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Abstract: Deep convolutional neural networks (CNNs) are effective in image classification, and are
widely used in image segmentation tasks. Several neural netowrks have achieved high accuracy in
segementation on existing semantic datasets, for instance PASCAL VOC, CamVid, and Cityscapes.
However, there are nearly no studies on semantic segmentation from the perspective of a dataset
itself. In this paper, we analyzed the characteristics of datasets, and proposed a novel experimental
strategy based on bokeh to weaken the impact of futile background information. This crucial bokeh
module processed each image in the inference phase by selecting an opportune fuzzy factor σ, so that
the attention of our network can focus on the categories of interest. Some networks based on fully
convolutional networks (FCNs) were utilized to verify the effectiveness of our method. Extensive
experiments demonstrate that our approach can generally improve the segmentation results on
existing datasets, such as PASCAL VOC 2012 and CamVid.

Keywords: bokeh; fully convolutional networks; semantic segmentation

1. Introduction

In recent years, an increasing number of researchers have applied convolutional
neural networks (CNNs) to resolve pixelwise and end-to-end image segmentation tasks,
e.g., semantic segmentation [1–4]. Semantic segmentation can be understood as the need
to segment each object in an image and annotate it with different colors. For instance,
people, displays, and aircraft in the PASCAL VOC 2012 dataset were marked in pink, blue,
and red respectively. As a significant role in computer vision, semantic segmentation has
been widely implemented for fields like autonomous driving [5], robot perception [6],
augmented reality [7], and video surveillance [8].

Since the advent of fully convolutional networks (FCN [9]), they have greatly sim-
plified the conventional approach to address the conundrum of semantic segmentation.
Various end-to-end network architectures derived from FCN have been proposed over the
years. Based on existing datasets, the segmentation accuracies are relatively high or even
the maximum possible. The series of DeepLab [10–13] proposes atrous convolution with
dilation to improve the problem of a scarce receptive field caused by an insufficient amount
of down-sampling. The proposed atrous spatial pyramid pooling, to carry out multi-scale
feature fusion, significantly advances the accuracy of network segmentation. Yu et al. [14]
proposed the bilateral segmentation network, which better preserves the spatial infor-
mation of the original image while ensuring a sufficient receptive field. From semantic
segmentation to real-time semantic segmentation [14–16], considering redundant to lean
network architectures, existing scholars accomplish better segmentation by designing and
improving the structure of the network itself and adopting massive data augmentation
methods. However, they ignored the impact of the characteristics of the dataset itself on
the segmentation results.

Semantic segmentation, as a pixelwise classification task, requires the classification
of every pixel. Nevertheless, not every pixel is of interest to us. A substantial amount
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of background information during the training phase not only increases the difficulty of
learning, but also leads to misclassifications, see Figure 1. In view of the aforementioned
issues, and motivated by the excellence of the self-attention mechanism in the segmentation
task [17,18], we apply the attention mechanism to the dataset itself. Through in-depth
analysis of the dataset, we propose the background blur module bokeh. The overall
structure is shown in Figure 2, and a feasible strategy for selecting the fuzzy factor σ is
proposed in Section 3.

(a) (b)

Figure 1. An example in the PASCAL VOC 2012 dataset. (a) Chairs, sofas, and optical modems in
the field of interest have the same color and shape as the walls and wardrobes in the background.
(b) Areas of interest only occupy an unobtrusive part of the whole picture.
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Figure 2. (a) Existingmainstream semantic segmentation network architecture. (b) The segmentation
network architecture of this paper. (c) bokeh module, see Section 3 for algorithm details.

