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Abstract: This paper investigates the dynamics of some typical orbits around Saturn, including
sun-synchronous orbits, repeating ground track orbits, frozen orbits, and stationary orbits, and
corresponding control methods mainly based on the mean element theory. The leading terms of
Saturn’s aspheric gravitational field, J2 and J4 terms, are used when designing the orbits around
Saturn. Two control methods of sun-synchronous orbits, including initial inclination-biased method
and periodic inclination-biased method, are used to damp the local time drift at the descending node,
which is caused by solar gravitation and atmospheric drag. The compensation of semimajor axis and
maneuver period to maintain the recursive feature of repeating ground orbits are calculated. While
only J2 and J3 terms are taken into account, we examine the argument that the perigee of frozen
orbits around Saturn should be 270 deg to promise meaningful eccentricity. The perturbations of
inclination and eccentricity of stationary orbits due to solar gravitation and solar radiation pressure are
presented. Meanwhile, the preliminary control strategies of inclination perturbation and eccentricity
perturbation are naturally introduced.

Keywords: Saturn; mean element theory; orbital dynamics; orbital maintenance

1. Introduction

Interplanetary exploration is one of the most important methods to seek the origin
and evolution of the universe, suitable living planets for human beings, and the existence
of other intelligent life. Over the last few decades, with the development of science
and technology, we have launched numerous spaceships to explore the planets of our
solar system.

Saturn, since its discovery, is absolutely one of the most attractive planets in the solar
system. The tremendous thin ring consisting of many ringlets has become the famous
characteristic of Saturn. Saturn is the second biggest planet in the solar system with a
volume about 755 times larger than Earth. It is made predominantly of hydrogen and
helium, which causes its density to be smaller than water. Saturn rotates so fast that its
rotation period is only 10.656 h [1]. However, its orbital period is tremendously longer than
its rotation period, at 29.4 Earth years [1]. The gravitational field of the Saturn system is
extremely complicated, as Saturn is the planet with the largest amount of moons in the solar
system. There are 53 known moons and 29 moons waiting to be formally confirmed [2].
The largest moon in the Saturn system, named Titan, was found to have a nitrogen-rich
atmosphere similar to that of ancient Earth.

Therefore, the exploration of the Saturnian system could promote the process of
searching for habitable planets and researching the evolution of planets in the solar system.

However, few spacecraft had investigated Saturn. Pioneer11 is the first spacecraft to
reach the Saturn system. It reached Saturn in 1979, and discovered a narrow ring, which
is named the F-ring, outside the A-ring for the first time [3]. It also first discovered the
existence of the magnetosphere of Saturn. After two years, Voyager 2, the third spacecraft
to visit Saturn, gained a glimpse of Saturn on its way to Uranus. Using photopolarimeter,
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Voyager 2 provided more detail about the ringlets and shepherding moons around the
F-ring [4]. The most famous and longest exploration around Saturn is the Cassini–Huygens
mission. Cassini–Huygens was the first mission to orbit Saturn [5]. It completed 294 orbits
and sent total 453,048 images back to Earth in 13 years of discovery. These missions
provided a precious opportunity for planetary scientists to observe Saturn closely.

Jacobson [6] and Jacobson et al. [7] presented Saturnian gravitational zonal harmonic
coefficients using spacecraft tracking data. Waite et al. [8] observed the infalling ma-
terial flux, which was calculated to be between 4800 and 45,000 kg/s, could affect the
carbon content of Saturnian ionosphere and atmosphere. Müller-Wodarg et al. [9] em-
phasized the importance of thermospheric temperatures when examining the state of
Saturnian magnetosphere.

The formation and evolution of the Saturnian interior structure [10], the magneto-
sphere [11], rings [12], and moons [13] around Saturn are always at the centre of the
research [14]. Nevertheless, few researchers study the dynamics around Saturn.

On the contrary, the studies of dynamics around terrestrial planets had already en-
riched the theories of Kozai [15] and Brouwer [16]. The applications of these theories had
been widely used when scientists and engineers analyzed the dynamics of artificial satel-
lites around Earth. The design of frozen orbits was first proposed by Cutting et al. [17]. The
existence of four equilibrium points of geostationary orbits was shown by Musen et al. [18].
Moreover, the periodic orbits around these equilibrium points are investigated by Lara et al. [19].
Lei [20] considered secular perturbations, combining Earth’s aspheric gravitation with
the luni–solar gravitation to analyze the dynamics of the medium Earth orbit navigation
satellites. At the same time, some feasible research aimed to offset the effect caused by
perturbations. Nazarenko [21] studied predicting the local time of the ascending node of
sun-synchronous orbits around Earth. Liao et al. [22] studied a semi-analytical acquisition
algorithm for repeating ground track orbits’ maintenance.

Studies analyzing the dynamics around other terrestrial planets in the solar system
had developed rapidly as well. Liu et al. [23] analyzed five typical orbits around Mars
by using the zonal harmonic coefficients J2, J4 and a tesseral harmonic coefficient J22. In
addition, Liu et al. [24] further studied the recursive orbits around stationary points of
Martian gravitational field. Ortore et al. [25] designed recursive sun-synchronous orbits of
J2 predominant planets, including Mars. Ma et al. [26] and Ma et al. [27] studied distant
quasi-periodic orbits and artificial frozen orbits around Mercury.

Actually, these dynamic models are not suitable for Saturn, as Saturn is not a J2
predominant planet. At the same time, the tesseral harmonic coefficient of Saturn J22 ≈ 0.
Though this research on terrestrial planets is inspiring, the more relevant studies are the
dynamic analysis around gaseous planets. Liu et al. [28] analyzed the dynamics of several
typical orbits around Jupiter. Jiang et al. [29] studied the initial inclination prebiased
method and semimajor axis compensation strategy for sun-synchronous repeating ground
track orbits around Jupiter. Jiang et al. [29]’s control strategy only considered J2 term, while
Jupiter is not a J2 predominant planet. Though his control strategy is instructive, we still
insist that the combination of J2 and J4 is necessary for gaseous planets, especially for non
predominant J2 celestial bodies.

