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Abstract: This paper presents an adaptable password guessability service suited for different pass-
word generators according to what a user might need when using such a service. In particular,
we introduce a flexible cloud-based software architecture engineered to provide an efficient and
robust password guessability service that benefits from all the features and goals expected from
cloud applications. This architecture comprises several components, featuring the combination of a
synthetic dataset generator realized via a generative adversarial network (GAN), which may learn
the distribution of passwords from a given dictionary and generate high-quality password guesses,
along with a password guessability estimator realized via a password strength estimation algorithm.
In addition to detailing the architecture’s components, we run a performance evaluation on the
architecture’s key components, obtaining promising results. Finally, the complete application is
delivered and may be used by a user to estimate the strength of a password and the time taken by an
average computer to enumerate it.

Keywords: password guessability; service; key-rank estimation problem; generative adversarial
networks

1. Introduction

Online passwords security is an ongoing security problem due to constant attacks
on online exposed services and the lack of safe behavior from users while connecting to
those services, especially when users need to create and protect their passwords. Password
guesser tools are improving their capabilities, and nowadays, attackers do not need large
leaks to guess the rest of the passwords [1]. Although today, multi-factor authentication
systems have emerged as a more secure alternative, password authentication remains either
as the only factor used by many users or as one of the factors of multi-factor systems [2]. Any
online information system must have an appropriate security level to prevent an intruder
from accessing the information. Users tend to choose their passwords as combinations of
characters that are easy for them to remember, such as names, dates, and phone numbers,
regardless of how vulnerable passwords can be or of their knowledge about how passwords
might be cracked [3,4]. As a result, attackers or hackers use techniques and tools for
breaching and cracking passwords [5]. This problem represents a vulnerability to be
exploited. Security companies have implemented mechanisms to improve password
security. Passwords must have two fundamental properties: (1) be hard to guess, to make
them secure against brute-force attackers and (2) be easy to remember, so users do not rely
on third-party tools to remember them. Therefore, it is necessary to develop a tool that
allows the users to know how secure their password is, i.e., a tool a user can utilize for
estimating the strength of a chosen password. Additionally, such a tool should leverage
the best available resources to give the appropriate feedback to the users. As evidenced
by the literature discussed in Section 2, a large number of current password-strength
estimators employ large but static and context-unaware password datasets and present
limited usability.
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The desired tool should be built on two premises: (1) learn from frequently updated
datasets to reflect changes in users’ predilections for password creation, and at the same
time (2) give feedback about how common or secure a tested password is. There are some
well-known password-guessing tools such as John the Ripper [6], and Hashcat [7]. Such
tools, however, are not easily integrated as a service for companies and other services to
integrate into their software. Part of a good password security validation tool is the database
it uses to feed its algorithm before evaluating the given password and the algorithm used to
validate it. The proposal from [8] called PassGAN uses neural networks to create valuable
databases, and the algorithm in PESrank [9] ranks the given password as feedback to the
user. The tools mentioned above offer excellent approaches to both problems but do not mix
their solutions for an optimal approach. For this reason, this paper proposes a mechanism
and architecture to strengthen passwords by measuring their degree of strength to reduce
the vulnerabilities that arise from malicious attacks. The proposal creates a set of passwords
with human characteristics and classifies user passwords by their strength, respectively.
This paper aims to build an architecture with modular components that include models and
password-generation algorithms. It will train models to generate dictionaries of passwords
consistent with business systems.

The main contributions of this paper are the following:

• The first adaptable password guessability service offered as a cloud-based service to
benefit from all the features and goals expected for cloud applications, e.g., scalability
and availability. In particular, this paper presents a flexible cloud-based software archi-
tecture engineered to provide an efficient and robust guessability service. The service
leverages one of its components to frequently generate synthetic password datasets,
which are passed as inputs to the password guessability estimator component to adapt
itself to the evolution of the password policies within an organization

• The presented password guessability estimator can be tailored to different languages
as needed, thanks to the dynamic, synthetic password datasets. This result is an im-
provement concerning how password strength estimators usually work, as evidenced
by the literature discussed in Section 2, since they may employ large but static and
context-unaware password datasets.

This paper is structured as follows. In Section 2, we present background material on
security as a service and password security. Additionally, we present the previous works
on password strength estimators. In Section 3, we present our modular architecture for our
proposed guessability service, detailing the design principles behind it and its components.
Section 4 details the main algorithms used for implementing the critical components of
our architecture. In particular, we focus on the synthetic dataset generator component
and the password guessability estimator component. Section 5 presents results about the
performance of our implementation of the proposed architecture. Lastly, Section 6 encloses
our final comments on the paper, highlighting some future research works.