Humans, as the most sophisticated creatures on earth, have a natural advantage in
patten recognition. Relying on foveated and active vision, our visual center always focusses
on the area of interest to us, rather than on the background.
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The proposed bokeh module mainly performs a certain degree of background blurring
according to the distribution of various categories of the dataset itself, without any prior
knowledge of the domain of interest. It combines the blurred background with the domain
of interest as the subsequent segmentation network input. Specifically, during the training
stage, background and foreground are divided accurately by real semantic labels provided
by the training set. In the validation phase, the original segmentation network is able
to separate the background and foreground, based on the coarse segmentation. The
reconstructed segmentation network with the bokeh module performs the final semantic
segmentation. The visualization of our bokeh module is shown in Figure 3.

(a) Image (b) Image-I

(c) Image-B (d) Image-bokeh

Figure 3. Image visualization after adding the bokeh module: (a) original image, (b) the domain of
interest ϕI , (c) the background blurred domain ϕB, and (d) Image-bokeh, namely a combination of
the latter two.

We demonstrate the effectiveness of our approach on two datasets, PASCAL VOC
2012 [19] and CamVid [20], and on several existing end-to-end network architectures.

The main contributions of our paper are:

1. Semantic segmentation is viewed from the dataset itself, and an inference strategy
based on the background blurring module (bokeh) is easy to embed into existing
semantic networks.

2. According to the characteristics of each dataset, an appropriate strategy for selecting
the fuzzy factor σ is proposed.

3. It is verified from the FCN-based network that our bokeh module can improve the
segmentation quality of the network without changing any network structure. The
segmentation results of BiSeNet [14] on CamVid are improved by 3.7 points, while the
performance of HyperSeg [21] on the PASCAL VOC 2012 is improved by 5.2 points
after adding the bokeh module.

2. Related Work

Recently, FCN-based approaches have achieved state-of-the-art segmentation results
on most existing datasets. We present the segmentation performance of several classical
networks on PASCAL VOC 2012 and CamVid datasets, shown in Table 1. This section gives



Appl. Sci. 2022, 12, 1051 4 of 15

a brief introduction to FCN [9], and introduces the inspiration of this paper, namely the
attention mechanism [22]. This concept is applied to the network to improve the sensitivity
of the domain of interest.

Table 1. Accuracies of segmentation models on the PASCAL VOC [19] 2012 val and CamVid [20]
test dataset.

Method Backbone Mean IOU
PASCAL VOC CamVid

FCN [9] VGG-16 62.2 -

DFANet [16] Xception-A - 64.7

BiSeNet [14] ResNet-18 - 68.7

DeepLabV3 [12] ResNet-101 78.5 -

Hyperseg-s [21] EfficientNet-B1 - 78.4

DeepLabV3+ [13] Xception-71 80.0 -

2.1. Fully Convolutional Networks

FCN [9] fine-tunes all types of classification as segmentation networks enabling it to
fulfil a variety of recognition tasks, and takes full advantage of the classification ability
of CNNs. At the same time, three different skip connection methods are used to realize
the fusion of diverse scale features. Finally, deconvolution is utilized to restore the size
and produce outputs of corresponding sizes. Thus, multi-scale fusion is introduced to
effectively combine global information from a deep layer with local information from a
shallow layer.

2.2. Attention Mechanism

As an important component of artificial intelligence, the attention mechanism has been
extensively used in natural language, image and video processing. By using the advanced
information of sample data to guide the forward propagation process of a network, a
long-term dependency relationship is established to improve the segmentation accuracy.
By introducing the attention mechanism [17,18], our network is more targeted, and we can
pay more attention to the object that we concentrate on. For example, in DANNet [23], the
authors introduced the Position Attention Module and the Channel Attention Module to
selectively aggregate the features of each location and emphasized the interdependence of
the network, so as to improve the ability of network segmentation.

2.3. Background Blur

Background blur [24] is to make the depth of field lighter and focus on the subject itself,
while weakening the influence of background information of an image. Its mechanism is
similar to the attention mechanism in a neural network. Note that the background blurring
is performed on the image datasets themselves, while the attention mechanism operates on
the high-level feature map. In the subsequent experiments, the combination of background
blur and the attention mechanism will be investigated.