In this paper, we analyze the dynamics of some typical orbits around Saturn using
the aspheric gravitational model considering J2 and J4 terms. Then we design the sun-
synchronous orbits, repeating ground track orbits, frozen orbits, and stationary orbits
around Saturn based on the mean element theory [15,16]. While analyzing the perturba-
tions, we divide them into three types of terms: secular terms, long-period terms, and
short-period terms [15,16]. After that, we mainly consider secular perturbations caused by
atmospheric drag, solar gravitation, and solar radiation pressure. As for sun-synchronous
orbits, we first analyze the local time drift at the descending node caused by atmospheric
drag and solar gravitation. Then, we take two methods, including initial inclination biased
method and periodic inclination biased method, to damp the local time drift. The main
perturbation we have analyzed for repeating ground track orbits is atmospheric drag. After
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we have chosen a reasonable repetition parameter, we could calculate the decay rate of
orbital semimajor axis with an initial condition of semimajor axis and eccentricity. To
maintain the recursive feature, we give a solution of semimajor axis compensation and
control period. When we use J2 and J4 terms to design frozen orbits around Saturn, we
naturally see a novel result that the argument of perigee of frozen orbits around Saturn
must be 270◦ to make eccentricity meaningful. At last, we give some strategies to offset the
influence on inclination caused by the solar gravitation and the influence on eccentricity
caused by solar radiation pressure.

In this paper, we use some traditional symbols to denote the basic parameters of
Saturn and the orbital elements of spacecraft motion. a is the semi-major axis of orbit. e is
the orbital eccentricity. i is the orbital inclination. J2 is the second-order zonal harmonic.
J3 is the third-order zonal harmonic. J4 is the fourth-order zonal harmonic. J22 is the
second-degree and -order tesseral harmonic. M is the mean anomaly. f is the true anomaly.
n is the mean angular velocity. ns is the mean angular velocity of Saturn around the Sun. p
is the semiparameter. Re is the reference equatorial radius of Saturn. r is the position of the
spacecraft. Ω is the right ascension of the ascending node. λ is the latitude of body-fixed
coordinate system. µ is the Saturn’s gravitational constant. ϕ is the longitude of body-fixed
coordinate system. ω is the argument of perigee. ωs is the rotational angular velocity
of Saturn.

In this paper, we mainly use the aspheric gravitational field zonal harmonic coef-
ficients to design different typical orbits. Some basic parameters of Saturn are listed in
Table 1 [1,7,30]. Similar to Jupiter, the magnitude of J2 of Saturn is not predominant among
the zonal harmonic coefficients [28,29]. Therefore, we choose the dynamic model involved
J2 and J4 terms. The gravitational potential function could be approximated as [31]:

U(r) =
µ

r
[1− J2

2
(3 sin2 ϕ− 1)(

R
r
)2 − J4

8
(35 sin4 ϕ− 30 sin2 ϕ + 3)(

R
r
)4].

Table 1. Some parameters for basic model of Saturn.

µ (km3s−2) 37,931,207.7 ± 1.1
Equatorial radius Re (km) 60,268
J2 (×108) 1,629,057.33 ± 2.8
J3 (×108) 5.89 ± 2.3
J4 (×108) −93,531.36 ± 3.7
Obliquity to orbit is 26.73 deg
Sidereal orbit period (days) 10,759.22
Sidereal rotation period (hours) 10.656

2. Sun-Synchronous Orbits and Orbital Maintenance

The first order secular term for the precession rate of ascending node is [15,16,32]:

Ω̇1 = −3nJ2R2
e

2p2 cos i. (1)

Here, the second order secular perturbation considered J4 for the precession rate is [16]

Ω̇2 =−
9nJ2

2 R4
e

4p4 {[3
2
− 5

3
sin2 i− 35J4

18J2
2
(

6
7
− 3

2
sin2 i)]

+ e2[
1
6
+

5
24

sin2 i− 35J4

18J2
2
(

9
7
− 9

4
sin2 i)] +

√
1− e2(1− 3

2
sin2 i)} cos i.

(2)

Sun-synchronous orbits require the precession rate of ascending node to be equal to
the Saturn rotational angular speed around the Sun. Hence, the average nodal precession
rate is
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˙̄Ω = Ω̇1 + Ω̇2 = ns. (3)

Here ns is the mean angular velocity around the Sun. Thus, we gained the equation
from Equation (3):

f (cos i) = A cos3 i + B cos i + C = 0, (4)

where

A =
9nJ2

2 R4
e

4p4 [e2(− 5
24
− 35J4

8J2
2
) +

3
2

√
1− e2 + (

5
3
− 35J4

12J2
2
)],

B =
3nJ2R2

e
2p2 {1 +

3J2R2
e

2p2 [e2(
3
8
+

15J4

8J2
2
)− 1

2

√
1− e2 − (

1
6
− 5J4

4J2
2
)]},

C =ns.

For sun-synchronous orbits, we can derive the inequality systems (5) to calculate the
inclination from theoretical analysis. The following inequalities are the requirements to
find the roots of ˙̄Ω = ns. 

1− Re/a > e

C2

4A2 +
B3

27A3 ≤ 0
(5)

The first inequality in (5) prevents the spacecraft from crashing into the outer atmo-
sphere of Saturn. The second inequality is the discriminant of Equation (4). Then we obtain
the plot of the discriminant, Figure 1.

Figure 1. The discriminant of sun-synchronous orbits for different values of semimajor axis and
eccentricity.

We learn from Figure 1 that the discriminant is almost always positive for any chosen
a and e. It means Equation (4) only has one real root, and there is only one sun-synchronous
orbit for any chosen semimajor axis and eccentricity. Here, we choose the orbital elements
a = 62,268 km and e = 0.01, substitute them into Equation (4), and solve the equation.
Then the inclination i = 90.0483 deg can be obtained naturally.

