
����������
�������

Citation: Sanchez, P.R.; Zhang, H.

Simulation-Aided Development of a

CNN-Based Vision Module for Plant

Detection: Effect of Travel Velocity,

Inferencing Speed, and Camera

Configurations. Appl. Sci. 2022, 12,

1260. https://doi.org/10.3390/

app12031260

Academic Editors:

Anselme Muzirafuti and Dimitrios

S. Paraforos

Received: 15 December 2021

Accepted: 21 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Simulation-Aided Development of a CNN-Based Vision
Module for Plant Detection: Effect of Travel Velocity,
Inferencing Speed, and Camera Configurations
Paolo Rommel Sanchez 1,2 and Hong Zhang 1,*

1 Mechanical Engineering Department, Henry M. Rowan College of Engineering, Rowan University, Glassboro,
NJ 08028, USA; sanche45@students.rowan.edu or ppsanchez@up.edu.ph

2 Agribiosystems Machinery & Power Engineering Division, Institute of Agricultural and Biosystems Engineering,
College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Los Baños 4031,
Philippines

* Correspondence: zhang@rowan.edu

Abstract: In recent years, Convolutional Neural Network (CNN) has become an attractive method to
recognize and localize plant species in unstructured agricultural environments. However, developed
systems suffer from unoptimized combinations of the CNN model, computer hardware, camera
configuration, and travel velocity to prevent missed detections. Missed detection occurs if the camera
does not capture a plant due to slow inferencing speed or fast travel velocity. Furthermore, modularity
was less focused on Machine Vision System (MVS) development. However, having a modular MVS
can reduce the effort in development as it will allow scalability and reusability. This study proposes
the derived parameter, called overlapping rate (ro), or the ratio of the camera field of view (S) and
inferencing speed (f ps) to the travel velocity (

⇀
v) to theoretically predict the plant detection rate (rd)

of an MVS and aid in developing a CNN-based vision module. Using performance from existing
MVS, the values of ro at different combinations of inferencing speeds (2.4 to 22 fps) and travel velocity
(0.1 to 2.5 m/s) at 0.5 m field of view were calculated. The results showed that missed detections
occurred when ro was less than 1. Comparing the theoretical detection rate (rd,th) to the simulated
detection rate (rd,sim) showed that rd,th had a 20% margin of error in predicting plant detection rate at
very low travel distances (<1 m), but there was no margin of error when travel distance was sufficient
to complete a detection pattern cycle (≥10 m). The simulation results also showed that increasing
S or having multiple vision modules reduced missed detection by increasing the allowable

⇀
v max.

This number of needed vision modules was equal to rounding up the inverse of ro. Finally, a vision
module that utilized SSD MobileNetV1 with an average effective inferencing speed of 16 fps was
simulated, developed, and tested. Results showed that the rd,th and rd,sim had no margin of error
in predicting ractual of the vision module at the tested travel velocities (0.1 to 0.3 m/s). Thus, the
results of this study showed that ro can be used to predict rd and optimize the design of a CNN-based
vision-equipped robot for plant detections in agricultural field operations with no margin of error at
sufficient travel distance.

Keywords: modeling; simulation; precision agriculture; convolutional neural networks; machine
vision; computer vision; modular robot

1. Introduction

The increasing cost and decreasing availability of agricultural labor [1,2] and the need
for sustainable farming methods [3–5] led to the development of robots for agricultural field
operations. However, despite the success of robots in industrial applications, agricultural
robots for field operations remain primarily in the development stage due to the complex
characteristics of the farming environment, high cost of development, and high durability,
functionality, and reliability requirements [6–8].

Appl. Sci. 2022, 12, 1260. https://doi.org/10.3390/app12031260 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031260
https://doi.org/10.3390/app12031260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9459-9012
https://doi.org/10.3390/app12031260
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031260?type=check_update&version=4

Appl. Sci. 2022, 12, 1260 2 of 22

As a potential solution to these challenges, field robots with computer vision have
been increasing due to the large amount of information that can be extracted from an
agricultural scene [9]. Real-time machine vision systems (MVS) are often used to recognize,
classify and localize plants accurately for precision spraying [10,11], mechanical weed-
ing [12], solid fertilizer application [13], and harvesting [14,15]. However, using traditional
image processing techniques, early machine vision implementations for field operations
were difficult due to the vast number of features needed to model and differentiate plant
species [13] and work at various farm scenarios [12].

Recently, developments in deep learning allowed Convolutional Neural Networks
(CNN) to be used for accurate plant species detection and segmentation [16,17]. However,
despite high classification and detection performance, the large computational power
requirement of CNN limits its application in real-time operations [18]. As a result, most
CNN applications in agriculture were primarily employed in non-real-time scenarios,
excluding inferencing speeds in the evaluated parameters among related studies. For
example, a study that surveyed CNN-based weed detection and plant species classification
reported 86–97% and 48–99% precisions, respectively, but data on inferencing speeds were
unreported [19]. Similarly, research on fruit classification and recognition using CNN
showed 77–99% precision, but inferencing speeds were also excluded in the measured
parameters [19–21].

Few studies have evaluated the real-time performance of CNNs for agricultural appli-
cations. For example, in a study by Olsen et al. (2019) [22] on detecting different species of
weeds, the real-time performance of ResNet-50 in an NVIDIA Jetson TX2 was only 5.5 fps
at 95.1% precision. Optimizing their TensorFlow model using TensorRT increased the
inferencing speed to 18.7 fps. The study of Chechliński et al. (2019) [23] using a custom
CNN architecture based on U-Net, MobileNets, DenseNet, and ResNet in a Raspberry Pi
3B+ resulted in only 60.2% precision at 10.0 fps. Finally, Partel et al. (2019) [11] developed
a mobile robotic sprayer that used YOLOv3 running on an NVIDIA 1070TI at 22 fps and
NVIDIA Jetson TX2 at 2.4 fps for real-time crop and weed detection and spraying. The
vision system with 1070TI had 85% precision, while the TX2 vision system had 77% pre-
cision. Furthermore, the system with TX2 missed 43% of the plants because of its slow
inferencing speed. Conversely, the CNN-based sprayer with the faster 1070TI, resulting in
higher inferencing speed, only missed 8% of the plants.

However, the travel velocities of surveyed systems were often unevaluated despite
operating in real-time. Additionally, theoretical approaches to quantify and account for
the effect of travel velocity on the capability of the vision system to sufficiently capture
discrete data and effectively represent a continuous field scenario were often not included
in the design. Other studies, on the contrary, evaluated the effect of travel velocity on
CNN detection performance, but the impact of inferencing speed remained unevaluated.
For instance, in the study of Liu et al. (2021) [24], the deep learning-based variable rate
agrochemical spraying system for targeted weeds control in strawberry crops equipped
with a 1080TI showed increasing missed detections, as travel velocity increases regardless
of CNN architecture (VGG-16, GoogleNet or AlexNet). At 1, 3, and 5 km/h, their system
missed 5–9%, 6–10%, and 13–17% of the targeted weeds, respectively.

The brief review of the developed systems showed that inferencing speed (f ps) and
travel velocity (

⇀
v) of a CNN-based MVS impact its detection rate (rd). rd is the fraction of

the number of detected plants to the total number of plants and was often expressed as the
recall of the CNN model [11,24,25]. However, a theoretical approach to predict the rd of a
CNN-based MVS as affected by both f ps and

⇀
v is yet to be explored.

Current approaches in developing a mechatronic system with CNN-based MVS in-
volve building and testing an actual system to determine rd [11,24,25]. However, building
and testing several CNN-based MVS to determine the effect of

⇀
v and f ps on rd would

be very tedious as the process would involve building the MVS hardware, image dataset
preparation, training multiple CNN models, developing multiple software frameworks to
integrate the different CNN models into the vision system, and testing the MVS. Hence,

Appl. Sci. 2022, 12, 1260 3 of 22

this study also proposes to use computer simulation, in addition to theoretical modeling, in
predicting rd as a function of the mentioned parameters, to reduce the difficulty of selecting
and sizing the components of the CNN-based MVS.

Computer simulations were often used to characterize the effect of design and op-
erating parameters on the overall performance of agricultural robots for field operations.
For example, Villette et al. (2021) [26] demonstrated that computer simulations could be
used to estimate the required sprayer spatial resolution of vision-equipped boom sprayer,
as affected by boom section weeds, nozzle spray patterns, and spatial weed distribu-
tion. Wang et al. (2018) [27] used computer modeling and simulation to identify potential
problems of a robotic apple picking arm and developed an algorithm to improve the perfor-
mance by 81%. Finally, Lehnert et al. (2019) [28] used modeling and computer simulation to
create a novel multi-perspective visual servoing technique to detect the location of occluded
peppers. However, the use of simulation to quantify the effects of f ps,

⇀
v , and camera

configurations on rd of an MVS remain unexplored.
Furthermore, a survey of review articles showed that almost all robotic systems in

agriculture employ fixed configurations and are non-scalable, resulting in less adaptability
to complex agricultural environments [7,8,29,30]. Thus, aside from modeling and sim-
ulation, this study also proposes a module-based design approach to enable reusability
and scalability by minimizing production costs and shortening the lead time of machine
development [31]. A module can be defined as a repeatable and reusable machine compo-
nent that performs partial or full functions and interact with other machine components,
resulting in a new machine with new overall functionalities [32].

Therefore, this study proposes theoretical and simulation approaches in predicting
combinations of f ps,

⇀
v , and camera configuration to prevent missed plant detections and

aid in developing a modular CNN-based MVS. In particular, based on the brief literature
review and identified research gaps, the study specifically aims to make the following
contributions:

• The introduction of a dimensionless parameter, called overlapping rate (r0), which is a

quantitative predictor of rd as a function of
⇀
v and f ps, for a specific camera field of

view (S);
• A set of Python scripts containing equations and algorithms to model a virtual field,

simulate the motion of the virtual camera, and perform plant hill detection;
• An evaluation of rd based on different combinations of published f ps and

⇀
v from

existing systems through the proposed theoretical approach and simulation;
• A detailed analysis through simulation of the concept of increasing S or using several

adjacent synchronous cameras (nvis) to prevent missed detections in MVS with low
f ps at high

⇀
v ; and

• A reusable and scalable CNN-based vision module for plant detection based on Robot
Operating System (ROS) and the Jetson Nano platform.