2.4. A Change in Thinking

In recent studies, scholars have attempted to solve semantic segmentation with a
structure different from FCN (a standard encoder–decoder architecture). Nirkin et al. [21]
introduced hypernetworks into semantic segmentation for the first time and proposed
a novel network model, HyperSeg. Hypernetworks are networks that generate weight
for another network. The crucial role of their HyperSeg is to have the encoder generate
weights for the decoder with an advanced features encoded. Zheng et al. [25] serialized the
input image into a sequence of image patches and adopted a pure transformer structure,
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called SETR, to solve semantic segmentation. Based on the idea of mathematical statistics,
we explore the inherent characteristics of the dataset itself and use the proposed bokeh
method to improve the performance of existing semantic segmentation models.

3. Proposed Method

In this section, we will elaborate on the bokeh algorithm. We will begin with a brief
description of the symbols used. Suppose the whole image is divided into interest and
background domains. ϕI denotes the collection of all the pixels that we are interested in;
otherwise, the collection of all pixels that we are not interested in is ϕB. The distribution
relationship can be simply expressed as Figure 4. For two matrices A = [aij] ∈ Rm×n and
B = [bij] ∈ Rm×n, matrix C = [cij] ∈ Rm×n is called the Hadamard product [26] of matrices
A and B if matrix C satisfies the following condition:

cij = aij × bij (1)

� �!

Figure 4. The distribution map of the interested domain ϕI and background domain ϕB.

We found that, on some of the datasets used for semantic segmentation (e.g., PASCAL
VOC 2012, etc.), there is an imbalance between different categories in the dataset, and
an imbalance between the interest and background domains. For example, of Bicycle
(0.29%) and Person (4.57%), both of which are of interest, the former is only one sixteenth
of the latter. Moreover, the ratio of the interest domain to background domain is about
1:3, as shown in Table 2. This is not favorable for the segmentation task. A considerable
amount of background information either increases the difficulty of training or has no effect
on the improvement of segmentation accuracy. Some areas of the background domain
may resemble some areas of the interest domain. Learning more background information
weakens the role of the usable information. We are more inclined to play down the impact of
background information on learning. Learning more and more useful information improves
the segmentation accuracy of all categories. We use the effective labeling information in the
existing labels to obtain the interest domain of a training set.

Table 2. of 21 categories (with background) on the PASCAL VOC 2012 [19] training dataset.

Class Background Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair

P(%) 74.81 0.68 0.29 0.85 0.58 0.58 1.67 1.33 2.57 1.09

Cow Dining Table Dog Horse MotorBike Person Potted Plant Sheep Sofa Train Monitor

0.79 1.29 1.66 0.87 1.10 4.57 0.64 0.86 1.38 1.52 0.90

3.1. The Algorithm of Bokeh

For any input image and the corresponding label in the training stage, img ∈ RH×W×C,
GT ∈ RH×W , ϕ ∈ RH×W×C, where H ×W is the size of the image, and C represents the
number of image channels (for RGB, C = 3), the background blur module bokeh can be
summarized as follows

ϕ(img, GT, σ) = ϕI(img, GT, 1) + ϕB(img, GT, σ) (2)

ϕI(img, GT, 1) = img(i, j, k)× [I(i, j)− BGL(i, j)]× 1 (3)
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ϕB(img, GT, σ) = img(i, j, k)× BGL(i, j)× σ (4)

where:
0 ≤ i ≤ H − 1, 0 ≤ j ≤W − 1, k = 1, 2, · · · , C, σ ∈ (0, 1]

We denote ϕI(img, GT, 1) as the interest domain, and ϕB(img, GT, σ) as the back-
ground blur domain. When BGL(i, j) = 1, it means that the pixel at (i, j) belongs to the
background; otherwise, it belongs to the interest domain. I is an H-by-W matrix of ones.
“∗” is the matrix Hadamard product operator. σ denotes the fuzzy factor, whose value
is inversely proportional to the degree of blur. Its selection strategy will be given later.
Background label variable BGL(i, j) can be presented as:

BGL(i, j) =

{
1, GT(i, j) = 0
0, Otherwise

(5)

Assume that RB is the proportion of the background field in an image, and RI is the
proportion of the field of interest. Obviously, we obtain RB + RI = 1, where RB and RI are
defined as follows:

RB =
Num(ϕB)

H ×W
, RI =

Num(ϕI)

H ×W
(6)

where Num(ϕB) is the sum of the pixel number of the background domain, and Num(ϕI) is
the sum of the pixel number of the interested domain. For PASCAL VOC 2012 train dataset,
Num(ϕB) = Num(pixel = 0) + Num(pixel = 255), Num(ϕI) = ∑20

i=1 Num(pixel = i).
For the selection of the fuzzy factor σ, we initially set RB∗ equal to the background

rate of the whole dataset (e.g., for PASCAL VOC train dataset, RB∗ = 0.7481). Suppose
σ ∈ [1− RB∗ , 1]. The degree of background blur of each image depends on the distribution
of its own background. If its background proportion is larger, the background blurring
degree should be aggravated. Hence, σ should be smaller. Conversely, σ should be
greater. Specifically, when RB = 0, only the field of interest is involved, the corresponding
background blurred factor σ should be maximized. When RB = 1, the background domain
is barely included, the σ should be minimized. Let RB and σ satisfy the linear relation:

σ = −α× RB + β (7)

such that {
RB = 0, σ = 1
RB = 1, σ = 1− R

B∗

where α, β ∈ R.
We solve (7), and obtain α = RB∗, β = 1, Thus, σ could be recasted by

σ = −RB∗ × RB + 1 (8)

Substituting (3), (4) and (8) into (2), we obtain the formula for the evaluation of
the bokeh:

ϕ(img, GT, σ) = img(:, :, k)× [I(:, :)− RB∗ × RB × BGL(:, :)] (9)

where BGL(:, :) is defined in (5).

3.2. The Main Mechanism of Bokeh

The reason why CNNs can achieve various classification tasks is that, after a series of
convolution and pooling operations, networks are able to infer the abstract representation
(also called advanced feature map) of the input image. The ability of abstract representation
depends not only on the performance of the network but also on the characteristics of
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the input image. Finding differences between similar objects is much more difficult than
finding differences between different objects. For example, we use the same dichotomous
network to classify apples and bananas, or tomatoes and cherry tomatoes. The latter is
obviously more difficult, precisely because similarities weaken the differences between
different objects.

Since semantic segmentation often requires a large amount of sample data, similari-
ties between categories inevitably exist. Therefore, the proposed bokeh method enables
differences between categories amplified. Assuming that there are two similar objects in an
image, Ab and Ao, where Ab is marked as background and Ao is marked as category I in
GT. In a training iteration of the network model, abstract representation learned from Ab is
denoted as FAb , and the abstract representation learned from Ao is denoted as FAo . Obvi-
ously, FAb and FAo also have some representation elements in common. The segmentation
network learns similar high-level features from two different categories of objects, so it is
hard for the network to figure out the features of the category of interest Ao. After bokeh
and fuzzy operations imposed on Ab, the similarity between F′Ab

and FAo is abated during
iterations, and the network can gradually learn the features of Ao properly.

3.3. Embed into an Existing Network

According to (8), the selection of fuzzy factor σ is merely related to the background
rate(RB∗ and RB). Therefore, for different datasets, we only need to calculate the proportion
of each category before using the bokeh method, which can be used as a general method.
With the FCN network, the overall network architecture after adding our bokeh module is
shown in Figure 5. For each block, the convolution stride is one and the stride of pooling is
two. There are two more convolution operations with stride 1 after “Conv5 + pool”. After
each downsampling, the size becomes half of the original. The decoder consists of outputs
of three different structures. First, FCN-32s(Output_1) is obtained from the results of
“Conv5 + pool” through 32x upsampling. The output of Conv5 + pool with a 2x upsampling
is added to the output of “Conv4 + pool” to obtain Add_1. Then, FCN-16s(Output_2) is
acquired from Add_1 through 16x of upsampling. Similarly, as shown in the figure above,
we can obtain FCN-8s (Output_3). Detailed structure is shown in Table 3. The network
backbone can use AlexNet [27], VGGnet [28], and GoogLeNet [29].