Here we continue to analyze the perturbations of spacecraft in circular sun-synchronous
orbits. The spacecraft located in circular sun-synchronous orbits around Saturn would be
perturbed by the Sun. The derivative of inclination is presented by using the Lagrange
equations as [33,34]:
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di
dt

=
r cos(ω + f )
na2
√

1− e2
Fn

≈3n2
s cos(ω + f ) cos ξ

n
(cos βs sin i sin Ω− sin βs cos is sin i cos Ω + sinβs sin is cos i),

cos ξ = cos βs[cos(ω + f ) cos Ω− cos i sin(ω + f ) sin Ω] + sin βs cos is[cos(ω + f ) sin Ω

+ cos i sin(ω + f ) cos Ω] + sin βs sin is sin i sin(ω + f ),

where Fn is the normal perturbation force caused by the solar gravitation, ns is the angular
speed of Saturn around the Sun, βs is the ecliptic longitude of the Sun, is is the obliquity
of the ecliptic of Saturn, and ξ is the angle between the unit vector from center of mass of
Saturn pointing the spacecraft and the unit vector from center of mass of Saturn pointing
at the Sun. Then we average the secular derivative of inclination in a period of circular
sun-synchronous orbits [35]. We could see the secular inclination perturbation as:

di
dt

= − 3n2
s

16n
sin i(1 + cos is)

2 sin(2βs − 2Ω) (6)

It is important to emphasize that we only consider the secular effect of perturbations.
We can substitute di

dt for di
dt for convenience. (2βs − 2Ω) in Equation (6) is associated with

the local time drift at the descending node.
The semimajor axis decay due to atmospheric drag leads to a shorter period and

damage of the recursive feature. Here we simply assume the atmosphere of Saturn is
stationary. According to the preliminary study of Saturn atmosphere model [8], we could
estimate the acceleration of semi-major axis caused by atmospheric drag. We describe the
variation of semimajor axis due to atmospheric drag of circular orbits by [29,36]

da
dt

= −SCdρna2

m
, (7)

where Cd is the drag coefficient, S is the projected area, ρ is the neutral atmosphere density,
and m is the mass of spacecraft.

When we analyze the inclination perturbation, we can calculate the local time drift
at the descending node instead. Meanwhile, it is a fact that the local time drift at the
descending node is also the local time drift at ascending node. Thus, we could continue
to analyze the evolution of the ascending node. According to Equation (3), the first-order
approximation of ˙̄Ω by using first-order Taylor expansion is

∆ ˙̄Ω =
∂∆ ˙̄Ω

∂a
∆a +

∂∆ ˙̄Ω
∂i

∆i (8)

where 
∆a = ∆a0 +

da
dt

(t− t0)

∆i = ∆i0 +
di
dt
(t− t0)

∂ ˙̄Ω
∂a

=
21nJ2R2

e cos i
4p3 (1− e2) +

99nJ2
2 R4

e
8p5 (1− e2){[3

2
− 5

3
sin2 i− 35J4

18J2
2
(

6
7
− 3

2
sin2 i)]

+ [
1
6
+

5
24

sin2 i− 35J4

18J2
2
(

9
7
− 9

4
sin2 i)]e2 + (1− 3

2
sin2 i)

√
1− e2} cos i

∂ ˙̄Ω
∂i

=
3nJ2R2

e sin i
2p2 −

9nJ2
2 R4

e
4p4 {[(−29

6
+

15J4

2J2
2
) sin i + (5− 35J4

4J2
2
) sin3 i]

+ [(
1
4
+

45J4

4J2
2
) sin i− (

5
8
+

105J4

8J2
2

) sin3 i]e2 + (−4 sin i +
9
2

sin3 i)
√

1− e2}
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For Saturn, because the rotation period is 10.656 h, 1 deg drift of the ascending node
results in 1.776 min drift of spacecraft. Then according to Equation (8), the local time drift
of spacecraft at ascending node is:

∆T =
1.776× 180

π
∆Ω(t)

=
1.776× 180

π
[∆Ω(t0) +

∂ ˙̄Ω
∂a

∆a(t0)(t− t0) +
1
2

∂ ˙̄Ω
∂a

da
dt

(t− t0)
2

+
∂ ˙̄Ω
∂i

∆i(t0)(t− t0) +
1
2

∂ ˙̄Ω
∂i

di
dt
(t− t0)

2].

(9)

The unit of spacecraft running time is second. The local time drift is counted in minutes.
When we only investigate the local time drift caused by solar gravitation, Equation (9)

could be rewritten as

∆T =
1.776× 180

π
[∆Ω(t0) +

∂ ˙̄Ω
∂a

∆a(t0)(t− t0)

+
∂ ˙̄Ω
∂i

∆i(t0)(t− t0) +
1
2

∂ ˙̄Ω
∂i

di
dt
(t− t0)

2].

(10)

There are four initial variables, ∆Ω(t0), ∆a(t0), ∆i(t0), and−(βs−Ω) in Equation (10).
In this paper, we assume ∆Ω(t0) = 0 and only consider the effect of other three variables
of a given sun-synchronous orbit around Saturn.

The initial orbital elements of the circular sun-synchronous orbits given in this paper
are a = 62,268 km, e = 0.01, i = 90.0483 deg, Ω = −45 deg, ω = 30 deg, and M = 0 deg.
The ecliptic of longitude of the Sun is fixed at βs = 90 deg.

When we choose small initial orbital deviation ∆a0 = 1 km, ∆i0 = 0.001 deg, and
arbitrary Ω ∈ [0, 360] deg, we could know the local time drift at any descending node after
10 Earth years in Figure 2a. In Figure 2a, in the range of −(βs −Ω) ∈ [0, 90] ∪ [180, 270]
deg, the local time drift ∆T is positive, which means the local time at descending node has
been delayed. In the range −(βs −Ω) ∈ [90, 180] ∪ [−90, 0] deg, the local time drift ∆T is
negative, which means the local time at the descending node has been brought forward.
When the initial inclinaiton deviation is slightly greater, the local time in a larger range
of −(βs −Ω) in Figure 2b is delayed. On the contrary, when we choose a negative initial
inclination deviation, the absolute value is equal to the initial inclination deviation of
Figure 2b, the local time of more area of Figure 2c is brought forward. Furthermore, we
could still observe from Figure 2a–c that the distribution of the extremum of local time drift
is fixed, regardless of whether and how the value and sign of −(βs −Ω) change. To reduce
the influence of different choices of initial condition, we choose the value of −(βs −Ω)
where the local time drift will reach the extremum after 10 Earth years. Therefore, in
this paper, we fix the value −(βs −Ω) = −135 deg, which means the local time at the
descending node is 15:00.