2. Materials and Methods
2.1. Concept

Cameras for plant detection are typically mounted on a boom of a sprayer or fertilizer
spreader [10,11,13], as illustrated in Figure 1. They are oriented so that their optical axis is
perpendicular to the field and captures top-view images of plants [33].

Appl. Sci. 2022, 12, 1260 4 of 22

Appl. Sci. 2022, 11, x FOR PEER REVIEW 4 of 21

cameras is equal to the length of the side of a field of view of a frame perpendicular to the
direction of travel, denoted as 𝑊, in meters per frame [10].

Figure 1. Camera mounting location and orientation in a boom (not drawn in scale).

During motion, the traverse distance between two consecutive frames of the camera
(𝑑௙), in meters, is equal to the product of travel velocity (𝑣⃑), in m/s, and the time between
the frames (1/𝑓𝑝𝑠), in seconds, as illustrated in Equation (1).

𝑑௙ = 𝑣⃑ ⋅ 1𝑓𝑝𝑠 = 𝑣⃑𝑓𝑝𝑠 (1)

The ratio of 𝑆 to 𝑑௙ is proposed as the overlapping rate (𝑟௢), a dimensionless param-
eter, and is represented by Equation (2). 𝑟௢ = 𝑆 × 𝑓𝑝𝑠𝑣⃑ = 𝑆𝑑௙ (2)

With a single camera, the value of 𝑟௢ describes whether there is an overlap or gap
between frames. Depending on the value of 𝑟௢, certain regions in the traversed field of the
machine, with a single camera configuration, will be uniquely captured, captured in mul-
tiple frames, or completely missed, as shown in Figure 2 and illustrated by the following
cases:
• Case 1: 𝑟௢ = 1. When 𝑆 and 𝑑௙ are equal, the extents of each consecutive processed

frame are side by side. Hence, both gaps and overlaps are absent. This scenario is
ideal since the vehicle velocity and camera frame rate match perfectly.

• Case 2: 𝑟௢ > 1. The vision system accounted for all regions in the traversed field, but
there is an overlap between the frames. The length of the current frame that is already
accounted for by the previous one is 𝑆 − 𝑑௙. The vehicle can run faster if the mechan-
ical capacity allows.

• Case 3: 𝑟௢ < 1. Gaps will occur between each pair of consecutive frames, and the
camera will miss certain plants. The length of each gap is 𝑑௙ − 𝑆. We can define a gap
rate (𝑟௚) as shown in Equation (3) to depict the significance of the gap.

𝑟௚ = 𝑑௙ − 𝑆𝑑௙ = 1 − 𝑟௢ (3)

Figure 1. Camera mounting location and orientation in a boom (not drawn in scale).

Depending on the distance between the camera lens and captured plane, lens proper-
ties, and sensor size, the frame width or height is equivalent to an actual linear distance. For
simplicity, the linear length of the side of a field of view of a frame parallel to the direction
of travel shall be denoted as S, in meters per frame. To provide complete visual coverage of
the traversed width of the boom, the maximum spacing between adjacent cameras is equal
to the length of the side of a field of view of a frame perpendicular to the direction of travel,
denoted as W, in meters per frame [10].

During motion, the traverse distance between two consecutive frames of the camera
(d f), in meters, is equal to the product of travel velocity (

⇀
v), in m/s, and the time between

the frames (1/ f ps), in seconds, as illustrated in Equation (1).

d f =
⇀
v · 1

f ps
=

⇀
v

f ps
(1)

The ratio of S to d f is proposed as the overlapping rate (ro), a dimensionless parameter,
and is represented by Equation (2).

ro =
S× f ps

⇀
v

=
S
d f

(2)

With a single camera, the value of ro describes whether there is an overlap or gap
between frames. Depending on the value of ro, certain regions in the traversed field of
the machine, with a single camera configuration, will be uniquely captured, captured
in multiple frames, or completely missed, as shown in Figure 2 and illustrated by the
following cases:

• Case 1: ro = 1. When S and d f are equal, the extents of each consecutive processed
frame are side by side. Hence, both gaps and overlaps are absent. This scenario is
ideal since the vehicle velocity and camera frame rate match perfectly.

• Case 2: ro > 1. The vision system accounted for all regions in the traversed field,
but there is an overlap between the frames. The length of the current frame that is
already accounted for by the previous one is S− d f . The vehicle can run faster if the
mechanical capacity allows.

• Case 3: ro < 1. Gaps will occur between each pair of consecutive frames, and the
camera will miss certain plants. The length of each gap is d f − S. We can define a gap
rate (rg) as shown in Equation (3) to depict the significance of the gap.

Appl. Sci. 2022, 12, 1260 5 of 22

rg =
d f − S

d f
= 1− ro (3)Appl. Sci. 2022, 11, x FOR PEER REVIEW 5 of 21

(a)

(b)

(c)

Figure 2. Relative positions of two consecutive processed frames of a vision system: (a) 𝑟௢ = 1 since 𝑑௙ = 𝑆, resulting in frames with unique bounded regions; (b) 𝑟௢ > 1 since 𝑑௙ < 𝑆, resulting in over-
lap region (b); and (c) 𝑟௢ < 1 since 𝑑௙ > 𝑆, resulting in missed region.

2.1.1. Theoretical Detection Rate
The theoretical or maximum detection rate (𝑟ௗ,௧௛) can be defined as min ሺ1, 𝑟଴), shown

in Equation (4). The 𝑟ௗ,௧௛ was also a dimensionless parameter.

Figure 2. Relative positions of two consecutive processed frames of a vision system: (a) ro = 1 since
d f = S, resulting in frames with unique bounded regions; (b) ro > 1 since d f < S, resulting in overlap
region (b); and (c) ro < 1 since d f > S, resulting in missed region.

Appl. Sci. 2022, 12, 1260 6 of 22

2.1.1. Theoretical Detection Rate

The theoretical or maximum detection rate (rd,th) can be defined as min(1, r0), shown
in Equation (4). The rd,th was also a dimensionless parameter.

rd,th =

{
1, r0 ≥ 1
ro, ro < 1

(4)

2.1.2. Maximizing Travel Velocity

Setting ro = 1 in Equation (2) resulted in Equation (5), which is similar to the equation
used by Esau et al. (2018) [10] in calculating the maximum travel velocity of a sprayer.
However, Equation (5) only describes the maximum forward velocity

⇀
v max that a vision-

equipped robot can operate to prevent gaps while traversing the field as a function of S
and f ps.

⇀
v max = S× f ps (5)

2.1.3. Increasing
⇀
v max

A consequence of Equation (5) was that increasing the length of the frame S at a
constant f ps shall increase

⇀
v max. Hence, raising the camera mounting height or using

multiple adjacent synchronous cameras along a single plant row can increase the effective
S. This situation, then, shall increase

⇀
v max without the need for powerful hardware for

a faster inferencing speed. When ro < 1, the number of vision modules (nvis) to prevent
missed detection can be calculated using Equation (6). Since ro represents the fraction of
the field that can be covered by a single camera, the inverse of ro represents the number
of adjacent cameras that will result in 100% field coverage. The calculated inverse was
rounded up to the following number, as cameras are discrete elements.

nvis =

[
1
ro

]
(6)

The effective actual ground distance (S e f f), in meters, captured side-by-side by
identical and synchronous vision modules without gaps and overlaps is equal to the
product of nvis and S, as shown in Equation (7). This configuration will then allow the use
of less powerful devices while operating at the required

⇀
v of an agricultural field operation

such as spraying, as illustrated in Figure 3.

S e f f = S× nvis (7)

Appl. Sci. 2022, 12, 1260 7 of 22

Appl. Sci. 2022, 11, x FOR PEER REVIEW 6 of 21

𝑟ௗ,௧௛ = ൜1, 𝑟଴ ≥ 1𝑟௢, 𝑟௢ < 1 (4)

2.1.2. Maximizing Travel Velocity
Setting 𝑟௢ = 1 in Equation (2) resulted in Equation (5), which is similar to the equa-

tion used by Esau et al. (2018) [10] in calculating the maximum travel velocity of a sprayer.
However, Equation (5) only describes the maximum forward velocity 𝑣⃑ ௠௔௫ that a vision-
equipped robot can operate to prevent gaps while traversing the field as a function of 𝑆
and 𝑓𝑝𝑠. 𝑣⃑ ௠௔௫ = 𝑆 × 𝑓𝑝𝑠 (5)

2.1.3. Increasing 𝑣⃑ ௠௔௫
A consequence of Equation (5) was that increasing the length of the frame 𝑆 at a

constant 𝑓𝑝𝑠 shall increase 𝑣⃑ ௠௔௫. Hence, raising the camera mounting height or using
multiple adjacent synchronous cameras along a single plant row can increase the effective 𝑆. This situation, then, shall increase 𝑣⃑ ௠௔௫ without the need for powerful hardware for a
faster inferencing speed. When 𝑟௢ < 1, the number of vision modules (𝑛௩௜௦) to prevent
missed detection can be calculated using Equation (6). Since 𝑟௢ represents the fraction of
the field that can be covered by a single camera, the inverse of 𝑟௢ represents the number
of adjacent cameras that will result in 100% field coverage. The calculated inverse was
rounded up to the following number, as cameras are discrete elements. 𝑛௩௜௦ = ඄ 1𝑟௢ඈ (6)

The effective actual ground distance (𝑆 ௘௙௙), in meters, captured side-by-side by iden-
tical and synchronous vision modules without gaps and overlaps is equal to the product
of 𝑛௩௜௦ and 𝑆, as shown in Equation (7). This configuration will then allow the use of less
powerful devices while operating at the required 𝑣⃑ of an agricultural field operation such
as spraying, as illustrated in Figure 3. 𝑆 ௘௙௙ = 𝑆 × 𝑛௩௜௦ (7)

Figure 3. Multiple adjacent cameras for plant detection at 𝑛௩௜௦ = 2. Thus, 𝑆 ௘௙௙ = 2𝑆. Figure 3. Multiple adjacent cameras for plant detection at nvis = 2. Thus, S e f f = 2S.