Table 3. Detailed structure of the network. Backbone: VGG16, Input size: 512× 512, C: the number
of object classes.

Name Details Kernel Size Stride Output Size

Conv1 + pool Conv + BN + ReLU × 2 3× 3× 64 1 64× 512× 512
MaxPool 2× 2 2 64× 256× 256

Conv2 + pool Conv + BN + ReLU × 2 3× 3× 128 1 128× 256× 256
MaxPool 2× 2 2 128× 128× 128

Conv3 + pool Conv +BN + ReLU × 3 3× 3× 256 1 256× 128× 128
MaxPool 2× 2 2 256× 64× 64

Conv4 + pool Conv + BN + ReLU × 3 3× 3× 512 1 512× 64× 64
MaxPool 2× 2 2 512× 32× 32

Conv5 + pool Conv + BN + ReLU × 3 3× 3× 512 1 512× 32× 32
MaxPool 2× 2 2 512× 16× 16

Deconv_32x ConvTranspose 32× 32× C 32 C× 512× 512

Deconv_16x ConvTranspose 16× 16× C 16 C× 512× 512

Deconv_8x ConvTranspose 8× 8× C 8 C× 512× 512
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Output_3 

Conv1 + pool Conv2 + pool Conv3 + pool Conv4 + pool 
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Figure 5. The FCN [9] network architecture after adding bokeh is illustrated in the figure above. The
entire network can be subdivided into bokeh, encoder and decoder. Bokeh is described in Section 3.
The encoder is composed of 5 “ConvX + pool” downsampling blocks. The value of “*” is GT (ground
truth) in the training stage and CP (coarse prediction) in the verification stage.

4. Experimental Results

FCN [9], BiseNet [14], and HyperSeg [21] are selected as our segmentation networks,
and relevant experiments are carried out on PASCAL VOC 2012 [19] and CamVid [20]
benchmarks. A brief review of the corresponding datasets and metrics will be first pre-
sented. Following this, implementation and explanation of experiments will be given.

PASCAL VOC 2012: As one of the rockstars used for semantic segmentation, PASCAL
VOC 2012 covers not only indoor and outdoor scenes, but also night-time scenes with a
total of 21 semantic categories (20 categories of interest and a class for the background). The
whole dataset contains 4369 images, 1464 of which are used for training, 1449 for validation
and 1456 for testing. The training set and validation set adopt full annotation, while the
test set does not provide labels. The capacity has been later expanded in SBD [30] to reach
10,582 training samples.

CamVid: As a small-scale urban street view dataset, CamVid includes a total of 701
fully annotated images, 367 of which are employed to train, 101 for validation and 233
for testing. The CamVid dataset consists of 11 semantic categories (e.g., cars, buildings,
billboards, etc.) and an Unlabelled class. Each image has the same resolution: 720× 960.

Metrics: Let nij be the number of pixels that class i is predicted to be class j, and C be
the number of object classes (including the background class). We compute four indices:
Pixel Acc, Mean Acc, Mean IOU and F.W IOU, as defined below. Naturally, the higher the
values are, the better network performance is.

• Pixel accuracy(Pixel Acc): ∑C
i=1 nii/ ∑C

i=1 ∑C
j=1 nij;

• Mean pixel accuracy(Mean Acc):(1/C)∑C
i=1 nii/ ∑C

i=1 ∑C
j=1 nij;

• Mean intersection over union(Mean IOU):(1/C)∑C
i=1(nii/(∑C

j=1 nij + ∑C
j=1 nji − nii));

• Frequency weight intersection over union (F.W IOU): (1/ ∑C
i=1 ∑C

j=1 nij)∑C
i=1((∑

C
j=1 nijnii)

/(∑C
j=1 nij + ∑C

j=1 nji − nii)).