When we fix the initial inclination deviation and choose different initial semimajor axis
deviation, comparing Figure 2b with Figure 2d, the extremum of local time drift of these
two figures almost have the same distribution. This means the first-order approximation
of local time drift is sensitive to the initial inclination deviation and insensitive to the
initial semimajor axis deviation. Thus, we fix the semimajor axis deviation in this paper
∆a0 = 1 km.

When we consider the solar gravitation perturbation and the atmospheric drag at the
same time, we should use Equation (9) to calculate the local time drift at the descending
node. The fact we should notice is that the changing trend of da

dt and di
dt is quadratic function

of time t [29]. Therefore, we try to simulate the effect of atmospheric drag by using the
inclinaiton drift caused by solar gravity. In this way, we only need to choose inclination
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prebiased methods to offset the local time drift caused by two different kinds of force. The
explicit calculation of local time drift:

∆T̃ =
1.776× 180

π
∆Ω(t)

=
1.776× 180

π
{∆Ω(t0) + (

∂ ˙̄Ω
∂a

da
dt

/
∂ ˙̄Ω
∂i

di
dt

+ 1)

[
∂ ˙̄Ω
∂i

∆i(t0)(t− t0) +
1
2

∂ ˙̄Ω
∂i

di
dt
(t− t0)

2]}.

(11)

We find two figures to test the effect of simulating method used in Equation (11). In
each figure, there are two curves representing the local time drift in 5 years in different
calculation methods. The curves which have considered atmospheric drag use Equation (9).
The curves simulating the atmospheric drag use Equation (11). Comparing Figure 3a
with Figure 3b, we learn that the circular sun-synchronous orbits with the smaller initial
inclination deviation has the better simulating effect of atmospheric drag.

Then we use two methods in this paper to offset the local time drift at the descend-
ing node.

The first control strategy is using initial inclination biased method. This control
strategy suits the spacecraft whose entire lifetime is not too long. We take an initial
inclination bias to make the spacecraft located in a quasi-sun-synchronous orbit. Then the
inclination of the quasi-sun-synchronous orbit will oscillate around its normal inclination
in its lifetime but still maintain the feature of sun-synchronous orbits.

(a) (b)

(c) (d)

Figure 2. Four initial conditions of the local time drift at descending node in 10 Earth years
with solar gravitational perturbation effect: (a) ∆a0 = 1 km, ∆i0 = 0 deg, Ω ∈ [0, 360] deg,
βs = 90 deg; (b) ∆a0 = 1 km, ∆i0 = 3× 10−4 deg, Ω ∈ [0, 360] deg, βs = 90 deg; (c) ∆a0 = 1 km,
∆i0 = −3× 10−4 deg, Ω ∈ [0, 360] deg, βs = 90 deg; and (d) ∆a0 = 10 km, ∆i0 = 3× 10−4 deg,
Ω ∈ [0, 360] deg, βs = 90 deg.
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When te = −∆i(t0)
di
dt

, the local time drift ∆T̃ in Equation (11) sees its extremum

∆T̃(te) = −
3996
25π

∂ ˙̄Ω
∂i

∆i(t0)
2

di
dt

. (12)

If the end of lifetime of the spacecraft is t f , then the limit of local time drift at de-
scending node is |∆T̃(t f )| ≤ ∆T̃(te). Let ∆T̃(t f ) = −∆T̃(te), then we find the initial
inclination bias:

∆i(t0) = (1−
√

2)
di
dt

t f . (13)

From Figure 3c,d, we learn that the prebiased initial strategy damps the local time
drift at the descending node in the designed 5 Earth years’ lifetime of spacecraft.

The second control strategy is designed for the spacecraft which need to execute a
long-time mission. This method needs periodic inclination bias to damp the local time drift
caused by solar gravitation. The extremum of local time drift Equation (11) in a period

tc = −2
∆i(tc0 )

di
dt

is equal to a fixed local time drift limitation ∆T̃

|∆T̃(
tc

2
)| = |∆T̃|,

use the calculation equation in

1.776× 180
π

[∆Ω(t0)−
1
2
(

∂ ˙̄Ω
∂a

da
dt

/
∂ ˙̄Ω
∂i

di
dt

+ 1)
∂ ˙̄Ω
∂i

∆i(tc0)
2

di
dt

] = |∆T̃|

when ∆Ω(t0) = 0, then we find

−3996
25π

(
∂ ˙̄Ω
∂a

da
dt

/
∂ ˙̄Ω
∂i

di
dt

+ 1)
∂ ˙̄Ω
∂i

∆i(tc0)
2

di
dt

= |∆T̃|

and the value of periodic inclination bias can be derived naturally:

|∆i(tc0)| =

√√√√| 25π

3996

di
dt ∆T̃

∂ ˙̄Ω
∂i (

∂ ˙̄Ω
∂a

da
dt / ∂ ˙̄Ω

∂i
di
dt + 1)

| (14)

where the sign of ∆i(tc0) is opposite to the sign of di
dt .

From Figure 3c,d, compared with Figure 4a,b, the periodic inclination biased method
has the better effect of local time drift limitation. Meanwhile, comparing Figure 4a with
Figure 4b, it is obviously also sensitive to the initial inclination deviation. Therefore,
regardless of the methods, it is essential to limit the initial inclination deviation ∆i0.
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(a) (b)

(c) (d)

Figure 3. A comparison between ∆T considered atmospheric drag and ∆T̃ simulating the atmospheric
drag in 5 Earth years (a) ∆a0 = 1 km, ∆i0 = 1× 10−5 deg, −(βs −Ω) = −135 deg; (b) ∆a0 = 1 km,
∆i0 = 1× 10−4 deg, −(βs −Ω) = −135 deg. A comparison between ∆T considered atmospheric
drag and ∆T̃ simulating the atmospheric drag with a prebiased initial inclination in 5 Earth years
(c) ∆a0 = 1 km, ∆i0 = 1× 10−5 deg, −(βs −Ω) = −135 deg; (d) ∆a0 = 1 km, ∆i0 = 1× 10−4 deg,
−(βs −Ω) = −135 deg.

