccept then
24: Scur ← Slocal
25: k← 1
26: else
27: k← k + 1
28: iter_ni← iter_ni + 1
29: end if
30: Decrease T by t−

31: if iter_ni = iter_nimax then
32: T ← Tinit
33: iter_ni← 0
34: end if
35: end while
36: end while

The following four sections will provide a detailed description of standard shaking opera-
tors, removal/destroy operators, repair operators, and local search neighborhoods, respectively.

4.3.1. Standard Shaking Operators

Random cyclic exchange: This operator was originally introduced by [55]. It transfers
a node sequence (consisting of customers and/or charging stations) from one route to
another in a cyclic way. This operator is quite advantageous for many sequence-based
combinatorial optimization problems as it enables the generation of a large variety of moves
with a single operator.
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Algorithm 3 Variable Neighborhood Decent (VND)

1: input: Sshake
2: SVND : Solution obtained after applying a local search operator
3: Set h← 1
4: while h ≤ hmax do
5: Generate SVND from the hth local search neighborhood of Sshake (SVND :

Nlocal
h (Sshake))

6: if fext(SVND) < fext(Sshake) then
7: Sshake ← SVND
8: h← 1
9: else

10: h← h + 1
11: end if
12: end while
13: output: Sshake

The cyclic exchange operator we have applied takes two parameters as input: (1) the
number of routes (ζ) to be involved in the cyclic move, and (2) the maximum number of
nodes (θmax) to be transferred from one route to another. First, the operator randomly selects
ζ routes. Then, a random integer number θ from the interval [1, θmax] is independently
determined for each route involved in the cyclic move. This value refers to the route-specific
length of the node sequence to be transferred. Finally, θ consecutive nodes are randomly
selected from each route and transferred to the next route in the cyclic move. If ζ is greater
than the total number of routes existing in a solution, then ζ is set to the total number
of routes. Similarly, if θ is greater than the total number of nodes in a route, then θ is
readjusted. The optimal values for both parameters are determined by parameter tuning
(see Section 5.2). Figure 4 illustrates a cyclic exchange move with three routes.

𝝉𝟏

𝝉𝟐

𝝉𝟑

𝝉𝟏

S S𝑣1 𝑣2 𝑣3 𝑣4

S S𝑣5 𝑣6 𝑣7 𝑣8

S S𝑣9 𝑣10 𝑣11 𝑣12

S S𝑣1 𝑣2 𝑣3 𝑣4

𝜃 = 2

𝜃 = 1

𝜃 = 2

𝝉𝟏

𝝉𝟐

𝝉𝟑

𝝉𝟏

S S𝑣1 𝑣2 𝑣3 𝑣4

S S𝑣5 𝑣6 𝑣7 𝑣8

S S𝑣9 𝑣10 𝑣11 𝑣12

S S𝑣1 𝑣2 𝑣3 𝑣4

𝜃 = 2

𝜃 = 1

𝜃 = 2

Figure 4. An illustration of the cyclic exchange operator with ζ = 3. Note that the route at the top
and the route at the bottom are the same in order to show the cyclic nature of the move.

Random sequence relocation: This operator selects a node sequence from one route and
transfers it to another route. The origin and destination routes, the node sequence to be
relocated, and the insertion position in the destination route are determined randomly.
Parameter maxn limits the number of nodes to be transferred. The optimal value for maxn
is determined by parameter tuning (Section 5.2).

4.3.2. Removal/Destroy Operators

One of the most critical aspects of a destroy operators is deciding on the number
of nodes in the solution to be removed. Limiting the amount of destruction too much
may cause a poor exploration performance of the algorithm. On the contrary, repairing a
largely destroyed solution can be time-consuming and may result in a poor quality solution
depending on the utilized repair procedure [53]. Therefore, we used a random removal
rate between a lower and an upper bound to determine how many nodes (or routes) will
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be removed from the current solution. Well-working upper and lower bounds are decided
via parameter tuning (Section 5.2) and fixed for each group of instances.

Random customer removal: First, a random number ρ is drawn from the interval
[rr1Lb, rr1Ub]. This number is the fraction of customers to be removed from the solu-
tion, henceforth called the removal rate. Note that rr1Lb and rr1Ub are the lower and
upper bounds for the removal rate. Finally, a randomly chosen number of max{1, bρ ∗ ncc }
randomly chosen customers are removed from the current solution and added to a removal
list Lr.

Random route removal: Similar to the random customer removal operator above, a
random number ρ is drawn from the interval [rr2Lb, rr2Ub]. This number is the fraction of
routes to be removed from the solution. Assume that solution S has n routes in the second
echelon. After drawing number ρ, a number of max{1, bρ ∗ nc } randomly chosen routes
are removed from the current solution and all customers from these routes are added to a
removal list Lr.

Close satellite: This operator closes a randomly chosen satellite and adds all the cus-
tomers served through this satellite to a removal list Lr.

4.3.3. Repair Operators

A partially destroyed solution may either be repaired using an exact or a heuristic
approach. Although exact approaches guarantee the optimal insertion of removed cus-
tomers or routes, they are much more time consuming than heuristic approaches, especially
when a rather large part of the solution is destroyed. Moreover, too much optimality in the
repair operator may limit the diversification capabilities of the search. Therefore, we have
applied greedy and best-insertion strategies for repairing partially destroyed solutions; see
also [56,57]. In the following, partially destroyed solutions are labelled Sd.