2. Background and Related Work

This section presents background material on security as a service and password secu-
rity, as far as security issues regarding a user’s interaction with edge networks, which is one
of the main drivers of this research. Additionally, we present previous works on password
strength estimators. In general, edge networks and Internet of Things networks interact
with users frequently, demanding a secure authentication based on single or multi-tier
authentication methods. The work in [10] presented a survey on remote user authentica-
tion and issues for networked communication in general. The authors discussed existing
remote user authentication mechanisms approaches, including steps for registration, logins,
session key agreement, and password change. Our work focuses on the issues around
the login step, where the authors assumed a single-step process. The Cloud of Things
is a concept recently proposed to describe the use of cloud computing by the multiple
devices composing the Internet of Things (IoT). The work in [11] presented a multi-factor
authentication system to be deployed in the Cloud of Things and uses secret splitting. Such
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approaches might require updates in the security components of software architectures on
both sides of the communication. Our single authentication approach relies on traditional
and straightforward processes that would not require changes.

2.1. Security as a Service

There are academic and commercial solutions where security functionalities as services
are the architectural design of the product. The work presented in [12] proposed a set
of tools that architects could deploy in the cloud and offer as a service. This solution
builds from a set of functionalities that the cloud provider could offer their clients (called
cloud tenants), which deploy virtual machines with their applications where the security
service is also running. The presented work used virtual machines, while our work used
simple processes that do not depend on virtual machine deployments. This approach
gives freedom for lightweight transition between environments. Another work presented
in [13] delivers a security service that cloud tenants could use to monitor and protect their
application environment deployed in the cloud virtual machine. Their service concept is a
set of functionalities that fulfill the tenants’ security needs while achieving the efficiency,
flexibility, and low-cost features expected for a cloud service. The work of [14] proposed a
series of cloud-native design patterns based on the use of micro-services to design security
as a service architecture that could scale their computational capabilities depending on
the demand peaks that some security events could trigger. Their service is designed to
attend vulnerability assessment requests from cloud tenants. The works mentioned above
all used the same idea of offering features through cloud-based services, giving modern
cloud applications versatility. The same approach was vital in our proposal as it allows for
readiness, vendor independence, and ease of deployment.

A specific group of academic work focuses on offering security services for resource-
restrained networks. Thanks to the dissemination of 5G networks, edge computing,
and massive Internet of Things (IoT), these networks are becoming popular. One such
work is presented in [15], where the authors designed a set of services that a slice of virtual
network could offer to their tenants. In 5G networks, there are virtual divisions created
within networks, called slices. Furthermore, the authors created an architecture for offering
security services within the slices. The work of [16] describes an intrusion detection system
that uses machine learning algorithms to detect anomalies in IoT networks. Given the
characteristics of IoT networks, the authors offered real-time detection capabilities for their
service. These services are offered on top of cloud services that usually support IoT network
communication protocols. This example shows how security services are being deployed
for multiple purposes using similar approaches to the one proposed in this paper.

2.2. Password Security

The main objective of a password is to restrict the access of unauthorized persons to
the system, and therefore we always want them to be sufficiently secure [17]. We have two
common approaches to model password guessability starting from this definition. One uses
large databases from which the strength can be estimated, while a newer approach uses
neural networks. One example of the latter is the work proposed in [18]. The authors de-
veloped a Javascript-based tool that uses a small print neural network model for password
guessing. As stated by the authors, such an approach generates and compresses a neural
network model that users will use on the client’s side. However, the model would need to
be retrained and the compressed version updated to support modification to the learning
dataset. Modifications might arise from how users create their passwords and might arise
from the language used by users to write their passwords. The former approach uses
password databases as a source for strength-guessing algorithms. One such tool is PESrank,
which is in charge of estimating the password’s strength through ranges that allow us to
determine how likely a password is to be found. All passwords are decryptable. However,
having a higher strength will cause attackers to take more resources and more time to
extract them. When compared with both approaches, the proposal from this paper uses
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dynamically updated databases to reflect possible changes that might arise from language
or password creation styles.

We can find dictionary attacks and brute force attacks among the most common attack
techniques. A dictionary attack prioritizes attack speed, although this leads to a smaller
spectrum of possibilities, while a brute force attack covers many more possibilities by
considerably reducing speed. A dictionary attack uses a set of common words to be tested,
while brute force tests all possible character combinations to form character strings [19].
It is possible to use both techniques according to the information available about the
passwords, such as a particular pattern that can be replicated. Dictionary attacks are the
most commonly used because they help save time, and dictionaries are created with leaked
and common passwords that different people have used. Thanks to this, researchers have
created many dictionaries over the years with which these types of attacks are carried out.
Recently, applications that generate password dictionaries such as PassGAN are becoming
known. Side-Channel Attack (SCA) is one of the easiest and most potent methods to
execute against cryptographic implementations, and their targets range from primitives,
protocols, modules, and devices to uniform systems [20]. They pose a severe threat to the
security of cryptographic hardware products. In this way, solutions to key enumeration
problems and rank estimation problems are used to carry out these attacks.

2.3. Password Strength Estimators

The work presented in [21] proposed a Password Strength Estimator that uses pass-
word ranking (PESrank), which according to authors models the behavior of powerful
password crackers. It focuses on giving users feedback regarding the security ranking of
the given password, which gives an idea to the person of how good or bad it is compared
with others. PESrank returns the rank in fractions of a second to be helpful as an online
tool. The authors showed that their tool could be modified to personalize the model used
for ranking according to the application’s particularities. The authors used a set of 905 mil-
lion passwords to train the model. It is important to note that although it is a large set,
situations might change such that the train sets no longer reflect the most current trends in
password creation.