(a) (b)

Figure 4. The local time drift ∆T̃ after four inclination biased periods when the limited extremum of
local time drift ∆TL = 0.1 min (a) ∆a0 = 1 km, ∆i0 = 1× 10−5 deg,−(βs −Ω) = −135 deg, control
period TP = 363 days; (b) ∆a0 = 1 km, ∆i0 = 5× 10−5 deg,−(βs −Ω) = −135 deg, control period
TP = 154 days.
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3. Repeating Ground Track Orbits and Orbital Maintenance

The repeating ground track is significant for remote sensing satellites. The condition for
spacecraft achieving repeating ground track is R∆λ = 2πN, where R and N are relatively
positive prime numbers. The interval of the adjacent ground track on the equator is [28,29]

∆λ = TN(ωS − ˙̄Ω), (15)

which ωS is the angular rotational velocity of Saturn.
The nodal period of the motion of spacecraft is

TN =
2π

˙̄M + ˙̄ω
. (16)

According to the mean element theory [16], the average perturbing rates of M and
ω is [37]

˙̄M = n + Ṁ1 + Ṁ2,
˙̄ω = ω̇1 + ω̇2,

(17)

where

Ṁ1 =
3nJ2R2

e
2p2 (1− 3

2
sin2 i)

√
1− e2,

ω̇1 = −3nJ2R2
e

2p2 (
5
2

sin2 i− 2),
(18)

Ṁ2 =
9nJ2

2 R4
e

8p4 (1− e2)(1− 3
2

sin2 i)2

+
9nJ2

2 R4
e

4p4 {
√

1− e2(
5
2
− 19

3
sin2 i +

233
48

sin4 i)

+
e4

√
1− e2

(
35
12
− 35

4
sin2 i +

315
32

sin4 i)

+
√

1− e2e2[(
10
3
− 5J4

4J2
2
) + (−26

3
+

25J4

4J2
2
) sin2 i + (

103
12
− 175J4

32J2
2
) sin4 i]},

(19)

ω̇2 =
9nJ2

2 R4
e

4p4 {(4− 10J4

3J2
2
) + (−103

12
+

155J4

12J2
2
) sin2 i + (

215
48
− 245J4

24J2
2
) sin4 i

+
√

1− e2(2− 11
2

sin2 i +
15
4

sin4 i) + e2[(
7
12
− 15J4

4J2
2
) + (−3

8
+

105J4

8J2
2

) sin2 i

+ (−15
32
− 315J4

32J2
2
) sin4 i]}.

(20)

In this paper, we use the ground track repetition parameter Q = R/N to describe
different repeating ground track orbits. Here, we should pay attention to the meaningful
range of repetition parameter Q [29].

To find a suitable repetition parameter, we should firstly find the lower bound of Q by
using the discriminant of f (sin i):

f (sin i) = A1 sin4 i + B1 sin2 i + C1 = 0, (21)

where

A1 =
9nJ2

2 R4
e

4p4 [(
215
48
− 15

32
e2 +

15
4

√
1− e2)− 35J4

18J2
2
(

21
4

+
81
16

e2)] +
9nJ2

2 R4
e

4p4

√
1− e2(

9
8

√
1− e2

+
233
48

+
103
12

e2 +
315
32

e4

1− e2 −
105J4

32J2
2

e2),
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B1 =
3nJ2R2

e
4p2 {−5 +

3J2R2
e

p2 [−103
12
− 3

8
e2 − 11

2

√
1− e2 +

35J4

6J2
2
(

31
14

+
9
4

e2)]} − 9nJ2R2
e

4p2

√
1− e2

+
9nJ2

2 R4
e

4p4

√
1− e2(−3

2

√
1− e2 − 19

3
− 26

3
e2 − 35

4
e4

1− e2 +
25J4

4J2
2

e2),

C1 =
3nJ2R2

e
4p2 {4 +

3J2R2
e

p2 [(4 +
7

12
e2 + 2

√
1− e2)− 5J4

6J2
2
(4 +

9
2

e2)]}+ 3nJ2R2
e

2p2

√
1− e2

+
9nJ2R4

e
4p4

√
1− e2(

1
2

√
1− e2 +

5
2
+

10
3

e2 +
35
12

e4

1− e2 −
5J4

4J2
2

e2) + n + Q(ns −ωs).

To promise f (sin i) has four real roots, the discriminant should be non-negative, i.e.,

B2
1 − 4A1[C̃1 −Q(ωs − ns)] ≥ 0.

Solving the inequality, we find the lower bound of Q:

Q ≥
C̃1 −

B2
1

4A1

ωs − ns
,

where C̃1 = C1 −Q(ns −ωs).
To estimate the maximum of repetition parameter, we use the rotational period of

Saturn Ts and the period of spacecraft in a low orbit Tl . Then the upper bound of Q can be
presented as:

Q ≤ Ts

Tl
.

Using the data from the planet model of Saturn, we find the meaningful range of
repetition parameter for engineering application: 2.4701 ≤ Q ≤ 2.5191.

For different chosen values of repetition parameter Q, we see a function f (sin i) that
describes the relation between the inclination i and the semimajor axis a of repeating ground
track orbits. The relation between i and a are shown in Figure 5 for three given meaningful
values of Q. Using Equation (21), when initial semimajor axis and eccentricity are given,
the corresponding inclination is the root of f (sin i). In Figure 6, we present the repeating
ground track orbit around Saturn when initial orbital elements and repetition parameter Q
are given.

Figure 5. The relation between a and i of repeating ground track orbits for repetition parameter
Q = 2.48, 2.49, and 2.50.
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Figure 6. The repeating ground track orbit around Saturn for a = 61539 km, i = 133.2052 deg,
e = 0.001, ω = 45 deg, Ω = 30 deg, and repetition parameter Q = 2.49.

An inevitable perturbation which can cause the semimajor decay in repeating ground
track orbits is atmospheric drag. The semimajor axis decay due to atmospheric drag leads
to a shorter period and damage of the recursive feature.

The difference between actual angular velocity and nominal angular velocity can be
presented as [29]:

∆n = −3n̄
2ā

(a0 +
da
dt

t− ā),

where a0 is the initial semimajor axis, ā is the nominal semimajor axis, and n̄ is nominal
angular speed.

