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Featured Application: The microwave down converter proposed in this work might be exploited
in satellite systems, particularly for electronic warfare applications based on CubeSat systems.
Due to the wide operating bandwidth, it can be used as the receiver stage of different applica-
tions, also taking advantage of its cost-effectiveness.

Abstract: In this work, a microwave down converter is proposed for nanosatellite electronic warfare
applications. It provides high spurious suppression by exploiting a dual-conversion architecture and
premium performance in terms of noise figure and linear dynamic range. The system design takes
advantage of commercial off-the-shelf components, thus allowing for both fast and cost-effective
prototyping, which are key requirements particularly concerning CubeSat systems. Since different
military, commercial, radar and communication systems operate in the 2–18 GHz frequency band, the
capability to integrate such kinds of receivers in CubeSats represents the new frontier of the electronic
warfare systems. Moreover, due to the wide operating bandwidth, it can be successfully exploited as
the receiver for different applications, e.g., satellite communication, radars, etc.

Keywords: satellite communications; CubeSat; electronic warfare (EW); down converter; receiver;
space applications; military systems

1. Introduction

Nowadays, military and defense departments pay particular attention to a wide
variety of advanced technologies aimed at analyzing and manipulating the microwave
frequency spectrum both for attack and defense purposes. The set of techniques and
technologies employed to control and deny free access to the electromagnetic spectrum are
commonly gathered under the name of electronic warfare (EW) [1–3].

Despite the great strides made by the researchers, the growing number of related
scientific articles demonstrates that this is still a cutting-edge topic supported by a great
scientific effort [4–10].

EW hardware architectures require wideband receivers to increase the extent of possi-
ble intercepted signals that are typically within the 2–18 GHz frequency bandwidth [11].

On the other hand, we are witnessing a disruptive increase of nanosatellite launches,
e.g., CubeSat, with missions addressed not only by space agencies and commercial compa-
nies, but also by university teams [12–16].

CubeSats are a class of nanosatellites, built by complying with the standard dimensions
of 10 cm × 10 cm × 10 cm. This standard “cube” represents a CubeSat Unit (U-), which
typically weighs less than 1.33 Kg. Multiple units can be assembled in order to enhance the
nanosatellite capabilities, e.g., a 6-U CubeSat can be created by using six standard units. By
using standard dimensions, the designers can seize the opportunity to lunch their Cubesat
by joining existing launch opportunities, thus keeping the launch cost low.

The great success of such a kind of compact and lightweight satellites can be attributed
to their cost-effectiveness compared to larger size counterparts, enabled by the employment
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of commercial off-the-shelf (COTS) components, which are also easily accessible by uni-
versity programs with limited budget. CubeSat projects might be completed within a very
short time compared to traditional satellite schedules. They also represent great educational
tools, e.g., for demonstrating technologies, novel techniques or scientific missions.

In this scenario, the possibility to integrate EW systems in CubeSats represents a great
chance to fuel the research and development in this field.

In this contribution, a microwave down converter was designed for CubeSat EW
applications. The complete down-conversion chain, including the double stage of local
oscillator (LO) generation, was designed in a unique compact system that can be integrated
in nanosatellites. Particular attention was paid to keep costs low and to the overall system
reliability. The down converter involves a dual-conversion architecture to provide a severe
reduction of both the number and level of spurious signals in the band of interest.

This task is addressed by first up-converting the received signal to a higher frequency,
whereby the filtering stage might be more effective, and therefore by down-converting the
filtered signal to baseband [17].

The system simulations exhibit spurious free dynamic range (SFDR) and linear dy-
namic range (LDR) equal to 40.2 dB and 52.6 dB, respectively, an overall noise figure (NF)
lower than 3.2 dB and a flat conversion gain (CG) about equal to 28.3 dB.

Another interesting feature of the proposed down converter concerns the possibility
to be exploited for different applications. Indeed, its wide operating bandwidth includes
the operating frequencies of a great number of applications, e.g., satellite communication,
radars, etc., where it can used as receiving stage [18–23].

2. Circuit Design and Performance

The block diagram of the proposed microwave down converter is reported in Figure 1. The
entire system was simulated within the Cadence AWR Microwave Office design environment.
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Figure 1. Block diagram of the dual–conversion microwave down converter.