2.2. Field Map Modeling

A virtual field was prepared to test the concepts that were presented. A 1000 m field
length (dl) with crops planted in hills at 0.2 m hill spacings (dh) was used. The number of
hills (nh) and plant hill locations (Xi), in meters, in the entire field length were calculated
using Equations (8) and (9), respectively. A section of the virtual field is presented in
Figure 4.

nh =

[
dl
dh

]
(8)

Xi = i× dh; i ∈ 1, 2, . . . nh (9)

Appl. Sci. 2022, 11, x FOR PEER REVIEW 7 of 21

2.2. Field Map Modeling
A virtual field was prepared to test the concepts that were presented. A 1000 m field

length (𝑑௟) with crops planted in hills at 0.2 m hill spacings (𝑑௛) was used. The number of
hills (𝑛௛) and plant hill locations (𝑋௜), in meters, in the entire field length were calculated
using Equations (8) and (9), respectively. A section of the virtual field is presented in Fig-
ure 4.

𝑛௛ = ඌ𝑑௟𝑑௛ඐ (8)

𝑋௜ = 𝑖 × 𝑑௛; 𝑖 ∈ 1,2, . . . 𝑛௛ (9)

Figure 4. Virtual field with field map and motion modeling parameters. The frame at k = 0 represents
the frame just outside the virtual field. The frame at k = 1 represents the first frame that entered the
virtual field.

2.3. Motion Modeling
The robot was assumed to move from right to left of the field during simulation, as

shown in Figure 4. Therefore, the right border of the virtual area was the assumed field
origin. The total number of frames (𝐾) throughout the motion of the vision system then
becomes the number of 𝑑௙-sized steps to completely traverse 𝑑௟, as shown Equation (10).

𝐾 = 𝑑௟𝑑௙ (10)

The elapsed time after several frame steps (𝑡௞), in seconds, was calculated by dividing
the number of elapsed frames (𝑘) by the inferencing speed, as shown in Equation (11). 𝑡௞
was then used to calculate the distance of the left (𝑑௢,௞) and right (𝑑௦,௞) borders of the
virtual camera frame with respect to the field origin, in meters, using kinematic equations
as shown in Equations (12) and (13), respectively. In Equation (13), 𝑆 was subtracted from 𝑑௢,௞ due to the assumed right to left motion of the camera. 𝑘 ∈ 0,1,2, . . . 𝐾

𝑡௞ = 𝑘 × 1𝑓𝑝𝑠 = 𝑘𝑓𝑝𝑠 (11)

Figure 4. Virtual field with field map and motion modeling parameters. The frame at k = 0 represents
the frame just outside the virtual field. The frame at k = 1 represents the first frame that entered the
virtual field.

2.3. Motion Modeling

The robot was assumed to move from right to left of the field during simulation, as
shown in Figure 4. Therefore, the right border of the virtual area was the assumed field

Appl. Sci. 2022, 12, 1260 8 of 22

origin. The total number of frames (K) throughout the motion of the vision system then
becomes the number of d f -sized steps to completely traverse dl , as shown Equation (10).

K =
dl
d f

(10)

The elapsed time after several frame steps (tk), in seconds, was calculated by dividing
the number of elapsed frames (k) by the inferencing speed, as shown in Equation (11).
tk was then used to calculate the distance of the left (do,k) and right (ds,k) borders of the
virtual camera frame with respect to the field origin, in meters, using kinematic equations
as shown in Equations (12) and (13), respectively. In Equation (13), S was subtracted from
do,k due to the assumed right to left motion of the camera.

k ∈ 0, 1, 2, . . . K

tk = k× 1
f ps

=
k

f ps
(11)

do,k =
→
v × tk (12)

ds,k = do, k − S (13)

2.4. Detection Algorithm

The simulation was implemented using two Python scripts, which were made publicly
available in GitHub. The first script, called “settings.py”, was a library that defined the
“Settings” object class. This object contained the properties of the virtual field, kinematic
motion, and camera parameters for the detection. The second script, “vision-module.py”,
was a ROS node that published only the horizontal centroid coordinates of the plant hills
that would be within the virtual camera frame. The central aspect of ROS was implementing
a distributed architecture that allows synchronous or asynchronous communication of
nodes [34]. Hence, the ROS software framework was used so that the written simulation
scripts for the vision system can be used in simulating the performance and optimizing
the code of a precision spot sprayer that was also being developed as part of the future
implementation of this study.

When “vision-module.py” was executed, it initially loaded the “Settings” class and
fetched the required parameters, including Xi, from “settings.py”. The following algorithm
was then implemented for the detection:

1. Create an empty NumPy vector of detected hills.
2. For each k frame in K total frames:

a. tk, do,k and ds,k were calculated.
b. For each i within the number of hills nh:

i. All Xi within the left border, do, k, and the right border, ds,k, were plant
hills within the camera frame

ii. Append detected hill indices to list

3. The number of detected hills (nd) was then equal to the number of unique detected
hill indices in the list.

In step 1, an empty vector was needed to store the indices of the detected plant hills.
In step 2, each k frame represented a camera position as the vision system traversed along
the field. Step 2a calculated the elapsed time and the left and right border locations of the
frame as described in Section 2.3. The specific detection method was performed in Step 2b,
which compared the current distance locations of the left and right bounds of the camera
frame to the plant hill locations. The plant hill indices that satisfied Step 2b-i were then
appended to the NumPy vector. The duplicates were filtered from the NumPy vector in
Step 3, and the remaining elements were counted and stored in the integer variable nd.

Appl. Sci. 2022, 12, 1260 9 of 22

Finally, the simulated detection rate (rd,sim) of the vision system was then the quotient of nd
and nh as shown in Equation (14).

rd,sim =
nd
nh

(14)

2.5. Experimental Design

A laptop (Lenovo ThinkPad T15 g Gen 1) with Intel Core i7-10750H, 16 GB DDR4
RAM, and NVIDIA RTX 2080 Super was used in the computer simulation. The script
was implemented using Python 2.7 programming language and ROS Melodic Morenia in
Ubuntu 18.04 LTS operating system.

The simulation was performed at S = 0.5 m, based on the camera configuration of
Chechliński et al. (2019) [23]. Sensitivity analysis was performed at dl values of 1, 10,
100, 1000, and 10,000 m. The literature review showed that 20,000 m was used in the
study of Villette et al., 2021 [26]. However, the basis for the dl used in their study was not
explained. Hence, sensitivity analysis was performed in this study to establish the sufficient
dl that would not affect rd,th and rd,sim. The resulting values of rd,sim were compared to
rd,th. Inferencing speed of 2.4 fps and travel velocity of 2.5 m/s were used for the sensitivity
analysis to have an ro < 1 at S = 0.5 m. If a faster inferencing speed or slower travel was
used, ro could be equal to or greater than 1. This result will fall into Case 1 or 2 and could
not be used for sensitivity analysis.

The model was then simulated at different values of
⇀
v and f ps, as shown in Table 1 to

estimate the detection performance of combinations of CNN model, hardware, and
⇀
v . Forward

walking speeds using a knapsack sprayer typically ranged from 0.1 to 1.78 m/s [35–37]. On
the other hand, the travel velocities of boom sprayers ranged from 0.7 to 2.5 m/s [38–41]. Solid
fertilizer application using a tractor-mounted spreader operated at 0.89 to 1.68 m/s [13,42].
Finally, a mechanical weeder with rotating mechanisms worked at 0.28–1.67 m/s [43,44]. The
literature review showed that 0.1 m/s was the slowest [41] and 2.5 m/s was the highest [40]
forward velocities found. The mid-point velocity of 1.3 m/s estimated the typical walking speed
using knapsack sprayers [35–37] and forward travel velocities of boom sprayers and fertilizer
applicators [38–41].

Table 1. Complete factorial design to determine the detection rate of a CNN-based vision system for
agricultural field operation using simulation.

Levels
Parameter

⇀
v , m/s fps

Low (−1) 0.1 2.4
Standard (0) 1.3 12.2

High (+1) 2.5 22.0

In addition, 2.4 and 22 fps were the inferencing speeds of YOLOv3 running on an
NVIDIA TX2 embedded system and a laptop with NVIDIA 1070TI discrete GPU as de-
scribed in the study of Partel et al. (2019) [11]. Finally, 12.2 fps approximated the inferencing
time of a custom CNN architecture or SSD MobileNetV1 CNN model optimized in TensorRT
and implemented an embedded system [22,23].

The effect of increasing S using multiple camera modules in preventing missed detec-
tion was also performed on treatments falling under Case 3.

2.6. Vision Module Development

The development of the vision module was divided into three phases: (1) hardware
and software development; (2) dataset preparation and training of the CNN model; and (3)
simulation and testing.

Appl. Sci. 2022, 12, 1260 10 of 22

2.6.1. Hardware and Software Development

Table 2 summarizes the list and function of the hardware components used to develop
the vision module. NVIDIA Jetson Nano with 4 GB RAM was used to perform inferencing
on 1280 × 720 at 30 fps video from a USB webcam (Logitech StreamCam Plus). Powering
the whole system is a power adapter that outputs 5VDC at 4A.

Table 2. Summary of vision module hardware.

Hardware Model Function

Webcam Logitech StreamCam Plus Realtime video capture
Vision Compute Unit NVIDIA Jetson Nano 4 GB Image inferencing
Communication Bus USB 3.0 Communication with USB devices

Power Adapter 5VDC 4A Power Adapter Supplies power to the vision compute unit

Table 3 summarizes the software packages used to develop the software framework
of the vision module. The software for the vision module was written in Python 2.7. The
detectnet object class of Jetson Inference Application Programming Interface (API) was used
to develop the major components of the software framework. Detectnet object facilitated
connecting to the webcam using gstream, optimizing the PyTorch-based SSD MobileNetV1
model into TensorRT, loading the model, performing inferences on the video stream from
the webcam, image processing for drawing bounding boxes onto the processed frame,
and displaying the frame. OpenCV is an open-source computer vision library focused on
real-time applications. It was used to display the calculated speed of the vision module and
convert the detectnet image format from red–green–blue–alpha (RGBA) to blue–green–red
(BGR), which was the format needed by ROS for image transmission.

Table 3. Summary of vision module software.

Software Package Function

NVIDIA Jetson Inference API Facilitates camera connection, training of object detection model, converting to
TensorRT, loading of object detection model, inferencing, and image processing

Python General programming language to implement the algorithms
OpenCV Image processing

Robot Operating System (ROS) Image data, plant coordinate, and processing time transmission
Ubuntu 18.04 ARM The operating system for Jetson Nano and hosts the other software packages

To enable modularity, the software framework, as illustrated in Figure 5, was also
implemented using ROS version Melodic Morenia, which was the version that was com-
patible with Ubuntu 18.04. A node is a virtual representation of a component that can send
or receive messages directly from other nodes. The vision module or node required two
inputs: (1) RGB video stream from a video capture device and (2) TensorRT-optimized SSD
MobileNetV1 object detection model. It calculates and outputs four parameters, namely:
(1) weed coordinates, (2) crop coordinates, (3) processed images, and (4) total delay time.
Each parameter was published into its respective topics. Table 4 summarizes the datatype
and the function of these outputs.