Another work is presented in [22], where the authors proposed a lightweight and fast
strength estimator, and the authors tested it on different platforms. They claimed that their
tool is enough to predict best guessing attacks accurately and conservatively. The work
presented in [23] created an estimator that trained against a leaked list of 14.3 million
passwords. Such a list is used by password-cracking tools. The authors consider the
importance of including leaked passwords in the estimation process to improve the accuracy
of such tools. Although this tool is trained on a large dataset, it is still considered a tool
that feeds from static information. Our work deals with this issue by relying on constantly
updated datasets to adjust the estimations when needed.

The authors of [24] presented a multi-modal password strength estimator where they
combined unique techniques to exploit their advantages, thus overcoming the weaknesses
of each. The authors stated the necessity of designing a flexible estimator that could adapt
to the specification of each application environment, for example, how the language used
for password creation should modify the tool’s estimation. The concept of flexibility is
critical in their proposal, but they tackle it from the application’s perspective. On the other
hand, our proposal assumes that strength estimation should change as password creation
customs change.

There is a trend concerning the design of lightweight estimators that could be deployed
on light clients, such as that proposed in this paper. Such an example is presented in [25].
The authors proposed a light password strength estimator with an accuracy significantly
higher than popular tools such as the zxcvbn [23]. In addition, their tool is light at 33 KB
and as fast as 0.18 ms, making it suitable for light clients. This tool uses a method that
measures password strength by evaluating the similarity between a password and a stan-
dard strong password as selected by their methods. The work presented in [18] presented
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a neural-networks-based model that runs on JavaScript and is deployed on the clients’
side without substantially affecting the accuracy of their algorithm. Their approach shows
how researchers might decide to sacrifice accuracy when looking for lean implementations.
However, our approach does not sacrifice accuracy while maintaining a light footprint at
the running device, possible thanks to the microservice architecture design.

The adaptability of estimators is put to the test when different languages are used.
A particular study [26] showed the importance of adapting estimators to native languages,
as the authors demonstrated in South Africa. This adaptation is one of the critical reasons
behind the creation of our proposal, as language-adapted databases could improve the
tool’s accuracy. On the other hand, the work in [27] showed how demographics change
the password creation process. It is expected that users with less Internet use proficiency
might not be aware of the security issues derived from poor password creation. On the
contrary, Internet-savvy users might be more aware and willing to create stronger but easy-
to-remember passwords, thus creating different distributions that might change according
to age ranges. Other factors than age also influence demographics, thus creating different
password creation patterns. All of these factors highlight the importance of dynamically
updated databases. The authors of [28] addressed the language challenge to adapt zxcvbn
to Czech and Slovak languages. As a result of the adaptation, the estimation improved
against a set of leaked Czech passwords and improved the execution time. The authors
highlighted the importance of mixing existing English dictionaries with Czech dictionaries
to improve accuracy. These are examples of the importance of using adaptable datasets.
While traditional literature uses extensive datasets with more than 100 million passwords
to test against, such datasets are built using traditional English passwords, which might
decrease accuracy when tested against other languages such as Spanish.

3. PGaaS Architecture

This section presents our modular architecture for our proposed password guessability
service. The architecture’s objective is to offer a security service for password security
assessment that uses exchangeable components that can grow or change as the companies
using the architecture might need. To achieve this objective, we chose a cloud-based
infrastructure, given the multiple advantages the cloud offers, and the design offers the
functionality as a service, which is a well-used model nowadays on the Internet. First,
we describe the design principles behind the proposed architecture, its main components,
and finally, the interactions among the components.

3.1. Design Principles

The design principles behind the design of our architecture are based on the microser-
vice architecture principles [29,30]. The principles focus on achieving a set of predefined
goals for the enterprise. Microservices are lightweight and focused software services
deployed in the cloud that can be integrated to create new composing services [31]. The rea-
son for choosing microservices is that they facilitate many of the expectations of cloud
applications, which include elasticity, heterogeneity, and distribution. Some principles gov-
ern such applications, which help researchers design architectures that meet cloud-based
applications’ functional and non-functional requirements.

The principles are as follows:

• Architects should use fine-grained interfaces or, when possible, no interfaces. Fine-
grained interfaces focus on using the RESTful paradigm, usually through HTTP APIs.
The paradigm allows using HTTP as the communication protocol for exchanging
resources between service providers and users. When possible, automation should be
achieved to establish communication between services.

• Cloud-native application design principles (isolate state, distribution, elasticity, auto-
mated management, and loose coupling) [32]. These principles establish the goals for
keeping the cloud services as available as possible with the highest quality standards.
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All microservice architectures today rely on cloud deployments, thus demonstrating
the necessity of complying with typical cloud-oriented functional requirements.

• Architects should use multiple computing and storage paradigms. One of the key fea-
tures of cloud and microservices architectures is orchestrating the services to achieve
an easy configuration and management of many deployed services. Orchestrating ser-
vices is necessary when there are many heterogeneous paradigms available. However,
all the services running such paradigms must coincide with standards to exchange infor-
mation, such as using RESTful interfaces with HTTP and JSON protocols and notations.