4.1. Implementation Protocol

We reconstruct the classical FCN [9], BiSeNet [14], and HyperSeg [21] network. In
order to more objectively evaluate the impact of background information on segmentation
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accuracy, we remove all data augmentation (except for cropping size) in the original paper.
The reconstructed networks are represented by (Re)FCN-8s, (Re)FCN-16s, (Re)FCN-32s,
(Re)HyperSeg, and (Re)BiSeNet, respectively. Our reconstruction results are a little bit lower
than the original results because we did not add a mass of data augmentation. However,
our focus is to demonstrate the feasibility of our method, rather than narrowing the gap
with the original paper.

Training details: For the CamVid [19] dataset, an Adam optimizer was used, with
batch size 8, initial learning rate 1 ×10−4, and weight decay 1 ×10−4 in training. Similar to
Deeplab series[11–13], the “poly” learning rate attenuation strategy was also adopted, and
the last learning rate was multiplied by (1− iter

itermax
)power, where power = 0.9, after each

iteration. For the PASCAL VOC 2012 [19] dataset, parameters were set with batch size 12,
and weight decay 2 ×10−4 in training. After every 50 epochs, the learning rate decayed to
half of the last one.

Data augmentation: No additional operations are required except clipping. For
Camvid, images processed by SegNet [31] are used as input in this paper, and these images
are 360× 480. The PASCAL VOC 2012 dataset is clipped to a fixed size as input.

4.2. Ablation for Bokeh

Applying bokeh to multiple segmentation networks on two datasets, comparative
experiments were made. The experimental results of three FCN network architectures and
HyperSeg on the PASCAl VOC dataset are shown in Table 4. As can be seen, the mean IOU
of the four mentioned network architectures ((Re)FCN-32s, (Re)FCN-16s, (Re)FCN-8s, and
(Re)HyperSeg) with bokeh are improved by 4.7, 4.6, 4.8, and 5.2 points, respectively. At
the same time, the specific precision of FCN-8s before and after adding the bokeh module
on the PASCAL VOC 2012 Val dataset is given, as illustrated in Table 5. Note that the
segmentation accuracy of an individual category is significantly improved, except for 5 out
of 84 comparison items.

Table 4. The segmentation performance of three variants of FCN on the PASCAL VOC 2012 validation
set, “(Re) FCN-XXs + bokeh” means the bokeh module is added to “(Re)FCN-XXs”.

Method Pixel Acc Mean Acc Mean IOU F.W IOU

(Re)FCN-32s [9] 80.7 74.7 52.9 78.2
(Re)FCN-16s [9] 81.6 75.4 54.6 79.5
(Re)FCN-8s [9] 82.3 76.5 55.6 80.5
(Re)HyperSeg [21] 93.8 83.4 72.8 89.1
(Re)FCN-32s + bokeh 83.2 77.1 57.6 82.2
(Re)FCN-16s + bokeh 83.9 78.0 59.2 83.1
(Re)FCN-8s + bokeh 84.6 78.0 60.4 83.8
(Re)HyperSeg + bokeh 95.6 86.2 78.0 92.1