Greedy customer insertion: This operator reinserts each customer from Lr into the par-
tially destroyed solution Sd according to the last-in-first-out (LIFO) principle. Henceforth,
NSd denotes the set of nodes (customers and charging stations) that still form part of the
partially destroyed solution Sd. Let v ∈ Lr be the customer that is to be re-inserted into Sd.
First, for each pair i, j ∈ NSd such that i and j are consecutive nodes in one of the routes of
Sd, the insertion cost δvij is calculated as follows:

δvij = d2iv + d2vj − d2ij (52)

Then, customer v is inserted at the position with the lowest insertion cost. Suppose
that the obtained route after insertion is infeasible in terms of vehicle capacity or time
windows constraints. In this case, customer v is inserted at the next-cheapest position in
terms of the insertion cost, and so on. If no feasible insertion position can be found, the
customer is finally inserted at the initially best position, ignoring the infeasibility. In case of
battery infeasibility, a charging station is added to the route. These procedures are applied
until no customer remains in Lr.

Greedy customer insertion with noise: This operator is a special version of the greedy
customer insertion operator described above. It utilizes the following modified cost function
with a noise parameter for calculating the insertion cost of a customer v:

δnoise
vij = δvij + dmax + α + β (53)

Here, dmax refers to the maximum distance between all nodes in NSRC, and α refers to
the noise parameter set to 0.1 [57–60]. Finally, β is a uniform random number generated
independently for the calculation of each cost value from the interval [−1, 1].

Best customer insertion: Instead of re-inserting customers from Lr in the LIFO order,
this operator aims to find the best insertion position for all customers. Each time, the
insertion costs of all remaining customers from Lr are calculated using Equation (52). Then,
the customer with the best insertion cost is inserted into the best possible position. This
operator is much more time consuming than the greedy customer insertion operator. It
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may, however, lead to better results. Infeasible insertions are handled in the same way as
the greedy customer insertion operator.

Greedy CS insertion: In the case of battery infeasibility, this operator inserts a charging
station with the lowest insertion cost at the point at which infeasibility occurs. Figure 5
illustrates the insertion of a charging station to a battery-infeasible route. Assuming that
the electric vehicle runs out of battery before reaching node v4, the operator first tries to
insert a charging station r∗ := argmax{d23r + d2r4 − d234 | r ∈ NR} between nodes v3 and
v4. In case the battery level is not high enough to reach the charging station that is to be
inserted, a possible insertion is tried before node v3, etc.

S S𝑣1 𝑣2 𝑣3 𝑣4

S 𝑣1 𝑣2 𝑣3 S𝑣4

Figure 5. An illustration of the charging station insertion operator. In the battery-infeasible route, the
electric vehicle runs out of battery before reaching node v4.

4.3.4. Local Search Neighborhoods

For the local search phase (that is, for the application within VND), the algorithm
makes use of three inter-route operators (exchange(1,1), shift(1,0), and swap) and three intra-
route operators (relocation, two_opt, and CS_reinsertion). In all these neighborhoods—except
for CS_reinsertion—we use the first-improvement strategy, that is, a neighborhood explo-
ration stops once the first improving solution is found. Infeasible moves are also allowed
but they are penalized. Figure 6 graphically illustrates these local search neighborhoods.

The exchange(1,1) neighborhood considers all exchanges of each customer with every
other customer not in the same route. The shift(1,0) neighborhood looks at all possibilities
of removing a customer from its current route and inserting it at any position in the rest of
the routes. Next, the relocation operator removes each customer from its current position
and inserts it into another position in the same route. The swap neighborhood considers
changing the positions of two selected nodes of the same route. The two_opt neighborhood
considers all possibilities of selecting two non-consecutive nodes in the same route and
reversing the node sequence between the two selected nodes. Note that there must be at
least three nodes between the two selected nodes in order not to repeat moves already
considered in the swap operator. The CS_relocation operator removes the current charging
stations of a route and reinserts them in different positions in the same route in order to
find the best positions for the charging stations. Unlike CS_relocation, the CS_reinsertion
operator removes the current charging stations from a route. Instead of reinserting the
removed ones, the greedy charging station insertion operator from the previous section is
applied to repair the route. Thus, charging stations different from the removed ones may
be inserted into the route.
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Figure 6. An illustration of local search operators. (a) The exchange(1,1) operator, (b) The shift(1,0)
operator, (c) The relocation operator, (d) The swap operator, (e) The two-opt operator, (f) CS_relocation
operator, (g) CS_reinsertion operator.

5. Computational Experiments

In addition to our C&W savings heuristic and VNS we also tried to solve all problem
instances with the MILP solver CPLEX. All experiments were performed on a cluster of
machines with Intel Xeon CPU 5670 CPUs with 12 cores of 2.933 GHz and a minimum of
32 GB RAM. Note that CPLEX version 12.10 was used in one-threaded mode.

5.1. Generation of 2E-EVRP-TW Instances

Due to a lack of available benchmark sets for the 2E-EVRP-TW, we generated new
problem-specific instance sets by extending the benchmark sets provided in [12]. These
instances were proposed for the electric vehicle routing problem with time windows and
consist of 36 small and 56 large instances. Small instances are composed of 5, 10, or
15 customers with a varying number of charging stations (between 2 and 5), while the large
ones include 100 customers and 21 charging stations. We have extended these instance sets
following the methodology proposed in [26]. In particular, first, the number of satellites to
be added to each instance was determined. Then, the locations of those satellites and the
one of a single central warehouse was specified.