• The architecture should guarantee lightweight deployment for easy reconfiguration.
Cloud applications use lightweight infrastructure such as containers instead of virtual
machines to achieve lightweight deployment. Such decisions allow easy reconfigura-
tion and fast deployment.

• Decentralized continuous delivery. Security as a service must offer functionality with
the highest levels of availability. In the particularity of our proposal, the absence of
a security validation service might create insecure user passwords for as long as the
service is not available. Thus, architects need to guarantee that this principle is applied
to their solution.

• Lean DevOps. By definition, DevOps is a set of standards, tools, and practices that com-
bines the software development steps with IT operations. The purpose is to decrease
the development life cycle and provide continuous delivery based on high quality [33].
Every cloud-based development should focus on making DevOps operations as light
as possible.

3.2. Architecture Components

The architecture is based on a cloud or edge-computing architecture and is shown in
Figure 1. The figure shows several layers that can be implemented in a distributed and
heterogeneous fashion. Architects could combine multiple cloud platforms and service
back-ends while combining them using typical service orchestration. An example of such
a tool is presented in [34]. The presented tool facilitates the creation of complex and
distributed microservice data flows in cloud services.

The main components of this architecture are listed below:

3.2.1. Load Balancer

The load balancer is a critical component of every cloud-based software architecture
that implements all the previously defined principles. The balancer attends and distributes
the service requests to one of the available API instances in the layer below. Typically,
balancers play the role of proxies to hide from the users the real distributed fashion of the
architecture. All layers below can be multiplied to achieve elasticity.

3.2.2. REST API

This component receives a request sent to the service and routes it to the handler
function to be further processed. Architects use REST technology to offer a standardized
interface mechanism for users to connect. The API relies on the HTTP protocol to expose
the functionality of the security service. The RESTful design takes each functionality and
offers it to the users as a resource available through independent endpoints built using
URLs. For example, using the POST command from HTTP connected to the appropriate
endpoint, users can send the created password and obtain the rank of the given password
as the response.
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Figure 1. Proposed architecture.

3.2.3. Password Guessability Estimator Service (PGES)

This component serves as an estimator to evaluate how guessable a given password
is. In particular, this component will estimate the rank of a given password in a long
list of passwords, i.e., a dictionary. In more detail, it provides a list of passwords in
decreasing order from the most easily guessable to the least, and a password; the service
will attempt to estimate the position of this given password within the given dictionary.
This component requires its list of passwords to be updated constantly, i.e., it needs an
updatable dictionary. This feature aims to make the guessability evaluations returned
by this component as accurate as possible. The Password Dataset Generator Component
performs these dictionary updates. In Section 4.2, we will expand on the rank estimator we
implemented and its inner workings.

3.2.4. Synthetic Dataset Generator Service

This component serves as a generator of lists of passwords. This component is also
offered as a service. The input of this service is the parameters to train a Generative
Adversary Network (GAN) to build sets of passwords that will serve as input for the PGES,
as explained above.

3.2.5. Database Service

The database service can be considered as a Dabatase as a Service (DBaaS), which
is the most practical and service-oriented approach to use in similar architectures [35].
The DBaaS allows the programmers to think less about the low-level details of the database
implementation, providing a technology-free interface to store and retrieve data. Architects
could define the interface to receive only name–value pairs or elaborated queries for the
storage and retrieval of information.

3.2.6. Cloud/Edge Service Architecture

This component represents the infrastructure of all the architecture components.
The most lightweight option for deploying services independently regardless of their
dependencies is by using containers [36]. Containers are a solution against the disadvan-
tages of using virtual machines, where the space and computational requirements in the
physical servers are heavy when the interest is to scale quickly and cheaply. The use of
containers allows for rapid service scalability as needed. Each container stores each of the
services depicted above independently, which means one service on its container. For ex-
ample, an architect might decide that the best database service is based on a previously
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configured database container with the secure configurations requested by the company
where the service is being deployed. Containers can quickly be turned on or off as needed,
and the specific characteristics of a peak in demand might imply that only containers for
some services are replicated, while others remain the same.

Orchestration tools manage the deployment of a typical container. Service orches-
tration enables the cloud service providers and application owners to execute a set of
operations for selecting, deploying, monitoring, and dynamically controlling the con-
figuration of the computational resources of any deployment [37]. Examples of such
tools are Kubernetes [38] and Docker Swarm [39]. Kubernetes is a tool itself, as it is a
container-orchestration system for automating the deployment, scaling, and management
of applications running on containers. On the other side, Docker Swarm is an option on the
Docker tool to allow managing and orchestrating sets of containers.

Another aspect of the architecture is that the design allows deployment in an edge
computing layer, usually designed for serving IoT devices. The edge is considered a
layer closer to the devices connected to the security service but not properly on the cloud.
The hardware configuration of systems that build the edge are usually resource-restrained
devices participating in the IoT network, but with links to the cloud where heavy resource-
oriented features and full-feature services are offered.