Considering the results in Table 2 and Table 5 together, we find relatively small cate-
gories, such as bicycle (0.29%), boat (0.58%) and potted plant (0.64%), make a significant
contribution to accuracy improvement. Note that the segmentation accuracy of exceptional
categories, such as “Cow” and “Dinning Table”, decrease inversely. This is because while
blurring the background, it depresses the context information to some extent. We consid-
ered it from two aspects. One is to employ the fusion of “(Re)FCN-8s” and “(Re)FCN-8s +
bokeh”, named “(Re)FCN-8s + Fusion”. Another is to confine the scope of the background
blur field to ensure rich context information is preserved, named “(Re)FCN-8s + Shrink.”
The experimental results demonstrate, as shown in Table 5, that these two methods can
avoid the accuracy decrease in specific categories. However, the improvement of the overall
segmentation accuracy is not as good as before. As a result, the accuracy decrease in some
individual categories is permitted. Qualitative examples on this dataset are shown in
Figure 6.
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Table 5. Comparison of detailed accuracy of FCN-8s before and after adding bokeh module on the
PASCAL VOC 2012 Val dataset.
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(Re)FCN-8s + Fusion 87.81 59.58 29.98 61.31 49.68 55.17 74.37 61.52 68.40 32.57 52.73 60.86 64.43 56.33 61.52 61.73 40.85 58.89 49.20 74.42 69.21 58.6
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(Re)FCN-8s + Shrink 88.14 60.38 31.37 59.44 52.52 55.58 76.41 61.98 70.58 33.70 52.66 62.31 63.62 56.01 61.00 62.70 41.43 60.11 50.22 75.00 68.33 59.2
Improved 2.84 3.34 5.72 2.21 4.33 2.25 5.53 2.14 2.75 2.26 3.17 2.25 3.87 3.14 3.64 2.96 5.32 8.65 1.99 5.46 3.01 3.6

(Re)FCN-8s + bokeh 89.05 64.16 33.14 63.87 57.57 54.40 73.63 62.88 73.19 34.54 49.28 59.69 62.20 59.46 61.05 64.01 43.42 61.23 52.94 76.80 71.07 60.4
Improved 3.75 7.12 7.54 6.64 9.38 1.07 2.75 3.04 5.39 3.1 −0.21 −0.37 2.45 6.59 3.69 4.27 7.31 9.77 4.71 7.26 5.75 4.8

(Re)HyperSeg [21] 94.11 86.67 60.39 87.2 75.01 69.05 92.1 78.98 85.85 31.22 78.68 54.94 77.56 75.9 76.9 79.22 47.68 79.84 48.92 82.08 65.76 72.8

(Re)HyperSeg + bokeh 96.81 90.91 68.04 87.29 84.41 82.18 89.31 84.18 85.49 32.98 83.46 68.24 75.01 85.93 79.46 82.22 58.73 80.16 54.38 85.26 84.57 78.0
Improved 2.7 4.24 7.65 0.09 9.4 13.13 −2.79 4.2 −0.36 1.76 4.78 13.3 −2.55 10.03 2.56 3.00 11.05 0.32 5.46 3.18 18.81 5.2

The bokeh module improves the segmentation results on the CamVid val dataset by
3.7 in Mean IOU, as shown in Table 6. This demonstrates that the proposed bokeh module
is easily embedded into a real-time network architecture. In view of the consequences of
PASCAL VOC 2012, bokeh plays a vital role in the class with a small proportion of the
dataset. As for CamVid, the background occupies a relatively small proportion, but the
accuracy increase is clear. The proportion of the CamVid training dataset by category is
presented in Table 7.

Table 6. Accuracy result on the CamVid val dataset. After adding the bokeh module, the result is
improved by 3.7 points.

Method Pixel Acc Mean Acc Mean IOU F.W IOU

(Re)BiSeNet [14] 80.3 74.0 60.7 84.5
(Re)HyperSeg [21] 94.5 85.8 77.3 89.9
(Re)BiSeNet + bokeh 81.8 76.3 64.4 85.9
(Re)HyperSeg + bokeh 96.0 87.8 80.9 92.6

Table 7. The category proportion of the CamVid training dataset.
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P(%) 16.85 23.26 0.98 31.66 4.49 9.72 1.17 1.13 5.87 0.64 0.29 3.95

It is clear from Table 8 that the improvement in the Unlabelled category is the most
significant. Analyzing the characteristics of CamVid, it can be observed that low back-
ground proportion of the dataset itself and diversity of categories in each image leads to
this. After adding the bokeh module, the image changes are not noticeable compared to
the ones before the fuzzification. However, this slight improvement occurs in almost all of
the Unlabelled category. Qualitative examples on this dataset are given in Figure 7.