Concerning the number of satellites, we decided to use one single satellite in the case
of small instances with at most 10 customers, two satellites in the case of 15 customers, and
eight satellites for the large instances. Note that the customers of each instance are scattered
over the intersections of a 100 × 100 grid. The location of the single central warehouse was
determined for each instance to be outside this area, at (50, 150). The single satellite in the
case of instances with at most 10 customers was placed at (50, 75), while the two satellites
in the case of instances with 15 customers were places at (50, 25) and (50, 75). Finally, the
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eight satellites for all remaining instances were placed at (25, 25), (25, 50), (25, 75), (50, 25),
(50, 75), (75, 25), (75, 50) and (75, 75). Figure 7 shows examples of all three cases.

(a) (b) (c)

Figure 7. Illustration of the locations of the central warehouse and the satellite(s) in different
cases. Blue dots refer to customers and red triangles are charging stations. (a) Small instance
with 10 customers, (b) Small instance with 15 customers, (c) Large instance (100 customers).

In addition, we updated the customers’ time windows by adding the distance between
the location of the central warehouse in the original instance set and the new central
warehouse as an offset value. Lastly, we modified the capacities of the electric vehicles
and large trucks, considering the fact that instances labeled with C2, R2, and RC2 are more
capacity constrained as compared to those labeled C1, R1, and RC1. In particular, we have
fixed the capacity ratio between large trucks and electric vehicles to 4/0.5 for instances
of the first type, and to 2/0.25 for instances of the second type. All benchmark instances
generated in this study and the executable of the proposed algorithm are available at
https://github.com/manilakbay/2E-EVRP-TW, accessed on 12 January 2022.

5.2. Parameter Tuning

In order to determine well-working parameter values for our algorithms we have
utilized the scientific tuning software irace [61]. Tables 1 and 2 summarize the parameters
that are subject to tuning for our C&W savings heuristic and for the VNS together with the
considered value domains.

Due to large differences in instance size, we decided to tune our VNS algorithm
(including the parameters of the C&W savings heuristic) separately for small and for
large problem instances. In the first case (small instances), instances C101_C10, R102_C10,
RC102_C10, C103_C15, R102_C15 and RC103_C15 were used for tuning. In the case of the
large instances, instances C101_21, C201_21, R101_21, R201_21, RC101_21 and RC201_21
were used. For each of the two tuning runs, the budget of irace was fixed to 2000 algorithm
runs. In the context of small instances, the computation time limit of each run was fixed to
150 CPU seconds, while it was fixed to 900 CPU seconds in the case of the large problem
instances. Tables 3 and 4 show the obtained parameter value settings for the two cases. It is
worth noting, for example, that well-working ranges for the removal rates (in the context of
the removal/destroy operators) are considerably smaller in the case of the large instances
when compared to those for small instances. One reason for this may be that repairing a

https://github.com/manilakbay/2E-EVRP-TW
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largely destroyed solution is time consuming and may lead to a rather bad quality solution.
On the other hand, a high removal rate may be considered as a perturbation mechanism
that helps to escape from local minima in the context of small instances.

Table 1. Parameters of our C&W savings heuristic together with their domains.

Parameter Description Domain

λ Route redesign parameter {0.0, 0.1, . . . , 0.9, 1.0}
µ Asymmetry of information {0.0, 0.1, . . . , 0.9, 1.0}
γ Assignment priority {1.0, 1.1, . . . , 1.9, 2.0}

Table 2. VNS parameters and their domains.

Parameter Description Domain

rr1Lb, rr1Ub Customer removal rate and lower and upper bounds {0.0, 0.1, . . . , 0.9, 1.0}
rr2Lb, rr2Ub Route removal rate and lower and upper bounds {0.0, 0.1, . . . , 0.9, 1.0}
pinit Initial penalty value {10, 15, 20}
pmin Minimum penalty value {0.5, 1, 3, 5}
pmax Maximum penalty value {25, 30, 35, 40}
piter Iteration count parameter for penalty procedure {1, 2, 3}
p+ Augmentation parameter for penalty {3, 5, 7, 9}
p− Reduction parameter for penalty {1.0, 1.1, . . . , 1.9, 2.0}
Tinit Initial temperature {50, 100, 150, 200}
t− Update parameter for the temperature {1.0, 1.1, . . . , 1.9, 2.0}
iter_nimax Maximum number of non-improving iterations {100, 200, 500, 1000, 10,000}
ζ The number routes involved in a cyclic exchange {1, 2, 3, 4}
θmax The maximum number of nodes to be transferred (cyclic exchange) {1, 2, 3, 4}

Table 3. Parameter values determined by irace for the C&W savings heuristic.

Parameters Small Instances Large Instances

λ 1.3 1.1
µ 0.3 0.1
γ 0.9 0.6

Table 4. Parameter values determined by irace for VNS.