The increase in angular speed results in the longitude drift of ground track. Obviously,
we can learn from Equation (7) that ȧ < 0. Therefore, if a0 ≤ ā, the longitude will drift
eastward monotonously. To maintain the feature of repeating ground track orbits, we
should take a maneuver to make initial semimajor axis a0 > ā. Then, in the first coming
time interval ts = −∆a

ȧ , the longitude will drift westward. When d∆λ
dt = − 3π

ā (∆a + ȧt) = 0,
the longitude of the ground track would reach the western boundary. In the second time
interval ts, the longitude will drift eastward and finally return back to the initial longitude.
Then we can find the longitude drift compared to the nominal repeating ground track orbits:

∆λ = −ωs

n̄

∫ t

0

3n̄
2ā

(a0 +
da
dt

t− ā)dt

= −3ωs

2ā
[(a0 − ā)t +

1
2

ȧt2],
(22)

where ωs is the angular rotation speed of Saturnian.
In the whole control period, when we fix the limitation of longitude drift ∆λL, then

we can find the control period ∆TC and compensation ∆a of semimajor axis [29]:

∆λL = −3π(∆a)2

2āȧ
,

∆a =

√
−2āȧ∆λ

3π
,

∆TC = −2∆a
ȧ

.

(23)

Thus, in each period, when the longitude of ground track drift to the eastern bound-
ary, we have to take a maneuver ∆a to compensate the decay of semimajor axis. Here
we assumed projected area of spacecraft S = 20 m2, Cd = 2.1, ∆λL = 10 km, and mass
m = 3000 kg. The density of simplified atmospheric model, in the range of semi-major
axis a ∈ [62,268, 62,468] km, is ρ ∈ [3.7× 10−12, 4.7× 10−12] kg/m3 [8]. Then we find the
Figures 7 and 8 which illustrate the the control compensation of semimajor axis and control
period of repeating ground track orbits. From Figure 7, we know the semimajor compen-
sation ∆a for a ∈ [62,268, 62,468] km varies from 5200 m to 5800 m. The corresponding
compensation period ∆TC in Figure 8 varies from 18 h to 16 h. Compared to Jupiter [29],
Saturnian atmospheric drag is about 2 orders of magnitude greater than Jovian atmospheric
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drag when the spacecraft is at the same altitude. As a result, it is essential to execute the
semimajor axis compensation for repeating ground track orbits around Saturn.

Figure 7. The semimajor aixs compensation ∆a(m) for repeating ground track orbits where
a ∈ [62,268, 62,468] km.

Figure 8. The semimajor aixs compensation period ∆TC(hours) for repeating ground track orbits
where a ∈ [62,268, 62,468] km.

4. Frozen Orbits

Before analyzing frozen orbits, we first investigate the orbits at the critical inclination.
The traditional design of the orbits at critical inclination around Earth just considers
the J2 term by which the first order secular variation of eccentricity and argument of
perigee are [15,16]:

ė1 = 0,

ω̇1 = −
3nJ2R2

2
2a2(1− e2)2 (

5
2

sin2 i− 2).

Different from the methods which only considered J2, we still need to calculate the
perturbation caused by J2 and J4 terms. Though the magnitude of J2 term exceeds J3
term 1000 times, J4 term still plays an important role in aspheric perturbation. Thus, the
conditions for the orbits at the critical inclination should be combined ω1 with ω2:

ė1 = ė2 = 0,
˙̄ω = ω̇1 + ω̇2 = 0.

(24)
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However, the critical inclination cannot satisfy most missions for remote sensing
satellites. For the purpose of missions, we must consider the frozen orbits around Saturn.
Frozen orbits are the orbits which own small constant eccentricity and constant argument
of perigee while arbitrary inclination and orbiting altitude can be chosen. The frozen orbits
we designed which have small eccentricity must consider first order long-period terms [23].
The main parts of long-period terms are [16]

ėl
1 = − J3Re

2J2 p
sin i(1− e2) sin ω,

ω̇l
1 = − J3Re

2eJ2 p
(1− e2 cos2 i

sin i
) cos ω.

(25)

Then the complete conditions for frozen orbits are combined by Equations (24) and (25) [23].{
˙̄e = ė1 + ė2 + ėl

1 = 0,

˙̄ω = ω̇1 + ω̇2 + ω̇l
1 = 0.

(26)

Using ω = 90◦ or ω = 270◦ to solve Equation (26), respectively, we learn that only
when ω = 270◦ can the eccentricity e be positive. In Figure 9, the values of eccentricity are
presented for different combinations of semimajor axis and inclianition.

Figure 9. The eccentricity e for different value of semi major axis a and inclination i when ω = 270 deg.

5. Stationary Orbits and Orbital Maintenance

Stationary orbits are more complex than those we have considered before. Therefore,
we investigate stationary orbits in a special condition. When we investigate the stationary
orbits around terrestrial planets, we must take the J22 term into our gravitational field
model and analyze the longitude drift caused by aspheric perturbation. Here we only
analyze aspheric perturbation caused by the J2, J4 terms, as Saturn is exactly a gaseous
planet which means the J22 term could be neglected.

The spherical coordinates O− r, λ, ϕ, where O is the centroid of Saturn, r is the distant
from the spacecraft instant position to O, λ and ϕ represent the longitude and latitude
of the spacecraft separately. The equations of motion of stationary orbits in the spherical
coordinates can be written as [28]
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r̈− r cos2 ϕλ̇2 − rϕ̇2 =− µ

r2 −
3µJ2R2

e
2r4 (3 sin2 ϕ− 1)

+
5µJ4R4

e
8r6 (35 sin4 ϕ− 30 sin2 ϕ + 3),

d
dt
(r2λ̇ cos2 ϕ) =0,

rϕ̈ + 2ṙϕ̇ +
1
2

r2 sin(2ϕ)λ̇2 =− [
3µJ2R2

2r3 +
µJ4R4

8r5 (70 sin2 ϕ− 30)] sin 2ϕ.

(27)

Spacecraft staying in stationary orbits around Saturn must satisfy these conditions [28]:
ṙ = r̈ = 0,

λ̇ = n, λ̈ = 0,

ϕ̇ = ϕ̈ = 0.