Appl. Sci. 2022, 12, 1051 11 of 15

(a) (b) (c) (d)

Figure 6. Examples of the output before and after adding the bokeh module on the PASCAL
VOC 2012 dataset, our resulting contour is much smoother. The first three rows are the results of
experiments on FCN, and the last four rows are the results of experiments on Hyperseg. (a) Image;
(b) (Re)Seg.Network; (c) (Re)Seg.Network+bokeh; (d) Ground Truth.
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Table 8. Accuracy result on the CamVid val dataset.
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(Re)BiSeNet [14] 92.15 82.11 10.48 94.34 77.81 89.16 39.03 55.23 68.58 31.87 63.59 23.65 60.7

(Re)HyperSeg [21] 94.39 88.66 36.93 97.87 90.96 91.70 74.94 75.68 90.95 66.98 86.66 31.66 77.3

(Re)BiSeNet + bokeh 93.03 85.55 9.15 94.61 78.83 89.58 42.61 52.72 65.74 38.26 59.16 63.12 64.4
Improved 0.88 3.44 −1.33 0.27 1.02 0.4 3.58 −2.51 −2.85 6.39 −4.43 39.47 3.7

(Re)HyperSeg + bokeh 95.53 92.40 31.28 97.96 92.07 92.43 72.85 78.22 91.65 70.33 87.15 68.68 80.9
Improved 1.14 3.74 −5.6 0.09 1.11 0.73 −2.09 2.54 0.70 3.35 0.49 37.02 3.6

(a) (b) (c) (d)

Figure 7. Examples of the output before and after adding the bokeh module on the CamVid dataset.
It is obvious that the network is sensitive enough to recognize the background (the black part in
picture (b,c)) after adding the bokeh module. The first row is the results of experiments on BiSeNet
and the second row on HyperSeg. (a) image; (b) (Re)Seg.Network; (c) (Re)Seg.Network+bokeh;
(d) ground truth.

We compared the advanced feature maps of 20 channels (excluding background
channels) in the last layer of HyperSeg [21] before and after adding bokeh. The sensitivity
of the network to the categories of interest is higher after adding bokeh, as shown in
Figure 8.
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(a) (b)

Figure 8. Comparison of advanced feature maps and prediction: (a) feature map and prediction of
the HyperSeg network before adding bokeh, the last row is the input image. (b) Feature map and
prediction of the HyperSeg network after adding bokeh, the last row is the ground truth. The feature
map does not include background channels.
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5. Conclusions

In this paper, we propose a semantic segmentation method based on background
blurring, which adaptively processes the input image background via the fuzzy factor σ,
without changing the original network structure or introducing additional parameters,
to expand differences between background and foreground and guide the network seg-
mentation. The selection of σ is determined by the overall background rate RB∗ of the
dataset and the background rate RB of the current image. The former determines the
approximate range of its value, while the latter determines its specific value. Compared
to the attention mechanism in the network layer, bokeh plays the same role in the dataset,
by weakening the background information to highlight the features of the foreground.
Moreover, our approach can be lightly embedded into the existing segmentation network.
As our experiments show, our method achieves competitive performance on PASCAL
VOC 2012 and CamVid, with mean IOU increased by 5.2 and 3.7, especially for the small
proportion category in the dataset. The main limitation of this study is that our bokeh
method relies on the existing segmentation network, and the performance of the existing
segmentation network directly determines whether we can accurately trace the background.
Different segmentation networks selected may result in diverse results. Therefore, a natural
progression of this work is how to efficiently segment the foreground and background
without relying on the current network. In addition, adding classical image processing
methods and how to encode and decode contour information effectively will be the focus
of this paper in the future.
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