Parameters Small Instances Large Instances

rr1Lb 0.1 0.3
rr1Ub 0.7 0.4
rr2Lb 0.1 0.4
rr2Ub 0.6 0.4
pinit 15 20
pmin 5 0.5
pmax 40 35
piter 1 2
p+ 9 5
p− 1.6 1.4
tinit 200 100
t− 1.3 2

iter_nimax 1000 100
ζ 2 4

θmax 4 2
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5.3. Numerical Results

In the following we provide a detailed comparison of the following methods. First,
we applied both CPLEX (version 12.10) and our C&W savings heuristic to all problem
instances. Hereby, CPLEX was given a time limit of 2 h of CPU time for each problem
instance. Next we also applied two versions of VNS. The full version of VNS is henceforth
denoted by VNSfull. In contrast, VNSred is a reduced version of VNS that only utilizes
classical inter-route and intra-route shaking operators. A comparison of these two variants
is interesting, because it shows how much the destroy and repair operators add to the
performance of VNS. Note that both versions of VNS were applied with a computation
time limit of 150 CPU seconds in the case of small problem instances, and 900 CPU seconds
for large problem instances. Moreover, both versions of VNS were applied 10 times to each
problem instance.

Tables 5–7 show the numerical results for small problem instances with 5, 10, and
15 customers, respectively. The structure of these tables is as follows. Instance names are
given in the first column, and the maximum number of vehicles in the first and second
echelons are provided in the second and third columns, respectively. These numbers are
only necessary for the application of CPLEX. After the first three table columns, there
are four blocks of columns, presenting the results of our four approaches. The first three
columns of each block (with headings ‘n’, ‘m’, and ‘dist’) are the same for all four approaches.
Hereby, columns ‘n’ and ‘m’ provide the number vehicles utilized by the respective solutions
in the first echelon and the second echelon, respectively. In the case of VNSfull and VNSred
these numbers refer to the best solution found within 10 independent runs. Column ‘dist’
provides the objective function values of the solutions generated by the four approaches.
In the case of VNSfull and VNSred, ‘dist’ shows the objective function value of the best
solution found in 10 runs, while an additional column with the heading ‘avg’ provides the
average objective function value of the best solutions of each of the 10 runs. Next, columns
with heading ‘t(s)’ show the computation time of CPLEX, our C&W savings heuristic and
the average computation times of VNSfull and VNSred to find the best solutions in each
run. Finally, column ‘gap(%)’ provides the gap (in percent) between the best solution and
the best lower bound found by CPLEX. Note that, in the case where the gap value is zero,
CPLEX has found an optimal solution.

Table 5. Computational results for small-sized instances with 5 customers.

Instances CPLEX C&W Savings Heuristic VNSred VNSfull

Name nv1 nv2 m n Dist Gap(%) t(s) m n Dist t(s) m n Dist Avg t(s) m n Dist Avg t(s)

C101_C5 1 2 1 2 385.49 0 1.67 1 3 442.19 0.00021 1 2 385.49 385.49 0.989 1 3 385.49 385.49 12.509

C103_C5 1 1 1 1 341.33 0 0.09 1 2 360.94 0.00011 1 1 341.33 341.33 0.006 1 1 341.33 341.33 0.502

C206_C5 1 1 1 1 417.31 0 5.97 1 3 480.9 0.00017 1 1 417.31 417.31 0.001 1 1 417.31 417.31 0.001

C208_C5 1 1 1 1 381.91 0 0.31 1 1 383.07 0.00011 1 1 381.91 381.91 0.001 1 1 381.91 381.91 0.001

R104_C5 1 2 1 2 317.02 0 1.61 1 1 317.78 0.00012 1 1 317.02 317.02 0.001 1 1 317.02 317.02 0.001

R105_C5 1 3 1 2 453.74 0 9.57 1 1 677.61 0.00014 1 2 453.74 495.16 0.000 1 2 453.74 453.74 29.693

R202_C5 1 1 1 1 347.82 0 0.21 1 1 348.29 0.00010 1 1 347.82 347.82 0.001 1 1 347.82 347.82 0.001

R203_C5 1 1 1 1 371.31 0 0.21 1 1 387.92 0.00016 1 1 386.48 386.48 0.001 1 1 371.31 371.31 7.203

RC105_C5 1 3 1 3 432.64 0 28.84 1 3 496.72 0.00015 1 2 432.64 435.77 0.404 1 2 432.64 437.34 21.488

RC108_C5 1 2 1 2 460.89 0 24.24 1 2 702.23 0.00016 1 2 460.89 460.89 0.008 1 2 460.89 460.89 3.281

RC204_C5 1 1 1 1 332.86 0 0.64 1 1 649.44 0.00015 1 1 332.86 332.86 0.018 1 1 332.86 332.86 0.015

RC208_C5 1 1 1 1 327.30 0 0.37 1 1 331.77 0.00010 1 1 331.77 331.77 0.000 1 1 327.30 327.30 15.193

average - - 380.80 - 6.15 - - 464.905 0.00014 - - 382.44 386.15 0.119 - - 380.80 381.19 7.491
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Table 6. Computational results for small-sized instances with 10 customers.