Appl. Sci. 2022, 12, 1260 11 of 22

1

Figure 5. Software framework of the vision module.

Table 4. Output parameters of the vision module with their description.

Parameter Datatype Description

Weed coordinates, px Integer Array of integers representing the x-coordinate of all detected weed per frame
Crop coordinates, px Integer Array of integers representing the x-coordinate of all detected crops per frame

Images CvBridge Image data with detections

Time delay, s Float Total delay time of the vision module as a result of inferencing, image
processing, calculation, and data transmission

2.6.2. Dataset Preparation and Training of the CNN Model

Using the Jetson Inference library, a CNN model for plant detection was trained using
SSD MobileNetV1 object detection architecture and PyTorch machine learning framework.
A total of 2000 sample images of artificial potted plants at 1280 × 720 composed of 50%
weeds and 50% plants were prepared. For CNN model training and validation, 80% and
20% of the datasets were used, respectively. A batch size of 4, base learning rate of 0.001,
and momentum of 0.90 were used to train the model for 100 epochs (5000 iterations).

2.6.3. Testing and Simulation

The performance requirement for the vision module was to avoid missed detections
for spraying operations at walking speeds, which was 0.1 m/s at minimum [35–37]. The
Jetson Nano and webcam were mounted at a height where S was equal to 0.79 m, as shown
in Figure 6. S was determined so that the top projections of the potted plants were within
the camera frame, and the camera and plants would not collide during motion. A conveyor
belt equipped with a variable speed motor was used to reproduce the relative travel velocity
of the vision system at 0.1, 0.2, and 0.3 m/s. A maximum of 0.3 m/s was used, since beyond
this conveyor speed consistent dh at 0.2 m was difficult to achieve, even with three people
performing the manual loading and unloading, as the potted artificial plants were traveling
too fast.

A total of 60 potted plants were loaded onto the conveyor for each conveyor speed
setting. Detection was carried out at a minimum conference threshold of 0.5. Detected
and correctly classified plants were considered true positives (TP), while detected and
incorrectly classified plants were categorized as false positives (FP). Missed detections were
classified as false negatives (FN). The precision (pactual) and recall (ractual) of the vision
module were then determined using Equations (15) and (16), respectively.

pactual =
TP

TP + FP
(15)

Appl. Sci. 2022, 12, 1260 12 of 22

ractual =
TP

TP + FN
(16)

Appl. Sci. 2022, 11, x FOR PEER REVIEW 11 of 21

2.6.2. Dataset Preparation and Training of the CNN Model
Using the Jetson Inference library, a CNN model for plant detection was trained us-

ing SSD MobileNetV2 object detection architecture and PyTorch machine learning frame-
work. A total of 2000 sample images of artificial potted plants at 1280 × 720 composed of
50% weeds and 50% plants were prepared. For CNN model training and validation, 80%
and 20% of the datasets were used, respectively. A batch size of 4, base learning rate of
0.001, and momentum of 0.90 were used to train the model for 100 epochs (5000 iterations).

2.6.3. Testing and Simulation
The performance requirement for the vision module was to avoid missed detections

for spraying operations at walking speeds, which was 0.1 m/s at minimum [35–37]. The
Jetson Nano and webcam were mounted at a height where 𝑆 was equal to 0.79 m, as
shown in Figure 6. 𝑆 was determined so that the top projections of the potted plants were
within the camera frame, and the camera and plants would not collide during motion. A
conveyor belt equipped with a variable speed motor was used to reproduce the relative
travel velocity of the vision system at 0.1, 0.2, and 0.3 m/s. A maximum of 0.3 m/s was
used, since beyond this conveyor speed consistent 𝑑௛ at 0.2 m was difficult to achieve,
even with three people performing the manual loading and unloading, as the potted arti-
ficial plants were traveling too fast.

Figure 6. Laboratory setup composed of Jetson Nano 4 GB, Logitech StreamCam Plus, variable and
speed conveyor belt with artificial potted plants.

A total of 60 potted plants were loaded onto the conveyor for each conveyor speed
setting. Detection was carried out at a minimum conference threshold of 0.5. Detected and
correctly classified plants were considered true positives (TP), while detected and incor-
rectly classified plants were categorized as false positives (FP). Missed detections were
classified as false negatives (FN). The precision (𝑝௔௖௧௨௔௟) and recall (𝑟௔௖௧௨௔௟) of the vision
module were then determined using Equations (15) and (16), respectively.

Figure 6. Laboratory setup composed of Jetson Nano 4GB, Logitech StreamCam Plus, and variable
speed conveyor belt with artificial potted plants.

3. Results and Discussion

The sensitivity of rd,th and rd,sim to the total traversed distance was first determined
to establish the dl that was used in the experimental design. The influence of

⇀
v and f ps

at specific S on rd,th and rd,sim were then compared and analyzed. Finally, the results of
performance testing the vision module were compared to theoretical and simulation results.

3.1. Sensitivity Analysis

As illustrated in Figure 7, the sensitivity analysis results showed that rd,th and rd,sim con-
verged at 10 m traversed distance. The 20% difference of rd,th from rd,sim can be attributed to
the different variables considered to determine each parameter. rd,th used inferencing speed,
travel velocity, and capture width to theoretically calculate the gaps between consecutive
processed frames related to the detection rate, as illustrated in Section 2.1.

On the other hand, rd,sim determined the detection rate based on the number of unique
plants within the processed frames, as influenced by traversed distance, hill spacing,
inferencing speed, travel velocity, and capture width, as described in Section 2.2, Section 2.3,
Section 2.4. Results showed that simulation better approximated the detection rate than
theoretical approaches at less than 10 m traversed distance, 0.2 m hill spacing, 2.5 m/s
travel velocity, 2.4 fps, and 0.5 m frame capture width.

These results infer that at very short distances, rd,sim approximates the detection rate
more accurately than rd,sim. However, for long traversed distances, the influence of hill
spacing on the detection rate was no longer significant and rd,th can simply be used to
calculate the detection rate.

Appl. Sci. 2022, 12, 1260 13 of 22

Appl. Sci. 2022, 11, x FOR PEER REVIEW 12 of 21

𝑝௔௖௧௨௔௟ = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (15)

𝑟௔௖௧௨௔௟ = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (16)

3. Results and Discussion
The sensitivity of 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠ to the total traversed distance was first determined

to establish the 𝑑௟ that was used in the experimental design. The influence of 𝑣⃑ and 𝑓𝑝𝑠
at specific 𝑆 on 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠ were then compared and analyzed. Finally, the results of
performance testing the vision module were compared to theoretical and simulation re-
sults.

3.1. Sensitivity Analysis
As illustrated in Figure 7, the sensitivity analysis results showed that 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠

converged at 10 m traversed distance. The 20% difference of 𝑟ௗ,௧௛ from 𝑟ௗ,௦௜௠ can be at-
tributed to the different variables considered to determine each parameter. 𝑟ௗ,௧௛ used in-
ferencing speed, travel velocity, and capture width to theoretically calculate the gaps be-
tween consecutive processed frames related to the detection rate, as illustrated in Section
2.1.

Figure 7. Theoretical (solid) and simulated (broken-line) detection rates at 1, 10, 100, 1000, and 10,000
m field lengths at 0.2 m hill spacing, 2. 5 m/s travel velocity, 2.4 fps, and 0.5 m frame capture width.

On the other hand, 𝑟ௗ,௦௜௠ determined the detection rate based on the number of
unique plants within the processed frames, as influenced by traversed distance, hill spac-
ing, inferencing speed, travel velocity, and capture width, as described in Sections 2.2–2.4.
Results showed that simulation better approximated the detection rate than theoretical
approaches at less than 10 m traversed distance, 0.2 m hill spacing, 2.5 m/s travel velocity,
2.4 fps, and 0.5 m frame capture width.

These results infer that at very short distances, 𝑟ௗ,௦௜௠ approximates the detection rate
more accurately than 𝑟ௗ,௦௜௠. However, for long traversed distances, the influence of hill
spacing on the detection rate was no longer significant and 𝑟ௗ,௧௛ can simply be used to
calculate the detection rate.

r_d: sim

r_d: th

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

De
te

ct
io

n
Ra

te

Field Length, m

Figure 7. Theoretical (solid) and simulated (broken-line) detection rates at 1, 10, 100, 1000, and 10,000 m
field lengths at 0.2 m hill spacing, 2.5 m/s travel velocity, 2.4 fps, and 0.5 m frame capture width.

3.2. Effects of
⇀
v and f ps

Table 5 summarizes the theoretical and simulation results on the combinations of
⇀
v

and fps at S equal to 0.5-m. Comparing the rd,th to rd,sim for any combinations of the tested
parameters showed that detection rates were equal. Results also showed that there were no
missed detections at any

⇀
v when the inferencing speeds were at 12.2 and 22 fps (Case 2), as

illustrated in Figures 8 and 9. These results infer that one-stage object detection models, such
as YOLO and SSD, running on a discrete GPU such as 1070TI, have sufficient inferencing
speed to avoid detection gaps in typical ranges of travel velocities for agricultural field
operations. The result was also comparable to the 92% precision of the CNN-based MVS
with 22 fps inferencing speed in the study of Partel et al. (2019) [11]. Therefore, these results
infer that using a one-stage CNN model such as YOLOv3 on a laptop with NVIDIA 1070TI
GPU or better can provide sufficient inferencing speed to avoid gaps in different field
operations. However, as mentioned in Section 1, the study did not report the travel velocity
and field of view length of their setup. Thus, only an estimated performance comparison
can be made.

Table 5. Theoretical and simulation performance of a vision system for plant detection at S = 0.5 m
at three-levels of travel velocity (

⇀
v) and inferencing speed (f ps).