3.3. Components Interaction

The interaction of the components is guaranteed by one of the principles stated above,
which are the lean DevOps operations that any software team should apply today. Those
in charge of the different components should interact through tools and good practices
to maintain clean architecture deployment. Implementing all the other principles, such
as a lightweight deployment, is essential. The interaction is also guaranteed through a
standardized implementation of common microarchitecture principles, which call for a
loose connection between services and standard and light communication protocols.

The component interactions require a safe platform. Security as a service must rely on
a secure architecture to guarantee the availability and trustworthiness of what is offered.
From the cloud/edge architecture, it is possible to guarantee a secure deployment and
administration of the containers deploying the services that constitute the architecture.
The work presented in [40] for example, presents a secure container mechanism for Docker
that uses a software guard extension built into Intel CPUs, called Intel SGX. This mech-
anism aims to protect processes running on top of the containers from outside attacks.
The proposal has a small footprint on the running CPUs. There is a need for a secure
communication layer to ensure no outsiders can interfere from this layer up to the others.

4. Architecture Implementation

This section describes the implementation of the most relevant components of our
architecture. We first give details of the dataset generator component’s implementation
and then the password guessability estimator component.

4.1. Synthetic Dataset Generator Component

In order to compute a guessability measure for a given password, a dictionary of
passwords is needed, and it may vary following a password policy organized within an
organization. To obtain the password dictionaries, we leveraged PassGAN (GANs) [8],
which is a generative adversarial network able to generate passwords. These Generative
Adversary Networks (GAN) pose the training process as an adversarial game between
two networks: a generating network that generates samples and a discriminatory network
that tries to classify the samples as coming from the true distribution or the model distri-
bution. Every time the discriminator notices a difference between the two distributions,
the generator slightly adjusts its parameters to make it disappear, until in the end, in the-
ory, the generator exactly reproduces the true data distribution, and the discriminator is
randomly guessing, unable to find a difference [41].
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GAN networks are typically used for imaging, but PassGAN is designed to learn the
distribution of password information from filtered passwords, and generates passwords
without user intervention, the same as those used by people. PassGAN has an open-source
implementation, and researchers can experiment with it using various pre-trained models,
such as the famous RockYou dictionary, and thus generate sets of passwords. Likewise,
it can also be trained with its data set to generate them. This component may therefore
be configured to generate passwords similar to a password policy in an organization (i.e.,
context aware).

In our experiments, we use a dataset of filtered passwords. In particular, we use one
from LinkedIn and experiment with PassGAN to select passwords up to 17 characters long
and perform 100,000 iterations. The other parameters are left by default. Finally, once
PassGAN is trained, we can generate password dictionaries with the desired amount.

4.2. Password Guessability Estimator Component

This section describes how our Password Guessability Estimator Component is imple-
mented. We first describe the key estimation problem, which is the basis for implementing
this component, and then we focus on the rank estimation algorithm used in this component.

4.2.1. Key Enumeration and Key Rank Estimation Problem

Let K∗ = b0b1b2 . . . bW be a secret key. Assume it can be represented as a concate-
nation of N = W/w chunks, each on w bits, i.e., K∗ = K0

∗ ‖ K1
∗ ‖ . . . ‖ KN−1

∗ with
Ki
∗ = bi·wbi·w+1 . . . bi·w+(w−1) where 0 ≤ i < N . Let us assume there is an algorithm that

generates full candidates C for K∗, such that any full candidate C can also be represented as
a concatenation of chunks C = C0 ‖ C1 ‖ . . . ‖ CN−1. The method of maximum likelihood
(ML) estimation then suggests picking as C the value that maximizes ΠN−1

i=0 P(Ki
∗|Ci). There-

fore, we can constructN lists containing 2-tuples of the form (p, v), where p = P(Ki
∗|v) and

v ∈ {0, 1}w, by estimating P(Ki
∗|v) for each of at most 1 ≤ mi ≤ 2w candidate values v for

Ci [42].
Let Li = [Ci

0, Ci
1, . . . , Ci

mi−1] be the list of 2-tuples for chunk Ki
∗. To recover the secret

key K∗, we require efficient algorithms that traverse the lists Li to pick 2-tuples Ci
j and

then combine them to obtain full key candidates C in decreasing order based on their total
probabilities (the product of its chunk candidates probabilities). This problem has been
addressed previously in the side-channel analysis literature, with a variety of different
algorithms able to solve this problem and the related problem known as the key-rank
estimation [43–57]. We remark that each method of enumerating the full key candidates
defines a new variant of the key-enumeration problem [42] and that these variants arise in
many cryptographic contexts [58–63].

The key rank estimation problem, on the other hand, is defined as follows. Given
N sub-key spaces of sizes mi with their corresponding probability distributions P(Ki

∗|v)
sorted in non-increasing order of probabilities, a key K∗ = K0

∗ ‖ K1
∗ ‖ . . . ‖ KN−1

∗ and its
probability p∗ = ΠN−1

i=0 P(Ki
∗|Ci
∗), then the key rank estimation problem asks for estimating

the number of full key candidates with probability higher than p∗, when the probability of
a full key is defined as the product of its chunk key probabilities. The idea is to estimate
K∗’s rank, i.e., the position of the key K∗ in the list of ΠN−1

i=0 mi full key candidates when this
list is sorted in non-increasing probability order, from the most likely full candidate key to
the least likely [9,43–57].