Instances CPLEX C&W Savings Heuristic VNSred VNSfull

Name nv1 nv2 m n Dist Gap(%) t(s) m n Dist t(s) m n Dist Avg t(s) m n Dist Avg t(s)

C101_C10 1 4 1 4 538.31 0 3021.74 1 5 568.85 0.00017 1 3 538.31 538.74 0.568 1 4 538.31 538.31 13.233

C104_C10 1 3 1 2 484.32 0 5309.78 1 4 663.74 0.00024 1 2 484.32 484.32 0.979 1 2 484.32 484.32 7.119

C202_C10 1 3 1 2 425.53 0 152.011 1 5 625.02 0.00021 1 2 425.53 425.53 0.030 1 2 425.53 425.53 2.018

C205_C10 1 3 1 3 415.48 0 157.97 1 3 435.37 0.00024 1 2 415.48 419.64 0.005 1 3 415.48 415.48 1.006

R102_C10 1 4 1 3 505.50 0 6150.84 1 4 648.65 0.00019 1 3 505.50 505.50 2.477 1 3 505.50 524.59 22.556

R103_C10 1 3 1 2 436.08 9.27 6318.99 1 3 613.76 0.00024 1 2 436.08 436.08 2.396 1 2 436.08 437.51 3.600

R201_C10 1 2 1 2 460.71 0 2686.75 1 4 730.95 0.00017 1 2 460.71 460.71 2.838 1 2 460.71 460.71 16.455

R203_C10 1 2 1 1 436.51 0 2192.71 1 1 437.75 0.00021 1 1 436.51 436.51 0.002 1 1 436.51 436.51 0.002

RC102_C10 1 5 1 4 618.75 16.85 7079.09 1 5 684.93 0.00026 1 4 618.75 618.75 41.620 1 4 618.75 618.75 11.025

RC108_C10 1 4 1 4 637.23 24.28 6739.84 1 4 721.2 0.00020 1 3 559.88 559.88 0.097 1 3 559.88 559.88 0.016

RC201_C10 1 4 1 3 495.54 0 969.86 1 4 634.13 0.00021 1 2 495.54 497.04 0.004 1 3 495.54 495.54 2.528

RC205_C10 1 3 1 3 576.17 0 462.62 1 3 702.34 0.00025 1 2 576.17 577.76 0.130 1 3 576.17 576.17 15.366

average - - 502.51 - 3436.85 - - 622.22 0.00022 - - 496.06 496.70 4.262 - - 496.06 497.77 7.910

Table 7. Computational results for small-sized instances with 15 customers.

Instances CPLEX C&W Savings Heuristic VNSred VNSfull

Name nv1 nv2 m n Dist Gap(%) t(s) m n Dist t(s) m n Dist Avg t(s) m n Dist Avg t(s)

C103_C15 1 5 - - - - - 1 6 690.99 0.00036 1 3 575.18 582.02 4.925 1 4 575.18 575.18 0.623

C106_C15 1 4 1 3 500.32 13.37 7182.91 1 6 681.31 0.00022 1 3 516.60 524.10 2.100 1 3 516.60 516.60 1.027

C202_C15 1 5 1 4 714.81 32.23 7183.04 1 6 729.87 0.00034 1 4 617.24 618.66 29.966 1 3 550.32 550.32 12.454

C208_C15 1 3 1 2 550.02 15.56 7182.95 1 4 737.61 0.00023 1 2 619.73 619.73 6.976 1 2 550.02 550.02 22.000

R102_C15 1 7 - - - - - 1 9 950.25 0.00026 1 5 716.56 716.56 9.523 1 5 716.56 716.56 12.056

R105_C15 1 5 - - - - - 1 8 777.77 0.00038 1 4 607.96 607.96 30.850 1 4 607.96 607.96 25.605

R202_C15 1 3 1 3 719.61 35.36 7198.17 1 6 990.37 0.00043 1 2 593.69 597.79 8.033 1 3 593.69 593.69 60.988

R209_C15 1 3 1 2 475.10 10.09 7182.43 1 5 711.09 0.00024 1 2 475.10 519.46 0.712 1 1 475.10 482.30 77.386

RC103_C15 1 5 - - - - - 1 7 745.82 0.00035 1 4 616.32 622.10 1.565 1 5 616.32 616.32 1.803

RC108_C15 1 5 - - - - - 1 7 716.22 0.00026 1 5 603.87 603.87 0.214 1 5 603.87 615.11 0.033

RC202_C15 1 3 1 3 552.70 16.06 7182.65 1 5 697.24 0.00033 1 3 601.86 601.86 2.395 1 2 552.70 587.11 11.600

RC204_C15 1 3 1 2 485.34 13.93 7183.03 1 3 604.05 0.00035 1 2 551.56 551.56 0.670 1 2 485.34 485.34 15.566

average - - - - - - - 752.72 0.00031 - - 591.31 597.14 8.161 - - 570.30 574.71 20.095

The following observations can be made: First, apart from instances R103_C10, RC102_C10,
and RC108_C10, CPLEX was able to solve the mathematical model—within 2 h of CPU time—
for all instances with five and ten customers to optimality. For two of the remaining three
cases, CPLEX was able to provide feasible solutions of the same quality as VNSfull and VNSred,
without being able to prove optimality. However, for the instances with 15 customers, the
performance of CPLEX heavily starts to degrade. The reason for the rapidly decreasing
performance of CPLEX is that the size and complexity of the MILP model sharply increase
based on the instance size. For instance, the average number of variables and constraints
of the MILP model for the instances containing five customers is 986 and 2235, respectively.
These values increase to 4008 and 9363 for the instances with 10 customers and to 13,125 and
31,482 for the instances with 15 customers. In this latter case, CPLEX could only provide valid
solutions (without being able to prove optimality) in seven out of 12 instances. Nevertheless,
for one instance (C106_15), CPLEX produced a better solution than both VNS variants.