Treatment No. ⇀
v , m/s fps df, m/Frame ro Case rg rd,th rd,sim

1 0.1 2.4 0.0417 12.00 2 0.00 1.00 1.00
2 0.1 12.2 0.0082 61.00 2 0.00 1.00 1.00
3 0.1 22 0.0045 110.00 2 0.00 1.00 1.00
4 1.3 2.4 0.5417 0.92 3 0.08 0.92 0.92
5 1.3 12.2 0.1066 4.69 2 0.00 1.00 1.00
6 1.3 22 0.0591 8.46 2 0.00 1.00 1.00
7 2.5 2.4 1.0417 0.48 3 0.52 0.48 0.48
8 2.5 12.2 0.2049 2.44 2 0.00 1.00 1.00
9 2.5 22 0.1136 4.40 2 0.00 1.00 1.00

Appl. Sci. 2022, 12, 1260 14 of 22

Appl. Sci. 2022, 11, x FOR PEER REVIEW 13 of 21

3.2. Effects of 𝑣⃑ and 𝑓𝑝𝑠
Table 5 summarizes the theoretical and simulation results on the combinations of 𝑣⃑

and fps at 𝑆 equal to 0.5-m. Comparing the 𝑟ௗ,௧௛ to 𝑟ௗ,௦௜௠ for any combinations of the
tested parameters showed that detection rates were equal. Results also showed that there
were no missed detections at any 𝑣⃑ when the inferencing speeds were at 12.2 and 22 fps
(Case 2), as illustrated in Figures 8 and 9. These results infer that one-stage object detection
models, such as YOLO and SSD, running on a discrete GPU such as 1070TI, have sufficient
inferencing speed to avoid detection gaps in typical ranges of travel velocities for agricul-
tural field operations. The result was also comparable to the 92% precision of the CNN-
based MVS with 22 fps inferencing speed in the study of Partel et al. (2019) [11]. Therefore,
these results infer that using a one-stage CNN model such as YOLOv3 on a laptop with
NVIDIA 1070TI GPU or better can provide sufficient inferencing speed to avoid gaps in
different field operations. However, as mentioned in Section 1, the study did not report
the travel velocity and field of view length of their setup. Thus, only an estimated perfor-
mance comparison can be made.

Table 5. Theoretical and simulation performance of a vision system for plant detection at 𝑆 = 0.5 m
at three-levels of travel velocity (𝑣⃑) and inferencing speed (𝑓𝑝𝑠).

Treatment
No. 𝒗ሬሬ⃑ , m/s 𝒇𝒑𝒔

𝒅𝒇,
m/Frame

𝒓𝒐 Case 𝐫𝐠 𝒓𝒅,𝒕𝒉 𝒓𝒅,𝒔𝒊𝒎

1 0.1 2.4 0.0417 12.00 2 0.00 1.00 1.00
2 0.1 12.2 0.0082 61.00 2 0.00 1.00 1.00
3 0.1 22 0.0045 110.00 2 0.00 1.00 1.00
4 1.3 2.4 0.5417 0.92 3 0.08 0.92 0.92
5 1.3 12.2 0.1066 4.69 2 0.00 1.00 1.00
6 1.3 22 0.0591 8.46 2 0.00 1.00 1.00
7 2.5 2.4 1.0417 0.48 3 0.52 0.48 0.48
8 2.5 12.2 0.2049 2.44 2 0.00 1.00 1.00
9 2.5 22 0.1136 4.40 2 0.00 1.00 1.00

Figure 8. Simulated plant hill detection rates of the vision system moving at 0.1, 1.3, and 2.5 m/s at
different inferencing speeds (𝑓𝑝𝑠).

v: 0.1 m/s

v: 1.3 m/s

v: 2.5 m/s

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24

De
te

ct
io

n
Ra

te

fps

Figure 8. Simulated plant hill detection rates of the vision system moving at 0.1, 1.3, and 2.5 m/s at
different inferencing speeds (f ps).

Appl. Sci. 2022, 11, x FOR PEER REVIEW 14 of 21

Figure 9. Simulated plant hill detection rates of the vision system moving at 2.4, 12.2, and 22 fps at
different travel velocities.

The result of this study also agrees with the results of other studies with known 𝑆, 𝑣⃑, and 𝑓𝑝𝑠. In the study of Chechliński et al. (2019) [23], their CNN-based-vision spraying
system had 𝑆 = 0.55 m, 𝑣⃑ = 1.11 m/s, and 𝑓𝑝𝑠 = 10.0. Applying these values to Equa-
tion (2) also yields 𝑟௢ > 1 (Case 2), which correctly predicted their results of full-field cov-
erage. In the study of Esau et al. (2018) [10], their vision-based spraying system had 𝑆 =0.28 m, 𝑣⃑ = 1.77 m/s, and 𝑓𝑝𝑠 = 6.67 and also falls under Case 2. Similarly, the vision-
based robotic fertilizer application in the study of Chattha et al. (2018) [13] had a 𝑆 =0.31 m, 𝑣⃑ = 0.89 m/s, and 𝑓𝑝𝑠 = 4.76. Again, calculating r୭ yielded Case 2, which also
agrees with their results.

At 2.4 fps, the simulated MVS failed to detect some plant hills when 𝑣⃑ was 1.3 (Treat-
ment 4) or 2.4 m/s (Treatment 7). In contrast, missed detections were absent at 0.1 m/s
(Treatment 1). As mentioned in Section 2.5, treatments 1, 4, and 7 represent typical infer-
encing speeds of CNN models, such as YOLOv3 running in an embedded system, such as
NVIDIA TX2 [11]. From these results, it can be inferred that unless CNN object detection
models were optimized, such as illustrated in previous studies [23,45], MVS with embed-
ded systems shall only be applicable for agricultural field operations at walking speeds.

Figure 10 illustrates the detected hills per camera frame along the first 10 m traversed
distance of treatments simulated at 2.4 fps (Treatments 1, 4, and 7). From Figure 10, three
information can be obtained: (1) absence of vertical gaps between consecutive frames; (2)
horizontal overlaps among consecutive frames; and (3) detection pattern. In Figure 10a,
the absence of vertical gaps at 0.1 m/s detections infers that all the hills were detected as
the vision moved along the field length. The horizontal overlaps among consecutive
frames also illustrate that a plant hill was captured by more than one processed frame.
Finally, a detection pattern was observed to repeat every 24 consecutive frames or approx-
imately every 1 m length. The length of the pattern was calculated by multiplying the
number of frames to complete a cycle and 𝑑௙.

In contrast, the vertical gaps in some consecutive frames at 1.3 m/s, shown in Figure
10b, illustrated the missed detections. Horizontal overlaps were also absent. Hence, the
detected plant hills were only represented in the frame once. The vision module traveled
too fast and processed the captured frame too slowly at the set capture width, as demon-
strated by the detection pattern of one missed plant hill every seven consecutive frames
or approximately every 3.8 m traversed distance.

fps: 2.4

fps: 12.2

fps: 22

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2 2.4 2.8

De
te

ct
io

n
Ra

te

Travel Velocity, m/s

Figure 9. Simulated plant hill detection rates of the vision system moving at 2.4, 12.2, and 22 fps at
different travel velocities.

The result of this study also agrees with the results of other studies with known
S,

⇀
v , and f ps. In the study of Chechliński et al. (2019) [23], their CNN-based-vision

spraying system had S = 0.55 m,
⇀
v = 1.11 m/s, and f ps = 10.0. Applying these values to

Equation (2) also yields ro > 1 (Case 2), which correctly predicted their results of full-field
coverage. In the study of Esau et al. (2018) [10], their vision-based spraying system had
S = 0.28 m,

⇀
v = 1.77 m/s, and f ps = 6.67 and also falls under Case 2. Similarly, the

vision-based robotic fertilizer application in the study of Chattha et al. (2018) [13] had a
S = 0.31 m,

⇀
v = 0.89 m/s, and f ps = 4.76. Again, calculating ro yielded Case 2, which

also agrees with their results.
At 2.4 fps, the simulated MVS failed to detect some plant hills when

⇀
v was 1.3 (Treat-

ment 4) or 2.4 m/s (Treatment 7). In contrast, missed detections were absent at 0.1 m/s
(Treatment 1). As mentioned in Section 2.5, treatments 1, 4, and 7 represent typical infer-
encing speeds of CNN models, such as YOLOv3 running in an embedded system, such
as NVIDIA TX2 [11]. From these results, it can be inferred that unless CNN object de-

Appl. Sci. 2022, 12, 1260 15 of 22

tection models were optimized, such as illustrated in previous studies [23,45], MVS with
embedded systems shall only be applicable for agricultural field operations at walking
speeds.

Figure 10 illustrates the detected hills per camera frame along the first 10 m traversed
distance of treatments simulated at 2.4 fps (Treatments 1, 4, and 7). From Figure 10, three
information can be obtained: (1) absence of vertical gaps between consecutive frames;
(2) horizontal overlaps among consecutive frames; and (3) detection pattern. In Figure 10a,
the absence of vertical gaps at 0.1 m/s detections infers that all the hills were detected as
the vision moved along the field length. The horizontal overlaps among consecutive frames
also illustrate that a plant hill was captured by more than one processed frame. Finally, a
detection pattern was observed to repeat every 24 consecutive frames or approximately
every 1 m length. The length of the pattern was calculated by multiplying the number of
frames to complete a cycle and d f .

In contrast, the vertical gaps in some consecutive frames at 1.3 m/s, shown in
Figure 10b, illustrated the missed detections. Horizontal overlaps were also absent. Hence,
the detected plant hills were only represented in the frame once. The vision module trav-
eled too fast and processed the captured frame too slowly at the set capture width, as
demonstrated by the detection pattern of one missed plant hill every seven consecutive
frames or approximately every 3.8 m traversed distance.

Similar results were also observed at 2.5 m/s travel velocity, as shown in Figure 10c.
However, the vertical gaps were more extensive than Figure 10b due to faster travel speed.
Observing the detection pattern showed that 14 plant hills were being undetected by the
vision system every five frames or approximately every 5.21 m traversed distance. This
pattern that forms every 5.21 m further explains the difference in the rd,th and rd,sim in the
sensitivity analysis in Section 3.1, when the traversed distance was only 1 m. A complete
detection pattern was already formed when the distance was more than 10 m, resulting in
better detection rate estimates.

From these results, two vital insights can be drawn. First, at ro < 1, rd,th shall have a
margin of error when the length of the detection pattern is less than the traversed distance.
Second, concerning future studies, object tracking algorithms, such as Euclidean-distance-
based tracking [46], that requires objects should be present in at least two frames, would be
not applicable when ro ≤ 1. Hence, the importance that ro > 1 in MVS designs is further
emphasized.