The 2–18 GHz weak received signal is amplified by means of the CMD240C4 low-noise
amplifier (LNA) by Qorvo, Inc. Thereafter, the amplified signal is applied to the MM1-
1467H mixer by Marki Microwave, Inc., with the aim of performing the signal up-conversion
to the 1 GHz bandwidth centered on 29 GHz. This task is accomplished by exploiting the
mixer sum output, avoiding too high LO signals and, thus, the use of highly expensive
components or multiple multiplication stages, which would dramatically increase the
spurious number. The LO generation is addressed by injecting the 13.5–5.5 GHz signal
generated by a SW0220 microwave synthesizer by Kratos Defense and Security Solutions,
Inc. into a frequency doubler stage MMD 1030HS by Marki Microwave, Inc. The obtained
27–11 GHz signal multiplied by the 2 18 GHz input allows us to obtain a 29 GHz sum
frequency with minimum spurious generation. Thereafter, the up-converted signal is
amplified by the AMM 6702 amplifier by Marki Microwave, Inc. and filtered by means
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of the PB1182WB bandpass filter by A1 Microwave Ltd. within the bandwidth of about
1 GHz. The power spectrum of the signal after the filtering stage is reported in Figure 2,
showing how the in-band spurious signals are severely reduced by the effective filtering.
The test simulations were performed by considering a sample input frequency of 6 GHz,
hence generating a 23 GHz LO signal.
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Figure 2. Power spectrum of the up-converted signal after the PB1182WB filter.

It is worth noting that A1 Microwave Ltd. does not provide the scattering (S-) pa-
rameters for the PB1182WB filter; thus, its behavior was synthesized by designing an
equivalent lumped-element network. In detail, the main filter parameters were reproduced
by implementing a Chebyshev topology by means of the well-known insertion loss method,
which allows for a high degree of control over the in-band and stopband amplitude and
phase characteristics [24]. A nine-elements network was chosen in order to obtain the
desired matching with the real filter performance. In Figure 3a, the filter schematic is
shown, while the insertion loss and return loss of the filter are reported in Figure 3b. The
excellent matching between the real and reproduced curves might be verified by observing
the data reported in the datasheet of the component [25]. The values of the filter elements
shown in the schematic are reported in Table 1.
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Table 1. Values of the simulated filter elements.

Element Type Element ID Value

Resistor R1, R2 2 Ω
Inductor L1, L6 9.19 nH
Inductor L2, L7 8.07 pH
Inductor L3, L8 15.3 nH
Inductor L4, L9 7.33 pH
Inductor L5 15.74 nH
Capacitor C1, C6 3.24 fF
Capacitor C2, C7 3.70 pF
Capacitor C3, C8 1.95 fF
Capacitor C4, C9 4.07 pF
Capacitor C5 1.90 fF

Thereafter, the MM1-1467H mixer is employed in the down-conversion stage. To this
purpose, the APV-28-10 phase-locked oscillator (PLO) by Atlantic Microwave Ltd. (Braintree,
UK) generates the 28 GHz fixed frequency for the second LO input. Such a LO frequency is
required to obtain the mixer difference frequency output centered at 1 GHz, which is finally
filtered by the VLF-1500+ filter by MiniCircuits. The intermediate frequency (IF) signal
might be easily processed by employing currently available analog-to-digital converters.

The IF signal spectrum at the output of the VLF-1500+ is reported in Figure 4, where
the high spurious suppression is visible.
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The down-converting chain components were carefully selected by paying great
attention at the recommended LO power levels and at matching the dynamic range of
adjacent components. The power budget of the down converter with line marks identifying
the inter-stage output 1 dB compression points, OP1dB, is reported in Figure 5.
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Due to the accurate identification of the required components, the proposed system
exhibits the flat conversion gain shown in Figure 6.
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Unfortunately, different models and data files of the components employed in the
schematic are not furnished with noisy elements and parameters, respectively. As a conse-
quence, it was not possible to simulate the noise behavior of the system, which was instead
analytically estimated. In detail, the noise factor, Fcas, of all the cascaded components in
the path from the signal input up to the IF was computed by using the well-known Friis
formula [24,26–29].