Our password guessability estimator component, explained in more detail in
Section 4.2.2, will measure how guessable a given password is as its relative position
in a long list of passwords (dictionary) used on the training of the corresponding algorithm.
Note that this approach is a natural way to measure how guessable a given password is,
since password-cracking tools, such as John the Ripper [6], will attempt to brute force all
the passwords within a given dictionary constructed from common passwords, from the
most likely to the least.
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4.2.2. Guessability Problem

To measure how guessable a given password is, we first cast the guessability problem
as a key-rank estimation problem as proposed in [9], and then use a key-rank estimation
algorithm (ESrank) [64] to estimate the rank of the given password within a dictionary used
on training by the estimator algorithm. The idea is basically to construct probability spaces
as introduced in [9] and then estimate their probability distributions. Each probability
space is defined from a dimension over the set of passwords.

In particular, we use five probability spaces Pi, 1 ≤ i ≤ 5 with their corresponding
independent probability distribution Pi, 1 ≤ i ≤ 5 from a given dictionary [9]. In particular,
the following are the five dimensions defined over a given password: prefix, suffix, base
word, change pattern, and 133t transformation.

• A password prefix is a string that consists of all the digits and symbols preceding
the first letter (can be both lowercase and uppercase) found in the password when
reading it from left to right. For example, given the password 123@joseherediaxD, its
prefix will be 123@ since the first letter from left to right is j. If the first character of
a given password is a letter, its prefix is the empty string. For example, the prefix of
josedavid2009 is the empty string.

• A password suffix is a string that consists of all the digits and symbols to the right of
the first letter (can be both lowercase and uppercase) found in the password when
reading it from right to left. For example, given the password 123abc456, its suffix
will be 456 since the first letter found from right to left is c. If the last character of a
given password is a letter, its suffix is the empty string. For example, the suffix of
23josedavid is the empty string.

• A password base word is the sub-string derived from removing both the password
prefix and suffix. For example, if the password is hello12345, the base word is hello.
Note that if a password only consists of a sequence of letters, its base word is the
password itself.

• A password change pattern is defined as a list of positive and negative indexes
indicating the position of capital letters in the password base word. On the one hand,
the algorithm counts positive indices from the beginning of the base word, with a zero
for the position of the leftmost character. On the other hand, it counts the negative
indices from the end of the base word, with the value of −1 corresponding to the
rightmost character position. Both negative and positive indexes do not exceed the
median index (half of the length of the password base word) to avoid ambiguity.
For example, if the password base word is RealMadriD123, its change pattern is
[0, 4,−4].

• As observed by [22], people tend to mutate passwords using the l33t transformation.
A password l33t transformation replaces some characters for visually similar letters in
the password base word based on the correspondence defined in Table 1. This transfor-
mation is represented as a list of integers in increasing order. More specifically, given
the password base word, each occurrence of a character, as appears in Table 1, in the
base word is replaced with the corresponding replacement, and so the corresponding
integer is appended to the representation list. For example, given the password base
word g00dPa$w0rD, it is transformed to goodPasworD, and its representation list
is [1, 4].

The mutations shown in Table 1 were selected according to the previous work pre-
sented in [9]. In particular, its authors originally used these mutations to form the fifth
dimension (together with the other dimensions) for PesRank and showed that PesRank
performs and behaves accurately when compared with other password estimation meth-
ods (see Section 8 of [9]). Additionally, we note that two different base words may have the
same representation list. Essentially, the password l33t transformation defines an equiv-
alence relation in the set of base words. Hence, the probability distribution is computed
over the resulting equivalence classes.



Appl. Sci. 2022, 12, 1562 11 of 19

Table 1. Correspondence for a l33t transformation.

Character Replacement Integer Representation

0 o 1

1 i 12

! i 13

@ a 2

4 a 3

3 e 6

$ s 4

5 s 5

2 z 11

% x 14

7 t 10

+ t 9

9 g 8

6 g 7

Training Phase

Given a list of passwords D generated by the dataset generator component, it is
processed as follows [9].

1. From the dictionary D, five lists L1, L2, L3, L4, L5 are constructed. The list L1 contains
the prefixes from the passwords in D, L2 contains the corresponding lowercase,
l33t-transformed base words, L3 contains the corresponding suffixes, L4 contains
the corresponding list representations for the change patterns, and L5 contains the
corresponding list representations for the l33t transformations.

2. From each list Li, 1 ≤ i ≤ 5, we find the frequency of elements in the list and
compute a list Lp

i , having 2-tuple entries, where an entry is the form (p, v) with p
being a probability and v being a unique value. This list Lp

i essentially represents the
probability space Pi.

3. Each representation of Pi is stored persistently in an independent table of a database.
This approach allows sorting these data in non-increasing order according to the first
component, or querying them efficiently.

4. After computing the representations of each Pi, these representations, along with
other parameters, are used to initialize the rank estimator algorithm, ESRank, which
returns two lists that are stored persistently. These lists are then internally used by the
algorithm to evaluate a given password efficiently.