Appl. Sci. 2022, 12, 1260 16 of 22
Appl. Sci. 2022, 11, x FOR PEER REVIEW 15 of 21

(a)

(b)

(c)

Figure 10. Range of plant hill indices that were detected per frame along the first 10 m of the simu-
lated field at 2.4 fps, 0.5 m capture width, 0.2 m hill spacing at (a) 0.1 m/s, (b) 1.3 m/s, and (c) 2.5 m/s.
Blue broken lines enclose a detection pattern, while broken red lines specify the missed plant hills.

0

5

10

15

20

25

30

35

40

45

50

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231

Hi
ll

In
de

x

Frame Index

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hi
ll

In
de

x

Frame Index

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

Hi
ll

In
de

x

Frame Index

Figure 10. Range of plant hill indices that were detected per frame along the first 10 m of the
simulated field at 2.4 fps, 0.5 m capture width, 0.2 m hill spacing at (a) 0.1 m/s, (b) 1.3 m/s, and (c)
2.5 m/s. Blue broken lines enclose a detection pattern, while broken red lines specify the missed
plant hills.

Appl. Sci. 2022, 12, 1260 17 of 22

3.3. Effect of Increasing S or Multiple Cameras

In cases where ro < 1 (Case 3), a practical solution to increase
⇀
v max is to raise the

camera mounting height, which, in effect, shall increase S. However, if raising the camera
mounting height is inappropriate as doing so shall also decrease object details, the use of
multiple cameras can be a viable solution.

Figure 11 illustrates the effect of increasing the effective S or using multiple cameras
on the calculated values of

⇀
v max for the three levels of infencing speeds (2.4, 12.2, and

22 fps) simulated at S = 0.5 m. The results showed that treatments with missed detections
exceeded the allowable

⇀
v max. For treatments 4 and 7, the allowable travel velocity was

only 1.2 m/s using a single camera module, which was less than the simulated
⇀
v of 1.3

and 2.5 m/s, respectively.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 16 of 21

Similar results were also observed at 2.5 m/s travel velocity, as shown in Figure 10c.
However, the vertical gaps were more extensive than Figure 10b due to faster travel speed.
Observing the detection pattern showed that 14 plant hills were being undetected by the
vision system every five frames or approximately every 5.21 m traversed distance. This
pattern that forms every 5.21 m further explains the difference in the 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠ in
the sensitivity analysis in Section 3.1, when the traversed distance was only 1 m. A com-
plete detection pattern was already formed when the distance was more than 10 m, re-
sulting in better detection rate estimates.

From these results, two vital insights can be drawn. First, at 𝑟௢ < 1, 𝑟ௗ,௧௛ shall have
a margin of error when the length of the detection pattern is less than the traversed dis-
tance. Second, concerning future studies, object tracking algorithms, such as Euclidean-
distance-based tracking [46], that requires objects should be present in at least two frames,
would be not applicable when 𝑟௢ ≤ 1. Hence, the importance that 𝑟௢ > 1 in MVS designs
is further emphasized.

3.3. Effect of Increasing S or Multiple Cameras
In cases where 𝑟௢ < 1 (Case 3), a practical solution to increase vሬ⃑ ௠௔௫ is to raise the

camera mounting height, which, in effect, shall increase 𝑆. However, if raising the camera
mounting height is inappropriate as doing so shall also decrease object details, the use of
multiple cameras can be a viable solution.

Figure 11 illustrates the effect of increasing the effective 𝑆 or using multiple cameras
on the calculated values of 𝑣⃑ ௠௔௫ for the three levels of infencing speeds (2.4, 12.2, and 22
fps) simulated at 𝑆 = 0.5 m. The results showed that treatments with missed detections
exceeded the allowable 𝑣⃑௠௔௫. For treatments 4 and 7, the allowable travel velocity was
only 1.2 m/s using a single camera module, which was less than the simulated 𝑣⃑ of 1.3
and 2.5 m/s, respectively.

Figure 11. Theoretical maximum travel velocity to prevent missed detections with 1, 2, and 3 cam-
eras at 2.4, 12.2, and 22.0 fps.

Calculating 𝑛௩௜௦ using Equation (6) for treatments 4 and 7 showed that 2 and 3 vision
modules, respectively, were required to prevent missed detections. Thus, using two vision
modules for treatment 4 prevented missed detections, as shown in Figure 12. The 6th,
20th, and 34th frames captured by the second camera detected the plants undetected by
the first camera.

As predicted, a two-vision-module configuration for treatment 7 was insufficient in
preventing missed detections since the simulated 𝑣⃑ of 2.5 m/s of the vision system was

n_cam: 1

n_cam: 2

n_cam: 3

0

5

10

15

20

25

30

35

0 5 10 15 20 25

M
ax

im
um

 T
ra

ve
l V

el
oc

ity
, m

/s

Inferencing Speed, fps

Figure 11. Theoretical maximum travel velocity to prevent missed detections with 1, 2, and 3 cameras
at 2.4, 12.2, and 22.0 fps.

Calculating nvis using Equation (6) for treatments 4 and 7 showed that 2 and 3 vision
modules, respectively, were required to prevent missed detections. Thus, using two vision
modules for treatment 4 prevented missed detections, as shown in Figure 12. The 6th, 20th,
and 34th frames captured by the second camera detected the plants undetected by the first
camera.

As predicted, a two-vision-module configuration for treatment 7 was insufficient in
preventing missed detections since the simulated

⇀
v of 2.5 m/s of the vision system was

still higher than the increased
⇀
v max. As illustrated in Figure 12, without a third camera,

the two-camera configuration would still result in an undetected hill on the 16th frame.
Based on these simulated results, the problem of missed detection due to the slow

inferencing speed of embedded systems could be potentially solved by using multiple,
adjacent, non-overlapping, and colinear cameras along the traversed row when raising the
height of the camera was unwanted.

Appl. Sci. 2022, 12, 1260 18 of 22

Appl. Sci. 2022, 11, x FOR PEER REVIEW 17 of 21

still higher than the increased 𝑣⃑ ௠௔௫. As illustrated in Figure 12, without a third camera,
the two-camera configuration would still result in an undetected hill on the 16th frame.

Based on these simulated results, the problem of missed detection due to the slow
inferencing speed of embedded systems could be potentially solved by using multiple,
adjacent, non-overlapping, and colinear cameras along the traversed row when raising
the height of the camera was unwanted.

(a)

(b)

Figure 12. The range of plant hill indices detected per frame along the first 10 m of the simulated
field at 𝑓𝑝𝑠 = 2.4, 𝑆 = 0.5 m, and 𝑑௛ = 0.2 m: (a) detections at 1.3 m/s using two cameras where
broken red lines represent plant hills undetected by the first camera but detected by the second
camera; and (b) detections at 2.5 m/s and three cameras where broken orange lines represent plant
hills undetected by the first and second cameras but detected by the third camera.

3.4. Vision Module Simulation and Testing Performance
Figure 13 shows the sample detection of the vision module. Results showed that us-

ing a TensorRT-optimized SSD MobileNetV2 to detect plants in 1280 × 720 images on an
NVIDIA Jetson Nano 4 GB had an average inferencing speed of 45 fps. This average infer-
encing speed only represented the elapsed time to inference on an already loaded frame.
However, due to calculation overheads caused by additional data processing and trans-
mission, the average effective inferencing speed of the vision module was only 16 fps, as
shown in Figure 13. The effective speed was the average time difference for the vision
module to complete a single loop, including grabbing a frame from the camera, inferenc-
ing, calculating detection parameters, image processing, and transmitting data.

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Hi
ll

In
de

x

Frame Index

Camera 2 Camera 1

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Hi
ll

In
de

x

Frame Index

Camera 3 Camera 2 Camera 1

Figure 12. The range of plant hill indices detected per frame along the first 10 m of the simulated
field at f ps = 2.4, S = 0.5 m, and dh = 0.2 m: (a) detections at 1.3 m/s using two cameras where
broken red lines represent plant hills undetected by the first camera but detected by the second
camera; and (b) detections at 2.5 m/s and three cameras where broken orange lines represent plant
hills undetected by the first and second cameras but detected by the third camera.

3.4. Vision Module Simulation and Testing Performance

Figure 13 shows the sample detection of the vision module. Results showed that
using a TensorRT-optimized SSD MobileNetV1 to detect plants in 1280 × 720 images on
an NVIDIA Jetson Nano 4 GB had an average inferencing speed of 45 fps. This average
inferencing speed only represented the elapsed time to inference on an already loaded
frame. However, due to calculation overheads caused by additional data processing and
transmission, the average effective inferencing speed of the vision module was only 16 fps,
as shown in Figure 13. The effective speed was the average time difference for the vision
module to complete a single loop, including grabbing a frame from the camera, inferencing,
calculating detection parameters, image processing, and transmitting data.

The results using the theoretical approach and simulation for the vision module are
shown in Table 6. Using Equation (2), the configuration of the laboratory setup falls under
Case 2 since ro > 1. Then, using Equation (4), rd,th was calculated to be equal to 1.00.
Applying Equation (5) yields

⇀
v max = 12.64 m/s, which was highly sufficient for the target

0.3 m/s and inferred that multiple vision modules were not required to prevent missed
detections. Theoretical prediction of the performance of the vision module showed that the
configuration was sufficient to prevent missed detection. Likewise, the theoretical result

Appl. Sci. 2022, 12, 1260 19 of 22

was confirmed by the simulation results that showed no missed detections (rd,sim = 1.00)
for both crops and weeds among the simulated

⇀
v .

Appl. Sci. 2022, 11, x FOR PEER REVIEW 18 of 21

Figure 13. Sample real-time inferencing using trained SSD MobileNetV2 model and optimized in
TensorRT. The vision system utilized Jetson Inference API.

The results using the theoretical approach and simulation for the vision module are
shown in Table 6. Using Equation (2), the configuration of the laboratory setup falls under
Case 2 since 𝑟௢ > 1. Then, using Equation (4), 𝑟ௗ,௧௛ was calculated to be equal to 1.00. Ap-
plying Equation (5) yields 𝑣⃑௠௔௫ = 12.64 m/s, which was highly sufficient for the target
0.3 m/s and inferred that multiple vision modules were not required to prevent missed
detections. Theoretical prediction of the performance of the vision module showed that
the configuration was sufficient to prevent missed detection. Likewise, the theoretical re-
sult was confirmed by the simulation results that showed no missed detections (𝑟ௗ,௦௜௠ =1.00) for both crops and weeds among the simulated 𝑣⃑.