Fcas = FLNA + (FMIX−1)
GLNA

+ (FAMPL−1)
GLNAGMIX

+ (FFILT1−1)
GLNAGMIX GAMPL

+

+ (FMIX−1)
GLNAGMIX GAMPLGFILT1

+ (FFILT2−1)
GLNAGMIX GAMPLGFILT1GMIX

(1)

where FLNA, FMIX, FAMPL, FFILT1 and FFILT2 are the noise factors of the CMD240C4 LNA,
MM1-1467H mixer, AMM-6702 amplifier, PB1182WB filter and VLF-1500+ filter, respectively,
whereas GLNA, GMIX , GAMPL and GFILT1 are the related gains. According to Equation (1),
the NF of the down converter is equal to 3.18 dB.

It is worth noting that the noise figure is defined for a matched input source, and for a
noise source equivalent to a matched load at the temperature T0 = 290. This hypothesis is
reasonably verified for the employed components whose input/output impedance is very
close to 50 Ω. Mismatches at the component ports would imply higher noise temperatures
and thus increased noise figures.

Thereafter, the output noise power N0 was calculated in Equarion (2) by assuming
the receiving antenna is pointed toward the Earth, thus using the equivalent temperature
of the receiving antenna TA equal to T0 [24].

N0 = k(TA + Tcas)BGcas (2)

where k is the Boltzmann constant of 1.38 × 10−23 J K−1, B is the system bandwidth and
Tcas and Gcas are the equivalent noise temperature and the gain of the overall system, as
expressed in Equations (3) and (4), respectively.

Tcas = (Fcas − 1)T0 (3)

Gcas = GLNAGMIXGAMPLGFILT1GMIXGFILT2 (4)

The output noise power of –52.5 dBm was employed to calculate both the LDR and
the SFDR by Equations (5) and (6), respectively.

LDR = OP1dB cas − N0 (5)

SFDR =
2
3
(OIP3 cas − N0)− SNR (6)
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where both the output 1 dB compression point, OP1dB cas, and the output third-order
intercept point, OIP3 cas, hereafter indicated as OPcas, were calculated as:

OPcas =

( 1
OPLNAGMIX GAMPLGFILT1GMIX GFILT2

+ 1
OPMIX GAMPLGFILT1GMIX GFILT2

+

+ 1
OPAMPLGFILT1GMIX GFILT2

+ 1
OPFILT1GMIX GFILT2

+ 1
OPMIX GFILT2

+ 1
OPFILT2

)−1

(7)

According to Equations (5) and (6), the computed values of SFDR and LDR are 40.2 dB
and 52.6 dB, respectively.

A two-tone analysis was performed to graphically evaluate the intermodulation
distortion (IMD) contributions vs. frequency and the OIP3 cas, as reported in Figure 7.
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Although both the topics of satellite/nanosatellite technologies and electronic warfare
systems separately achieved resounding interest in the literature, the possibility to integrate
EW systems in CubeSats has not been investigated in depth. Moreover, a very limited effort
has been devoted to the development of advanced down converter sections for this specific
application and such a wide operating bandwidth. Filling the gap in research on very high
operating bandwidth receivers in the literature represents one of the main purposes of the
present article. As a result of a scientific literature investigation, the system performance
was compared with recent similar results, as reported in Table 2. From Table 2, it is possible
to note the superior performance of the proposed system in terms of noise figure, linear
dynamic range and conversion gain, whereas in [30,31], the premium performance in terms
of spurious free dynamic range was reported.

It is worth noting that previous works do not always share the same metric, due to
different technologies and operating frequencies, thus making an accurate comparison
quite challenging.

The system exhibits premium performance in terms of NF, LDR and conversion gain,
whereas the next effort should be directed towards improving the SFDR.
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Table 2. Performance comparison with recent works.

[30] [31] [32] [17] This Work

Technology Modules Modules MMIC MMIC Modules

Frequency (GHz) 2–18 2–18 0.6–10 1–30 2–18
Conversion gain (dB) ND 28 14 (−4)–(−7) 28.3

NF (dB) 5.5 ND 7 4–7 3.2
LDR (dB) 43 ND ND ND 52.6
SFDR (dB) 50 55 ND 20 40.2

3. Conclusions

In this contribution, the performance of a microwave down converter for nanosatellite
electronic warfare applications is reported. It exploits a dual-conversion architecture
showing noise figure, linear dynamic range and conversion gain equal to 3.2 dB, 52.6 dB
and 28.3 dB, respectively. The system employs COTS components and is expected to be
integrated aboard a CubeSat system. The main features are highlighted and compared to
the existing more recent literature.
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