Since updated dictionaries may be generated by the dataset generator component
once in a while, our service has to update the inner workings of the key-rank algorithm by
running the training process described above. The running of this lengthy process may be
configurable as its running frequency does not overload our service.

Guessability Phase

To evaluate how guessable a given password is, the corresponding function first
decomposes it into the dimensions described above, which allows for the calculation of
each probability pi, 1 ≤ i ≤ 5 and so p∗ = p1 p2 p3 p4 p5. By calling the ESrank algorithm, it
finds an estimate of the password’s rank r in the dictionary used for training [9].

Once the rank r of a given password is estimated, we can calculate nbits = dlog2(r)e,
where nbits represents the level of security (strength) for the given password. That is,
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based on nbits we can then assign a security level to the given password, since guessing
the password would require a full enumeration of 2nbits password candidates in non-
increasing order of probability to find it based on the dictionary used for training [9].
Furthermore, based on nbits, some explainability may be added to the responses returned
to the users utilizing the service [21].

A desirable feature to add to this guessability phase is making this computation
privacy preserving. Since the input password is a sensitive piece of information, it should
be kept private from this component, i.e., a user may consider it desirable to compute the
strength of the given password without the cloud component learning the password itself.

After a user submits their password, it will be out of their control, so the trustwor-
thiness of the cloud servers plays a vital role in data security and privacy. Assuming the
cloud components are untrustworthy means the servers may either solve the computational
tasks incorrectly or learn what should not be known. Depending on the server’s behavior,
there are two adversarial models: the first is called the ‘honest-but-curious’ or ‘semi-honest’
model and the second is the ‘malicious’ model. In the honest-but-curious model, servers
perform the operations complying with the required computational processes, yet are still
curious about the sensitive data submitted by users. Apart from the curiosity of users’ data,
malicious servers may go against the requested computations and return incorrect results to
save their computing power or achieve other intentions for benefits. Hence, if we want the
guessability component to process the input passwords in the cloud and provide privacy
guarantees to users, this component will require implementing cryptographic techniques.
Such cryptographic approaches include homomorphic encryption or secure multiparty
computation techniques [65,66].

Instead, for concerned users, a simple approach to guarantee their data privacy is
to delegate this computation to their requesting client software application by providing
the respective option within it. If such an option is selected, the client application will
frequently download the lists returned by EsRank after each initialization (see Step 4) and
update previously stored lists (if any). When computing the strength of a given password,
the client application will run the corresponding algorithm with the recently downloaded
lists and the target password as input, so the passwords never leave the client application.

5. Evaluation

In this section, we present the results we obtained from tests we carried out to measure
the performance of some components of our service. In particular, we measured the
performance of the synthetic dataset component and the password guessability estimator
component. We ran our experiments on a PC with AMD Ryzen 5 2600X Six-Core Processor
(12 CPUs) at 3.6 GHz, RAM Memory of 16,384 MB RAM, and a Graphics Card NVIDIA
GeForce GTX 1060 6GB.

5.1. Synthetic Dataset Generator

This subsection is devoted to describing the tests we carried out for measuring the
performance of our synthetic dataset generator component.

5.1.1. Training Performance

Regarding this component’s training, we used a dataset of filtered passwords. In par-
ticular, we used one from LinkedIn [8,67], experimented with PassGAN to select passwords
up to 17 characters long, and performed 100,000 iterations. The other parameters were left
by default. We note that the training lasted for about five days. Finally, once PassGAN is
trained, we can use it to generate password dictionaries of the desired length.

5.1.2. Generation Performance

Because this component has to generate synthetic datasets as input to the password
guessability estimator component, we first measure its time to generate variable-length
datasets. Table 2 shows the generation time for variable-length datasets.
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Table 2. Generation time for various sets of passwords.

Number of Generated Passwords Generation Time in Seconds

10,000,000 277.98

20,000,000 538.62

30,000,000 810.47

40,000,000 1083.25

50,000,000 1343.49

60,000,000 1637.67

70,000,000 1911.35

80,000,000 2186.22

90,000,000 2450.27

100,000,000 2754.48

5.2. Password Guessability Estimator

This subsection is devoted to describing the tests we carried out for measuring the
performance of our password guessability estimator component.

5.3. Training Performance

It is possible to generate variable-length dictionaries containing variable-length pass-
words to exploit our synthetic dataset generator. We performed an experiment that con-
sisted of training our password guessability estimator component and PESrank’s [9] with
multiple datasets generated by our dataset generator, and then compared our component’s
training times with PESrank’s.

From Figures 2 and 3, we can see that our password guessability estimator component
has a better performance when compared with the PESRank implementation [9]. This
performance improvement is because the PESRank algorithm performs multiple operations
in memory through lists and accesses disk-to-handle text files, which causes a higher
degree of complexity than our estimator component, which uses operations directly with
the PostgresSQL databases, the queries of which are faster. Therefore, the execution time is
shorter. Note that Figures 2 and 3 are complementary, and both show that our component
is highly performant when training.

Figure 2. Our password guessability estimator component vs. PESRank (1 k–90 k). The x-axis
represents the number of passwords in the input dataset, while the y-axis represents time in seconds.
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Figure 3. Our password guessability estimator component vs. PESRank (100 k–1000 k). The x-axis
represents the number of passwords in the input dataset, while the y-axis represents time in seconds.