Table 6. Theoretical and simulation performance of the CNN-based vision module for plant detec-
tion at 𝑆 = 0.79 m, 16 𝑓𝑝𝑠, and at three-levels of travel velocity (𝑣⃑). 𝒗ሬሬ⃑ , m/s 𝒅𝒇, m/Frame 𝒓𝒐 Case 𝒓𝒈 𝒓𝒅,𝒕𝒉 𝒓𝒅,𝒔𝒊𝒎

0.1 0.0063 126.40 2 0.00 1.00 1.00
0.2 0.0125 63.20 2 0.00 1.00 1.00
0.3 0.0188 42.13 2 0.00 1.00 1.00

Table 7 summarizes the precision and recall of the trained CNN model in detecting
potted plants at different relative travel velocities of the conveyor. Results showed that
the combination of an optimized SSD MobileNetV2 in TensorRT running in a Jetson Nano
4 GB have robust detection performance, and incorrect or missed detections were absent
despite increasing travel velocity. Comparing the value of 𝑟௔௖௧௨௔௟ to 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠, re-
sults showed that the detection rates were equal. The recall was used for comparison in-
stead of precision since the former is the ratio of the correctly detected plants to the total
sample plants. This definition of 𝑟௔௖௧௨௔௟ in Equation (16) is equivalent to the definition of 𝑟ௗ,௦௜௠ in Equation (14). Since the 𝑟௔௖௧௨௔௟, 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠ were equal, these results proved
the validity of the theoretical concepts and simulation methods presented in this study.
Hence, 𝑟ௗ,௧௛ and 𝑟ௗ,௦௜௠ can be used to theoretically determine the detection rate of a vi-
sion system in capturing plant images as a function of 𝑣⃑ and 𝑓𝑝𝑠 with known 𝑆.

Figure 13. Sample real-time inferencing using trained SSD MobileNetV1 model and optimized in
TensorRT. The vision system utilized Jetson Inference API.

Table 6. Theoretical and simulation performance of the CNN-based vision module for plant detection
at S = 0.79 m, 16 f ps, and at three-levels of travel velocity (

⇀
v).

⇀
v , m/s df, m/Frame ro Case rg rd,th rd,sim

0.1 0.0063 126.40 2 0.00 1.00 1.00
0.2 0.0125 63.20 2 0.00 1.00 1.00
0.3 0.0188 42.13 2 0.00 1.00 1.00

Table 7 summarizes the precision and recall of the trained CNN model in detecting
potted plants at different relative travel velocities of the conveyor. Results showed that
the combination of an optimized SSD MobileNetV1 in TensorRT running in a Jetson Nano
4 GB have robust detection performance, and incorrect or missed detections were absent
despite increasing travel velocity. Comparing the value of ractual to rd,th and rd,sim, results
showed that the detection rates were equal. The recall was used for comparison instead of
precision since the former is the ratio of the correctly detected plants to the total sample
plants. This definition of ractual in Equation (16) is equivalent to the definition of rd,sim in
Equation (14). Since the ractual , rd,th and rd,sim were equal, these results proved the validity
of the theoretical concepts and simulation methods presented in this study. Hence, rd,th
and rd,sim can be used to theoretically determine the detection rate of a vision system in
capturing plant images as a function of

⇀
v and f ps with known S.

Appl. Sci. 2022, 12, 1260 20 of 22

Table 7. The detection performance of the CNN-based vision module for detecting a 60 potted plants
at different conveyor velocities (

⇀
v).

⇀
v , m/s TP FP FN pactual ractual

0.1 60 0 0 1.00 1.00
0.2 60 0 0 1.00 1.00
0.3 60 0 0 1.00 1.00

4. Conclusions

This study presented a practical approach to quantify rd and aid in the development
of a CNN-based vision module through the introduction of the dimensionless parameter
r0. The reliability of r0 in predicting the rd of an MVS as a function of inferencing speed
and travel velocity was successfully demonstrated by having no margin of error compared
to simulated and actual MVS at sufficient traversed distance (≥10 m). In addition, a set
of scripts for simulating the performance of a vision system for plant detection was also
developed and showed no margin of error compared to the rd of actual MVS. This set
of scripts was made publicly available to verify the results of this study and provide a
practical tool for developers in optimizing design configurations of a vision-based plant
detection system.

The mechanism of missed detection was also successfully illustrated by evaluating
each of the simulated frames in detail. Using the concept of r0, simulation, and detailed
assessment of each processed frame, the mechanism to prevent missed plant hills by
increasing the effective S through synchronous multi-camera vision systems in low-frame
processing rate hardware was also successfully presented.

Furthermore, a vision module was also successfully developed and tested. Perfor-
mance testing showed that the rd,th and rd,sim accurately predicted the ractual of the vision
module with no margin of error. The script for the vision module was also made available
in a public repository where future improvements shall also be uploaded.

However, despite accomplishing the set objectives in this research, the study encoun-
tered limitations that shall be improved in future research. First, the robustness of r0
in predicting the detection rate was supported mainly by simulation data. The current
laboratory tests were only implemented at a maximum travel velocity of 0.3 m/s due to
limitations in the manual loading of the test plants. At this time, the study relied on results
of other studies to validate the robustness of r0 at higher travel velocities and different
inferencing speeds. Thus, the concepts presented in this shall be further tested to determine
the robustness of r0 at higher travel velocities during the application of the developed
vision module on actual field scenarios.

Lastly, the methodology to calculate rd,th and rd,sim assumed that the CNN has 100%
precision. In cases less than 100% precision, it can be theorized that rd,th and rd,sim can be
multiplied by the precision of the CNN to estimate the effective recall of a CNN-based
vision system in evaluating moving objects across the camera frame. However, this concept
is yet to be demonstrated and shall also be included in future studies.

Author Contributions: Conceptualization, P.R.S.; methodology, P.R.S. and H.Z.; software, P.R.S.;
validation, P.R.S.; formal analysis, P.R.S. and H.Z.; investigation, P.R.S. and H.Z.; resources, P.R.S. and
H.Z.; data curation, P.R.S.; writing—original draft preparation, P.R.S.; writing—review and editing,
H.Z.; visualization, P.R.S.; supervision, H.Z.; project administration, H.Z.; funding acquisition, P.R.S.
and H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The scripts used in the simulation and vision module were made
publicly available in GitHub under BSD license to use, test, and validate the data presented in

Appl. Sci. 2022, 12, 1260 21 of 22

this study. The scripts for simulation are available at https://github.com/paoap/vision-module-
simulation, (accessed on 31 December 2021) while the vision module software framework can
be downloaded from https://github.com/paoap/plant-detection-vision-module (accessed on 31
December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pelzom, T.; Katel, O. Youth Perception of Agriculture and Potential for Employment in the Context of Rural Development in

Bhutan. Dev. Environ. Foresight 2017, 3, 2336–6621.
2. Mortan, M.; Baciu, L. A Global Analysis of Agricultural Labor Force. Manag. Chall. Contemp. Soc. 2016, 9, 57–62.
3. Priyadarshini, P.; Abhilash, P.C. Policy Recommendations for Enabling Transition towards Sustainable Agriculture in India. Land

Use Policy 2020, 96, 104718. [CrossRef]
4. Rose, D.C.; Sutherland, W.J.; Barnes, A.P.; Borthwick, F.; Ffoulkes, C.; Hall, C.; Moorby, J.M.; Nicholas-Davies, P.; Twining, S.;

Dicks, L.V. Integrated Farm Management for Sustainable Agriculture: Lessons for Knowledge Exchange and Policy. Land Use
Policy 2019, 81, 834–842. [CrossRef]

5. Lungarska, A.; Chakir, R. Climate-Induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change
Mitigation. Ecol. Econ. 2018, 147, 134–154. [CrossRef]

6. Thorp, K.R.; Tian, L.F. A Review on Remote Sensing of Weeds in Agriculture. Precis. Agric. 2004, 5, 477–508. [CrossRef]
7. Bechar, A.; Vigneault, C. Agricultural Robots for Field Operations: Concepts and Components. Biosyst. Eng. 2016, 149, 94–111.

[CrossRef]
8. Aravind, K.R.; Raja, P.; Pérez-Ruiz, M. Task-Based Agricultural Mobile Robots in Arable Farming: A Review. Span. J. Agric. Res.

2017, 15, e02R01. [CrossRef]
9. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer Vision Technology in Agricultural Automation—A Review. Inf. Process. Agric.

2020, 7, 1–19. [CrossRef]
10. Esau, T.; Zaman, Q.; Groulx, D.; Farooque, A.; Schumann, A.; Chang, Y. Machine Vision Smart Sprayer for Spot-Application of

Agrochemical in Wild Blueberry Fields. Precis. Agric. 2018, 19, 770–788. [CrossRef]
11. Partel, V.; Charan Kakarla, S.; Ampatzidis, Y. Development and Evaluation of a Low-Cost and Smart Technology for Precision

Weed Management Utilizing Artificial Intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [CrossRef]
12. Wang, A.; Zhang, W.; Wei, X. A Review on Weed Detection Using Ground-Based Machine Vision and Image Processing Techniques.

Comput. Electron. Agric. 2019, 158, 226–240. [CrossRef]
13. Chattha, H.S.; Zaman, Q.U.; Chang, Y.K.; Read, S.; Schumann, A.W.; Brewster, G.R.; Farooque, A.A. Variable Rate Spreader for

Real-Time Spot-Application of Granular Fertilizer in Wild Blueberry. Comput. Electron. Agric. 2014, 100, 70–78. [CrossRef]
14. Zujevs, A.; Osadcuks, V.; Ahrendt, P. Trends in Robotic Sensor Technologies for Fruit Harvesting: 2010–2015. Procedia Comput. Sci.

2015, 77, 227–233. [CrossRef]
15. Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking

Robots: A Review. Front. Plant Sci. 2020, 11, 510. [CrossRef]
16. Liu, B.; Bruch, R. Weed Detection for Selective Spraying: A Review. Curr. Robot. Rep. 2020, 1, 19–26. [CrossRef]
17. Jha, K.; Doshi, A.; Patel, P.; Shah, M. A Comprehensive Review on Automation in Agriculture Using Artificial Intelligence. Artif.

Intell. Agric. 2019, 2, 1–12. [CrossRef]
18. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al.

Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; Volume
84, pp. 3296–3297.