Both VNS variants performed comparably on small problem instances with 5 and 10
customers. They were able to find solutions with the same objective function values as
those of CPLEX. However, the performance of the two VNS variants starts to differ on the
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instances with 15 customers. While VNSfull provides results at least as good as CPLEX for
all instances except for C106_C15, VNSred only does so in seven out of 12 cases. Considering
those instances for which CPLEX was able to obtain a solution, both VNS variants improved
the solution quality of CPLEX, on average, by 0.55% (VNSred ) and 6.86% (VNSfull ). In
fact, VNSfull outperforms VNSred both in terms of best-performance (column ‘dist’) and
in terms of average-performance (column ‘avg’). Note also that the running times of both
VNSfull and VNSred are in the order of seconds. While the superiority of both VNSfull and
VNSred over CPLEX in terms of CPU time is more significant for the instances with 10 and
15 customers, see Tables 6 and 7, only VNSred provides better CPU times for the instances
with 5 customers. Finally, note that the results of the C&W savings heuristic are, in the context
of these small problem instances, approx. 20% worse than the best results obtained. This is,
however, achieved in very low computation times of a fraction of a second, which shows that
our C&W savings heuristic is a good candidate for producing the initial solutions of VNS.

Next, we analyze the results of the four approaches when applied to the large problem
instances of our benchmark set. These results are shown in Tables 8–10. The structure of
these tables is slightly different to the one of the previous result tables. First, results of CPLEX
are not provided, because CPLEX was not able to generate a single valid solution within 2
h of computation time. Second, the additional column with heading ‘imp(%)’ provides the
improvement (in percent) of the VNS variants over the results of the C&W savings heuristic.
In addition to the tables we also provide critical difference (CD) plots [62] as a statistical tool for
assisting the interpretation of the obtained results. First, the Friedman test was used to compare
the three approaches simultaneously. As a consequence of the rejection of the hypothesis that
the techniques perform equally, the corresponding pairwise comparisons were performed
using the Nemenyi post hoc test [63]. The obtained results are graphically shown by means
of the above-mentioned CD plots in Figure 8. Note that each considered algorithm variant
is placed on the horizontal axis according to its average ranking for the considered subset of
problem instances. The performances of those algorithm variants that are below the critical
difference threshold (computed with a significance level of 0.05) are considered as statistically
equivalent; see the horizontal bars joining the markers of the respective algorithm variants.

The following observations can be made. For the large clustered instances (Table 8)
and large random instances (Table 9), VNSfull significantly outperforms VNSred, both in
terms of best-performance and average-performance. This is also shown in Figure 8b,c.
However, the opposite is generally the case in the context of random-clustered instances,
as shown in Figure 8d. This means that the removal/destroy operators have a rather
negative impact on the performance of VNS in these cases. This is most probably due to
their elevated computation time requirements. Nevertheless, Figure 8d also shows that this
difference is not statistically significant. Moreover, the superiority of VNSfull over VNSred is
much more significant in the context of instances with a long scheduling horizon (R2* C2*
and RC2*) compared to the instances with a short scheduling horizon (R1* C1* and RC1*);
see Figure 8e,f. Finally, when considering all large instances together, VNSfull significantly
outperforms VNSred (see also Figure 8a).

Table 8. Computational results for large-sized clustered instances.

Instances C&W Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist Avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

C101_C21 3 25 3 39 1941.16 0.005 3 20 1513.91 1562.77 19.49 499.70 3 20 1494.18 1538.74 20.73 579.98

C102_C21 3 28 3 33 1822.02 0.005 3 21 1501.66 1506.95 17.29 537.57 3 19 1447.86 1487.11 18.38 572.03

C103_C21 3 26 3 29 1702.89 0.005 3 20 1447.98 1463.34 14.07 509.37 3 19 1399.25 1425.80 16.27 656.63

C104_C21 3 31 3 24 1580.07 0.005 3 20 1435.04 1446.17 8.47 405.19 3 19 1400.52 1439.76 8.88 540.97

C105_C21 4 43 3 36 1877.85 0.005 3 20 1522.97 1541.60 17.91 359.00 3 20 1493.69 1521.13 19.00 466.13

C106_C21 4 37 3 35 1791.74 0.004 3 20 1474.74 1491.70 16.75 361.26 3 20 1429.75 1476.85 17.57 536.93
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Table 8. Cont.

Instances C&W Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist Avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