5.4. Evaluation Requests Performance

To test the performance of requests for evaluating the strength of a password, we
carried out an experiment that consisted of sending 1000 requests from a local requester
(co-located in the same network as the service) and from a remote requester (located on
the Internet). The results for both scenarios are shown in Figures 4 and 5, respectively.
These figures show the response time variability in seconds to local and remote requests,
highlighting that the service is highly performant. On the other hand, Figure 4 shows that
the service serves local requests in 0.088 s on average, with a variability of 0.008 s, and that
the request times are in the range [0.078, 0.22]. On the other hand, Figure 5 shows that the
service serves remote requests in 6.03 s on average, with a variability of 0.82 s, and that the
request times are in the range [3.72, 9.80].

Figure 4. Response time variability in seconds from requests by a local requester.
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Figure 5. Response time variability in seconds from requests by a remote requester.

5.5. Password Strength

Recent studies evaluated the strength of a password as the number of attempts an
attack would take to guess it. With this metric, a password with a strength 2nbits can be
considered as strong as a symmetric nbits-bit encryption key, since an attacker can guess
both with the same effort [68]. Based on this observation, a series of ranges were established
to determine the strength of a password. In particular, a password is considered very weak
if its strength in bits is less than 30 and very strong if its strength in bits is greater than 90.
In particular, Table 3 shows this classification.

Table 3. Classification of strength of a password.

Strength in Bits Classification

nbits ≤ 30 Very weak

30 < nbits ≤ 50 Weak

50 < nbits ≤ 70 Acceptable

70 < nbits ≤ 90 Strong

nbits > 90 Very Strong

Moreover, it is possible to express the time in years, months, days, hours, minutes,
and seconds that it would take an average computer to enumerate 2nbits passwords via a
brute-force attack. However, this is a machine-dependent measurement.

5.6. Results

Based on the API created in the Python programming language, a web and mobile
service was implemented that sends requests to the said API, and for which the response
expresses both the degree of strength of the password entered (as previously observed
in Table 3) and the time it would take an average computer to enumerate its number
of bits. The source code for the web implementation is available upon request. It was
possible to check the strength of a password based on X pre-trained passwords using
PassGAN. In turn, it could be observed that depending on the set of passwords (stored
in the Postgresql database) used as a training source for the model, a password that is
vulnerable under human logic and easy for the implemented algorithm is not necessarily
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so. That is why PassGAN is significant and represents a novelty compared with that
implemented in PESRank, since every particular time in days, the passwords used to train
the model are retrained, which improves the algorithm’s ability to identify passwords that
were previously undetected as easy to crack, thus ensuring better efficiency in detecting
vulnerable and non-vulnerable passwords. On the other hand, the efficiency of password
security detection improves as the set of passwords in the database increases. In turn, it is
observed that the lower the probability of each dimension of a given password, the greater
the number of bits necessary to enumerate it, and consequently, it is more secure.

Finally, the message displayed for each password is accompanied by the time it would
take for an average computer to enumerate the password using a brute-force attack, thus
allowing greater clarity regarding the security of the password entered.

6. Conclusions and Future Works

This paper presents a micro-service architecture that can offer an adaptable password
strength estimator through a Security as a Service model. The interested reader may browse
the source code of its implementation on Github [69]. The architecture as depicted adapts to
today’s requirements for cloud-based applications in terms of how scalable, heterogeneous
and modular they should be. Thus, this is the first password security level validation
offered as a cloud-based service to benefit from all the features and goals expected for cloud
applications. The model of offering an application as a service is becoming very popular
among cloud-based applications because it allows clients to use or pay for precisely the
amount of service required each month, which adapts usage and payments according to
what is necessary.

The proposal uses frequently updated datasets as input to the password validation
tool to better reflect tendencies in password creation, contrary to what password strength
estimators usually use. Training models on large datasets might not be possible on resource-
constrained devices. For example, on IoT networks, devices rely on edge computing
layers. These layers are composed of resource-constrained computers. Those devices
running on this layer might need to train and update trained models with a particular
frequency. The security-as-a-service model allows these devices to request parameters
from the database service, which will run on a dynamically updated dataset. Thanks
to the dynamic dataset, an adaptable password strength estimator is produced, which
architects could quickly tailor to different languages as needed. The literature has shown
the importance of adapting estimators to how different users from different populations
create passwords, whether because of language or demographics.

In terms of future works, we plan to evaluate the architecture on different cloud com-
puting configurations to measure how the platform could influence the tool’s performance.
This evaluation also includes escalating the architecture to a cluster deployment, where
different orchestration systems might influence future architecture design changes. The pur-
pose of these future evaluations is to test the architecture as the deployment escalates to a
distributed fashion to address a possible exponential increase in user requests.

Another future work is to engineer the guessability component to perform its compu-
tations privately in the cloud. We plan to research how to design and build this component
to be privacy preserving, and how to make it secure in the semi-honest model by em-
ploying cryptographic techniques, such as homomorphic encryption techniques or secure
multiparty computation techniques.
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