Then we gain the equation of stationary orbits at ϕ = 0 as

µ

r3 +
3µJ2R2

2r5 − 15µJ4R4

8r7 = n2. (28)

Solving Equation (28), we find the radius of stationary orbits around Saturn is
rs = 112,506.0294 km.

After learning the structure of Saturn’s rings [12], we know that spacecraft in the
stationary orbit around Saturn may have a collision with the B-ring.

Using nonsingular elements {a, ex = e cos(Ω + ω), ey = e sin(Ω + ω), ix = sin i sin Ω,
iy = sin i cos Ω, λ = Ω + ω + M}, we first calculate the secular solar gravitation pertur-
bation of ix, iy and ex, ey. When ϕ = 0, the normal perturbation force caused by the solar
gravitation can be written as [33]:

Fn = 3rn2
s (sin α sin βs cos is + cos α cos βs) sin βs sin is, (29)

where α is the longitude of spacecraft in the stationary orbit, ns is the angular speed of
Saturn around the Sun, βs is the ecliptic longitude of the Sun, is is the obliquity of the ecliptic
of Saturn. The derivative of ix, iy perturbed by normal solar gravitation in a Saturnian
rotation period are [33]

dix

dt
=

3n2
s

n
[
1
4

sin2 βs sin 2is + (
1
8

sin 2βs cos is)ix,

+ (−1
8

cos2 βs −
3
8

sin2 βs cos is +
1
2

sin βs sin is)iy],
(30)

diy
dt

=
3n2

s
n

[
1
4

sin 2βs sin is − (
1
8

sin 2βs cos is)ix

+ (
1
8

cos2 βs +
3
8

sin2 βs cos is −
1
2

sin βs sin is)iy].
(31)

Here, we apply the Equations (30) and (31) to analyze the perturbation of the stationary
orbit caused by solar gravitation, then we find the average rate of inclination vector
perturbed by solar gravity in a sidereal orbit period:
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∆ix

∆t
=

1
2π

∫ 2π

0

dix

dt
dβs

=
3n2

s
n

[(− 1
16
− 3

16
cos2 is +

1
4

sin2 is)iy +
1
4

sin is cos is],

∆iy
∆t

=
1

2π

∫ 2π

0

diy
dt

dβs

=
3n2

s
n

(
1
16

+
3

16
cos2 is −

1
4

sin2 is)ix.

(32)

After solving this first order linear ordinary differential equation system Equation (32),
we find the ix(t), iy(t) for any time t with initial condition ix(t0), iy(t0).

ix(t) =ix(t0) cos[
3n2

s
32n

(7 cos(2is) + 1)t]

−(iy(t0)−
4 sin(2is)

7 cos(2is) + 1
) sin[

3n2
s

32n
(7 cos(2is) + 1)t]

=(0.621896− iy(t0)) sin(1.35686× 10−13t) + ix(t0) cos(1.35686× 10−13t),

iy(t) =ix(t0) sin[
3n2

s
32n

(7 cos(2is) + 1)t]

+(iy(t0)−
4 sin(2is)

7 cos(2is) + 1
) cos[

3n2
s

32n
(7 cos(2is) + 1)t] +

4 sin(2is)

7 cos(2is) + 1

=0.621896 + ix(t0) sin(1.35686× 10−13t)

+(iy(t0)− 0.621896) cos(1.35686× 10−13t).

(33)

Before we analyze the perturbation of inclination vector, we firstly set the maximum
of inclination perturbation |∆imax| = 0.2865◦. Then we could draw the Figure 10a,b of
ix, iy separately for each initial condition value ix0 = ix(t0), iy0 = iy(t0) in the limited circle.
Once we see Figure 10a,b, what we know immediately is that the inclination perturbation
is so small that the magnitude is smaller than 1× 10−3 in 5 Earth years. Furthermore,
comparing Figure 10a with Figure 10b, we learn evidently that the magnitude of ∆iy is two
order magnitude smaller than ∆ix in a given time of 5 Earth years. This means when we
plot the perturbation of inclination vector of stationary orbit around Saturn over a long
time, we could hardly see a sight difference in iy.

(a) (b)

Figure 10. (a) ∆ix (b) ∆iy after 5 Earth years with initial inclination vector point (ix0 , iy0 ) in the
inclination limited circle whose radius r = 0.2865 deg perturbed by solar gravity.

Though the inclination perturbation caused by solar gravity could hardly influence
the spacecraft in stationary orbit around Saturn, we still analyze the control strategy of
ix, iy in a preliminary way. When we know how the solar gravity perturbation acts, we
could calculate ∆i for any initial (ix0 , iy0) to stay in the limited circle. The area of the cool
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tone circle overlap limited circle in Figure 11 indicates the initial point (ix0 , iy0) in this area
are still remained in the limited circle after 100 Earth days. By observing the perturbation
feature of stationary orbit around Saturn, we know that minimum maneuver

−→
∆i to keep

ix, iy staying in the limited circle is from the boundary of limited circle pointing towards

the center of the cool tone circle. The value of
−→
∆i of (ix0 , iy0) in warm tone area in Figure 11

indicates the minimum inclination maneuver of (ix0 , iy0) to keep (ix(t), iy(t)) remained in
the limited circle after 100 Earth days.

Figure 11. ∆i for control period ∆TC = 100 Earth days with initial inclination vector point (ix0 , iy0 ) in
the inclination limited circle whose radius r = 4.58× 10−5 deg perturbed by solar gravity.