C107_C21 4 41 3 34 1838.83 0.005 3 20 1499.81 1513.36 17.70 400.85 3 20 1485.7 1513.18 17.71 582.44

C108_C21 3 33 3 29 1687.15 0.005 3 20 1461.25 1476.72 12.47 483.00 3 20 1450.96 1489.63 11.71 523.87

C109_C21 4 31 3 26 1619.19 0.005 3 20 1447.36 1456.90 10.02 326.59 3 20 1409.97 1455.93 10.08 673.76

C201_C21 3 20 2 35 1794.83 0.004 2 11 1251.62 1276.42 28.88 422.74 2 12 1208.76 1233.87 31.25 545.02

C202_C21 4 20 2 31 1672.52 0.005 2 12 1228.61 1260.08 24.66 532.72 2 12 1187.87 1232.74 26.29 703.08

C203_C21 3 19 2 27 1554.96 0.005 2 12 1197.45 1223.16 21.34 356.27 2 11 1201.4 1216.36 21.78 767.58

C204_C21 4 18 2 22 1411.07 0.005 2 12 1178.14 1191.92 15.53 464.31 2 11 1161.07 1181.40 16.28 577.96

C205_C21 4 20 2 21 1470.73 0.005 2 12 1226.48 1249.59 15.04 460.15 2 12 1205.23 1223.94 16.78 664.39

C206_C21 3 19 2 19 1399.11 0.005 2 12 1202.52 1222.94 12.59 519.78 2 11 1182.63 1198.54 14.34 556.03

C207_C21 3 19 2 20 1406.55 0.005 2 12 1195.1 1211.55 13.86 262.84 2 11 1173.7 1188.92 15.47 562.88

C208_C21 3 17 2 19 1393.28 0.005 2 12 1193.01 1221.40 12.34 429.15 2 11 1169.69 1188.85 14.67 652.98

average 1644.94 0.005 1351.63 1371.56 16.38 431.21 1323.66 1353.69 17.48 597.80

Table 9. Computational results for large-sized random instances.

Instances C&W Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

R101_C21 4 34 4 46 2546.45 0.006 4 25 2164.26 2187.39 14.10 573.91 4 26 2179.75 2306.91 9.41 589.70

R102_C21 3 32 4 37 2365.85 0.006 3 21 1840.45 1894.10 19.94 583.85 3 24 1843.45 2025.31 14.39 300.08

R103_C21 3 23 3 32 1974.87 0.006 3 19 1696.36 1754.36 11.17 657.28 3 19 1729.91 1829.33 7.37 350.64

R104_C21 2 20 3 23 1784.94 0.006 2 17 1473.50 1641.42 8.04 770.40 2 17 1470.20 1628.00 8.79 535.30

R105_C21 3 25 3 39 2216.4 0.005 3 23 1842.34 1898.80 14.33 539.41 3 22 1909.13 1975.78 10.86 463.62

R106_C21 3 28 3 32 2055.43 0.006 3 20 1737.88 1870.36 9.00 345.95 3 21 1723.88 1887.34 8.18 153.16

R107_C21 2 23 2 30 1725.89 0.007 2 18 1518.95 1671.82 3.13 287.01 2 18 1490.01 1670.00 3.24 323.49

R108_C21 2 21 2 23 1603.11 0.006 2 18 1454.99 1553.47 3.10 322.44 2 18 1449.13 1569.62 2.09 184.32

R109_C21 2 24 3 29 1947.31 0.006 2 18 1547.52 1694.54 12.98 356.45 2 19 1529.71 1683.81 13.53 386.16

R110_C21 2 23 2 26 1650.24 0.006 2 17 1451.04 1486.15 9.94 597.54 2 17 1470.57 1513.50 8.29 660.80

R111_C21 2 24 3 26 1805.69 0.006 2 18 1487.83 1572.49 12.91 579.21 2 17 1522.49 1593.35 11.76 483.22

R112_C21 2 23 2 20 1460.99 0.006 2 20 1457.06 1457.06 0.27 0.00 2 17 1413.86 1452.74 0.56 64.47

R201_C21 1 14 2 34 1912.59 0.006 1 12 1238.92 1265.99 33.81 486.39 1 9 1218.88 1252.17 34.53 639.80

R202_C21 1 12 2 29 1760.69 0.006 1 9 1158.64 1170.28 33.53 626.39 1 9 1135.84 1166.67 33.74 564.04

R203_C21 1 14 2 22 1587.76 0.007 1 8 1064.16 1093.38 31.14 513.09 1 7 1067.89 1096.69 30.93 542.58

R204_C21 1 9 2 17 1408.95 0.006 1 7 962.16 994.44 29.42 534.08 1 6 965.62 977.19 30.64 591.03

R205_C21 1 14 1 27 1522.45 0.006 1 9 1136.47 1167.99 23.28 711.65 1 7 1134.35 1155.14 24.13 452.03

R206_C21 1 12 1 23 1445.78 0.006 1 8 1106.23 1137.05 21.35 789.19 1 7 1092.55 1117.88 22.68 512.81

R207_C21 1 13 1 17 1334.95 0.006 1 7 1034.45 1072.21 19.68 588.03 1 7 1025.08 1055.93 20.90 512.99

R208_C21 1 12 1 16 1232.96 0.006 1 7 991.25 1018.02 17.43 484.88 1 7 970.31 996.20 19.20 519.00

R209_C21 1 15 1 23 1400.02 0.006 1 8 1078.55 1106.82 20.94 597.86 1 7 1078.00 1089.28 22.20 597.67

R210_C21 1 12 1 19 1350.21 0.006 1 8 1059.31 1090.53 19.23 515.34 1 7 1045.64 1068.65 20.85 480.40

R211_C21 1 9 1 18 1291.64 0.006 1 7 1030.77 1053.79 18.41 524.60 1 6 999.26 1034.15 19.93 421.96

average 1712.40 0.006 1371.00 1428.37 16.83 521.08 1368.07 1441.11 16.44 449.10



Appl. Sci. 2022, 12, 1014 25 of 29

When comparing the algorithms in terms of the average computation times required
to find the best solutions of a run, it can be seen that VNSred was able to provide solutions
in lower CPU times than VNSfull. We can infer that destroy and repair type operators
help to produce better solutions; however, repairing a destroyed solution prolongs the
computation time.