19. Kamilaris, A.; Prenafeta-Boldú, F.X. A Review of the Use of Convolutional Neural Networks in Agriculture. J. Agric. Sci. 2018,
156, 312–322. [CrossRef]

20. Cecotti, H.; Rivera, A.; Farhadloo, M.; Pedroza, M.A. Grape Detection with Convolutional Neural Networks. Expert Syst. Appl.
2020, 159, 113588. [CrossRef]

21. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and Segmentation of Overlapped Fruits Based on Optimized
Mask R-CNN Application in Apple Harvesting Robot. Comput. Electron. Agric. 2020, 172, 105380. [CrossRef]

22. Olsen, A.; Konovalov, D.A.; Philippa, B.; Ridd, P.; Wood, J.C.; Johns, J.; Banks, W.; Girgenti, B.; Kenny, O.; Whinney, J.; et al.
DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning. Sci. Rep. 2019, 9, 2058. [CrossRef] [PubMed]

23. Chechliński, Ł.; Siemiątkowska, B.; Majewski, M. A System for Weeds and Crops Identification—Reaching over 10 fps on
Raspberry Pi with the Usage of MobileNets, DenseNet and Custom Modifications. Sensors 2019, 19, 3787. [CrossRef] [PubMed]

24. Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted
Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [CrossRef]

25. Hussain, N.; Farooque, A.; Schumann, A.; McKenzie-Gopsill, A.; Esau, T.; Abbas, F.; Acharya, B.; Zaman, Q. Design and
Development of a Smart Variable Rate Sprayer Using Deep Learning. Remote Sens. 2020, 12, 4091. [CrossRef]

https://github.com/paoap/vision-module-simulation
https://github.com/paoap/vision-module-simulation
https://github.com/paoap/plant-detection-vision-module
http://doi.org/10.1016/j.landusepol.2020.104718
http://doi.org/10.1016/j.landusepol.2018.11.001
http://doi.org/10.1016/j.ecolecon.2017.12.030
http://doi.org/10.1007/s11119-004-5321-1
http://doi.org/10.1016/j.biosystemseng.2016.06.014
http://doi.org/10.5424/sjar/2017151-9573
http://doi.org/10.1016/j.inpa.2019.09.006
http://doi.org/10.1007/s11119-017-9557-y
http://doi.org/10.1016/j.compag.2018.12.048
http://doi.org/10.1016/j.compag.2019.02.005
http://doi.org/10.1016/j.compag.2013.10.012
http://doi.org/10.1016/j.procs.2015.12.378
http://doi.org/10.3389/fpls.2020.00510
http://doi.org/10.1007/s43154-020-00001-w
http://doi.org/10.1016/j.aiia.2019.05.004
http://doi.org/10.1017/S0021859618000436
http://doi.org/10.1016/j.eswa.2020.113588
http://doi.org/10.1016/j.compag.2020.105380
http://doi.org/10.1038/s41598-018-38343-3
http://www.ncbi.nlm.nih.gov/pubmed/30765729
http://doi.org/10.3390/s19173787
http://www.ncbi.nlm.nih.gov/pubmed/31480480
http://doi.org/10.3390/agronomy11081480
http://doi.org/10.3390/rs12244091

Appl. Sci. 2022, 12, 1260 22 of 22

26. Villette, S.; Maillot, T.; Guillemin, J.P.; Douzals, J.P. Simulation-Aided Study of Herbicide Patch Spraying: Influence of Spraying
Features and Weed Spatial Distributions. Comput. Electron. Agric. 2021, 182, 105981. [CrossRef]

27. Wang, H.; Hohimer, C.J.; Bhusal, S.; Karkee, M.; Mo, C.; Miller, J.H. Simulation as a Tool in Designing and Evaluating a Robotic
Apple Harvesting System. IFAC-PapersOnLine 2018, 51, 135–140. [CrossRef]

28. Lehnert, C.; Tsai, D.; Eriksson, A.; McCool, C. 3D Move to See: Multi-Perspective Visual Servoing towards the next Best View
within Unstructured and Occluded Environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China, 3–8 November 2019; IEEE: New York, NY, USA, 2019; pp. 3890–3897.

29. Korres, N.E.; Burgos, N.R.; Travlos, I.; Vurro, M.; Gitsopoulos, T.K.; Varanasi, V.K.; Duke, S.O.; Kudsk, P.; Brabham, C.; Rouse,
C.E.; et al. New Directions for Integrated Weed Management: Modern Technologies, Tools and Knowledge Discovery. In Advances
in Agronomy; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 155, pp. 243–319. ISBN 9780128174081.

30. Hajjaj, S.S.H.; Sahari, K.S.M. Review of Agriculture Robotics: Practicality and Feasibility. In Proceedings of the 2016 IEEE
International Symposium on Robotics and Intelligent Sensors (IRIS), Tokyo, Japan, 17–20 December 2016; pp. 194–198.

31. Gauss, L.; Lacerda, D.P.; Sellitto, M.A. Module-Based Machinery Design: A Method to Support the Design of Modular Machine
Families for Reconfigurable Manufacturing Systems. Int. J. Adv. Manuf. Technol. 2019, 102, 3911–3936. [CrossRef]

32. Brunete, A.; Ranganath, A.; Segovia, S.; de Frutos, J.P.; Hernando, M.; Gambao, E. Current Trends in Reconfigurable Modular
Robots Design. Int. J. Adv. Robot. Syst. 2017, 14, 172988141771045. [CrossRef]

33. Lu, Y.; Young, S. A Survey of Public Datasets for Computer Vision Tasks in Precision Agriculture. Comput. Electron. Agric. 2020,
178, 105760. [CrossRef]

34. Iñigo-Blasco, P.; Diaz-del-Rio, F.; Romero-Ternero, M.C.; Cagigas-Muñiz, D.; Vicente-Diaz, S. Robotics Software Frameworks for
Multi-Agent Robotic Systems Development. Robot. Auton. Syst. 2012, 60, 803–821. [CrossRef]

35. Spencer, J.; Dent, D.R. Walking Speed as a Variable in Knapsack Sprayer Operation: Perception of Speed and the Effect of Training.
Trop. Pest Manag. 1991, 37, 321–323. [CrossRef]

36. Gatot, P.; Anang, R. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field. IOP Conf. Ser.
Earth Environ. Sci. 2018, 147, 012018. [CrossRef]

37. Cerruto, E.; Emma, G.; Manetto, G. Spray applications to tomato plants in greenhouses. Part 1: Effect of walking direction. J.
Agric. Eng. 2009, 40, 41. [CrossRef]

38. Rasmussen, J.; Azim, S.; Nielsen, J.; Mikkelsen, B.F.; Hørfarter, R.; Christensen, S. A New Method to Estimate the Spatial
Correlation between Planned and Actual Patch Spraying of Herbicides. Precis. Agric. 2020, 21, 713–728. [CrossRef]

39. Arvidsson, T.; Bergström, L.; Kreuger, J. Spray Drift as Influenced by Meteorological and Technical Factors. Pest Manag. Sci. 2011,
67, 586–598. [CrossRef]

40. Dou, H.; Zhai, C.; Chen, L.; Wang, S.; Wang, X. Field Variation Characteristics of Sprayer Boom Height Using a Newly De-signed
Boom Height Detection System. IEEE Access 2021, 9, 17148–17160. [CrossRef]

41. Holterman, H.J.; van de Zande, J.C.; Porskamp, H.A.J.; Huijsmans, J.F.M. Modelling Spray Drift from Boom Sprayers. Com-Puter.
Electron. Agric. 1997, 19, 1–22. [CrossRef]

42. Yinyan, S.; Zhichao, H.; Xiaochan, W.; Odhiambo, M.O.; Weimin, D. Motion Analysis and System Response of Fertilizer Feed
Apparatus for Paddy Variable-Rate Fertilizer Spreader. Comput. Electron. Agric. 2018, 153, 239–247. [CrossRef]

43. Machleb, J.; Peteinatos, G.G.; Sökefeld, M.; Gerhards, R. Sensor-Based Intrarow Mechanical Weed Control in Sugar Beets with
Motorized Finger Weeders. Agronomy 2021, 11, 1517. [CrossRef]

44. Fennimore, S.A.; Cutulle, M. Robotic Weeders Can Improve Weed Control Options for Specialty Crops. Pest Manag. Sci. 2019, 75,
1767–1774. [CrossRef]

45. Pinto de Aguiar, A.S.; Neves dos Santos, F.B.; Feliz dos Santos, L.C.; de Jesus Filipe, V.M.; Miranda de Sousa, A.J. Vineyard Trunk
Detection Using Deep Learning—An Experimental Device Benchmark. Comput. Electron. Agric. 2020, 175, 105535. [CrossRef]

46. Qian, X.; Han, L.; Wang, Y.; Ding, M. Deep Learning Assisted Robust Visual Tracking with Adaptive Particle Filtering. Signal
Processing Image Commun. 2018, 60, 183–192. [CrossRef]

http://doi.org/10.1016/j.compag.2020.105981
http://doi.org/10.1016/j.ifacol.2018.08.076
http://doi.org/10.1007/s00170-019-03358-1
http://doi.org/10.1177/1729881417710457
http://doi.org/10.1016/j.compag.2020.105760
http://doi.org/10.1016/j.robot.2012.02.004
http://doi.org/10.1080/09670879109371607
http://doi.org/10.1088/1755-1315/147/1/012018
http://doi.org/10.4081/jae.2009.3.41
http://doi.org/10.1007/s11119-019-09691-5
http://doi.org/10.1002/ps.2114
http://doi.org/10.1109/ACCESS.2021.3053035
http://doi.org/10.1016/S0168-1699(97)00018-5
http://doi.org/10.1016/j.compag.2018.08.021
http://doi.org/10.3390/agronomy11081517
http://doi.org/10.1002/ps.5337
http://doi.org/10.1016/j.compag.2020.105535
http://doi.org/10.1016/j.image.2017.09.001

	Introduction
	Materials and Methods
	Concept
	Theoretical Detection Rate
	Maximizing Travel Velocity
	Increasing 0mu mumu vvsubsubsectionvmax

	Field Map Modeling
	Motion Modeling
	Detection Algorithm
	Experimental Design
	Vision Module Development
	Hardware and Software Development
	Dataset Preparation and Training of the CNN Model
	Testing and Simulation

	Results and Discussion
	Sensitivity Analysis
	Effects of 0mu mumu vvsubsectionv and fps
	Effect of Increasing S or Multiple Cameras
	Vision Module Simulation and Testing Performance

	Conclusions
	References