After analyzing the effect caused by solar gravity perturbation, we now turn to
the solar radiation pressure which may lead to eccentricity drift. First, the mean solar
irradiance around Saturn is P = 15.04 W/m2 while the distance from the Sun to Saturn is
1.426× 1012 m [38]. Then we find the intensity of solar radiation pressure is p = P

c =
5.0168× 10−8 N/m2, where c = 299,792,458 m/s is the speed of light. Using other supposed
parameters: the reflection parameter K = 1, area of spacecraft vertical to the Sun A = 20 m2,
the mass of spacecraft m = 3000 kg, then the solar radiation pressure of spacecraft on
stationary orbits around Saturn is [34]:

Fs =− Kp(
A
m
)S = 3.3445× 10−10S (34)

where S is the unit vector from the centroid of Saturn pointing at the Sun.
Using the Lagrange perturbation equations, we could find the average time derivatives

of the eccentricity vector ex = e cos(ω + Ω), ey = e sin(ω + Ω) in Equation (35).

dex

dt
=

1
2π

∫ 2π

0

1
na

(Fr sin l + 2Ft cos l)dl

= − 3Fs

2na
sin ls cos is,

dey

dt
=

1
2π

∫ 2π

0

1
na

(−Fr cos l + 2Ft sin l)dl

=
3Fs

2na
cos ls,

(35)
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Fr =−
Fs

2
[(1− cos is) cos(Ω + ω + f + ls) + (1 + cos is) cos(Ω + ω + f − ls)],

Ft =
Fs

2
[(1− cos is) sin(Ω + ω + f + ls) + (1 + cos is) sin(Ω + ω + f − ls)].

(36)

where Fr and Ft are the radial component and tangential component of solar radiation
pressure Fs.

When we analyze the eccentricity perturbation of spacecraft in stationary orbits over a
long time period, we learn that the motion of the Sun in a time period could be described
as ∆ls = ls(t)− ls(t0) = ns(t− t0). Then we find the time integral of the eccentricity vector
for any given t.

ex(t) = ex(t0) +
3Fs

2na
1
ns

[cos ls(t)− cos ls(t0)] cos is,

ey(t) = ey(t0) +
3Fs

2na
1
ns

[sin ls(t)− sin ls(t0)].
(37)

We learn from Equation (37) that the curve of the eccentricity vector is an ellipse due
to the existence of cos is, and initial condition (ex0 , ey0) and ls0 influence the position of this
eccentricity ellipse. From Figure 12, we learn that ls0 , which means the angular between
initial solar radiation direction and x axis, can influence the perturbing direction. The
centre of eccentricity limitation circle is (ex0 , ey0).

Figure 12. A total of 72 curves of f (ex, ey) perturbed by solar radiation pressure for ls0 = 5n deg,
the integral n ∈ [0, 72], in a Saturnian year with initial eccentricity vector (ex0 , ey0 ) = (0, 0) in the
eccentricity perturbation limited circle whose radius r = 3× 10−7.

Here, we fix the (ex0 , ey0) = (0, 0). When (ex0 , ey0) 6= (0, 0), we can first take a
maneuver to make the point (ex0 , ey0) = (0, 0) in the curve of eccentricity perturbation.
Then, we can design a maintenance strategy. When taking an eccentricity control, we used
to set ∆Vt > 0, then we could suppose B = −∆Vt

T , and find the maneuver function [39]:

dex

dt
= − 2

na
B cos(ls −

π

2
),

dey

dt
= − 2

na
B sin(ls −

π

2
).

Combined with solar radiation pressure perturbation Equation (35), the rate of eccen-
tricity vector (ex, ey) after a maneuver could be rewritten as
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dex

dt
= − 3Fs

2na
sin lscos is +

2
na

B cos(ls −
π

2
)

= − 3Fs

2na
sin ls cos is −

2
na

B sin ls,

dey

dt
=

3Fs

2na
cos ls +

2
na

B sin(ls −
π

2
)

=
3Fs

2na
cos ls +

2
na

B cos ls.

(38)

We still integrate Equation (38), then we could find the eccentricity vector at any time
t after we take an eccentricity control maneuver.

ex(t) = ex(t0) +
3Fs

2na
1
ns

[cos ls(t)− cos ls(t0)] cos is +
2

na
B
ns

[cos ls(t)− cos ls(t0)],

ey(t) = ey(t0) +
3Fs

2na
1
ns

[sin ls(t)− sin ls(t0)] +
2

na
B
ns

[sin ls(t)− sin ls(t0)].
(39)

To find a better control effect, we take 6 times eccentricity control for different initial
solar radiation direction.

ex(t) = ex(t0) +
3Fs

2na
1
ns

[cos ls(t)− cos ls(t0)] cos is +
6

∑
i=1

2
na

B
ns

[cos ls(ti)− cos ls(ti0)],

ey(t) = ey(t0) +
3Fs

2na
1
ns

[sin ls(t)− sin ls(t0)] +
6

∑
i=1

2
na

B
ns

[sin ls(ti)− sin ls(ti0)],

where
B = −5× 10−11m/s2

ls(t0) = 0 deg,

ls(ti0) = 60 deg× i, i = 1 . . . 6.

Compared Figure 12 with Figure 13, we could know that ex, ey are kept staying in the
eccentricity limited circle after a Saturn’s year for initial (ex0 , ey0) = (0, 0) and any given
solar radiation direction ls0 .

Figure 13. After taking 6 times eccentricity control when B = −5× 10−11m/s2, 72 curves of f (ex, ey)

perturbed by solar radiation pressure for ls0 = 5n deg, integral n ∈ [0, 72] in a Saturnian year with
initial eccentricity vector point (ex0 , ey0 ) = (0, 0) in the eccentricity perturbation limited circle whose
radius r = 3× 10−7.
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6. Conclusions

In our paper, we analyze the sun-synchronous orbits, repeating ground track orbits,
frozen orbits, and stationary orbits around Saturn and corresponding control strategies
based on the mean element theory while zonal harmonic coefficients J2 and J4 of Saturnian
gravitational field are considered.

For sun-synchronous orbits, we analyze the existence of orbits, find the relation
between inclination with eccentricity and semi major axis, and calculate the local time drift
caused by solar gravitation and atmospheric drag. After that, we take two inclination-
biased control strategies to damp the local time drift. The initial inclination-biased method
suits the short-time spacecraft. The periodic inclination biased method has a better effect
on long-period missions.

For repeating ground track orbits, we find the meaningful range of repetition parame-
ter Q. Then we find the relation between the inclination and semimajor axis. After that, we
calculate the compensation for semimajor axis and maneuver period.

For frozen orbits, we learn that only when ω = 270 deg can we be sure of the
eccentricity positive for any given inclination and semimajor axis.

For stationary orbits, we first calculate the radius using the conditions of equilibrium
point. Then, we analyze the perturbations caused by solar gravitation and solar radiation
pressure. Finally, we take corresponding maneuver strategies to control the inclination
and eccentricity.
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