Table 10. Computational results for large-sized random-clustered instances.

Instances C&W Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist Avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

RC101_C21 3 28 4 38 2467.62 0.004 4 23 2044.99 2274.23 7.84 294.29 3 22 1907.52 2106.42 14.64 605.26

RC102_C21 3 29 4 36 2385.73 0.005 4 22 2004.78 2035.60 14.68 516.43 3 21 1834.97 2047.79 14.16 397.12

RC103_C21 3 28 4 29 2189.24 0.004 3 20 1747.98 1933.49 11.68 393.23 3 20 1728.17 1846.23 15.67 470.22

RC104_C21 2 26 2 26 1710.42 0.004 2 19 1644.36 1686.88 1.38 322.00 2 19 1645.35 1688.65 1.27 372.96

RC105_C21 3 23 5 33 2482.3 0.005 3 20 1789.64 1821.53 26.62 471.32 3 20 1802.85 1936.87 21.97 506.77

RC106_C21 3 23 3 33 2142.63 0.005 3 20 1760.23 1797.62 16.10 584.16 3 19 1750.61 1807.42 15.64 450.61

RC107_C21 3 24 3 28 1901.16 0.004 3 19 1687.90 1713.75 9.86 493.35 3 19 1686.76 1719.83 9.54 681.21

RC108_C21 3 25 2 26 1737.71 0.005 3 19 1672.75 1676.55 3.52 440.79 3 18 1622.76 1655.21 4.75 760.71

RC201_C21 1 15 1 35 1809.28 0.004 1 14 1313.01 1341.92 25.83 682.08 1 11 1318.73 1358.75 24.90 282.60

RC202_C21 1 13 1 30 1636.91 0.005 1 12 1218.40 1246.29 23.86 691.50 1 10 1200.59 1230.97 24.80 531.87

RC203_C21 1 11 1 22 1401.03 0.005 1 10 1119.62 1140.74 18.58 589.31 1 8 1103.43 1138.82 18.72 624.78

RC204_C21 1 14 1 16 1267.87 0.004 1 9 1045.72 1077.93 14.98 462.65 1 8 1040.09 1054.96 16.79 470.14

RC205_C21 1 17 1 25 1553.79 0.004 1 11 1223.37 1253.27 19.34 368.42 1 9 1217.43 1245.16 19.86 356.82

RC206_C21 1 16 1 25 1536.28 0.004 1 10 1216.70 1235.36 19.59 495.64 1 9 1193.11 1216.17 20.84 610.81

RC207_C21 1 12 1 21 1424.02 0.004 1 9 1116.30 1133.88 20.38 532.73 1 8 1106.60 1146.08 19.52 442.03

RC208_C21 1 14 1 14 1253.98 0.005 1 9 1038.25 1081.38 13.76 535.70 1 8 1049.42 1067.86 14.84 516.79

average 1806.25 0.004 1477.75 1528.15 15.50 492.10 1450.52 1516.70 16.12 505.04

Finally, VNSred and VNSfull produced comparable results for small problem instances
in terms of the number of utilized vehicles. In contrast, the increased effectiveness of
VNSfull is shown in the context of large problem instances. Even though making use of
a lower number of vehicles usually means that a better solution is obtained, note that a
smaller fleet size does not always guarantee a better solution. For some of the instances
(i.e., C103_C15, R202_C15), even though VNSred provides solutions with a lower fleet size
than VNSfull, the solutions of VNSfull are better. The reason for this is that the objective
function only minimizes the traveled distance.

It is also worth noting that the average improvement rate with respect to the solutions
of the C&W savings heuristic for large clustered problem instances is lower than in the
context of the random and random-clustered instances. One reason for this is possibly
the assignment of each customer to the nearest satellite in the initial solution construction
phase, which provides most probably a better customer-satellite assignment than in the
context of random instances.
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Figure 8. Critical difference plots concerning the results for large instances. The graphic in (a) con-
siders all large instances, while the other graphics consider subsets of the set of large instances.
(a) All large instances; (b) clustered instances; (c) random instances; (d) random-clustered instances;
(e) instances R1*; C1* and RC1*; and (f) instances R2*, C2*, and RC2*.

6. Conclusions and Future Research Directions

This study presented the two-echelon electric vehicle routing problem with time
windows as a valuable concept for sustainable city logistics. A three-index node-based
mixed-integer programming model was developed and solved using CPLEX for small
instances. In addition, we proposed a variable neighborhood search metaheuristic making
use of a wide range of classical and large neighborhood search operators. Moreover, our
algorithm allows visiting unfeasible solutions, which is achieved by means of an extended
objective function for the evaluation of both feasible and unfeasible solutions. The local
search step of our variable neighborhood search approach uses a variable neighborhood
descent algorithm. Experimental tests were performed using new problem-specific instance
sets generated based on available data sets from the literature. While CPLEX was able
to solve the proposed mathematical model only for small problem instances with 5 and
10 customers, it started to struggle deriving even feasible solutions for larger instances. Our
variable neighborhood search approach was able to find optimal or near-optimal solutions
faster than CPLEX for all small problem instances. Moreover, numerical results showed
that destroy-and-repair-type operators generally increased the algorithm’s performance.
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