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Abstract: Changes in clouds can affect the outpower of photovoltaics (PVs). Ground-based cloud
images classification is an important prerequisite for PV power prediction. Due to the intra-class
difference and inter-class similarity of cloud images, the classical convolutional network is obviously
insufficient in distinguishing ability. In this paper, a classification method of ground-based cloud
images by improved combined convolutional network is proposed. To solve the problem of sub-
network overfitting caused by redundancy of pixel information, overlap pooling kernel is used
to enhance the elimination effect of information redundancy in the pooling layer. A new channel
attention module, ECA-WS (Efficient Channel Attention–Weight Sharing), is introduced to improve
the network’s ability to express channel information. The decision fusion algorithm is employed to
fuse the outputs of sub-networks with multi-scales. According to the number of cloud images in each
category, different weights are applied to the fusion results, which solves the problem of network
scale limitation and dataset imbalance. Experiments are carried out on the open MGCD dataset and
the self-built NRELCD dataset. The results show that the proposed model has significantly improved
the classification accuracy compared with the classical network and the latest algorithms.

Keywords: convolutional neural network; classification of ground-based cloud images; combined
convolutional network; overlap pooling; attention mechanism

1. Introduction

Affected by short-term weather changes, the output power of PV power generation
is easily fluctuated [1,2]. At present, the forecasting of PV power becomes an important
method to reduce the impact of power fluctuations. Through power forecasting, the power
sector can reasonably dispatch PV resources and reduce the impact of power fluctuations on
grid-connected PVs. Dissipation and aggregation of cloud clusters in a short period of time
are important factors that cause fluctuations in output power. Besides, solar irradiance is
affected directly by the different types of clouds [3]. Different types of clouds have different
characteristics, such as thickness, height, and sky coverage, which affect the magnitude of
solar radiation received by the ground. Therefore, classification of clouds is crucial for PV
power prediction.

There are various forms of clouds belonging to the same category, and different cate-
gories of clouds are also a transitional relationship, so they have greater similarity, which
brings great challenges to the classification of clouds. In the early days, machine learning
based classifiers were often used to classify cloud images. For example, Heinle et al. [4]
used the K-nearest neighbors to classify the cloud by extracting the spectral and texture fea-
tures of the cloud image. Kazantzidis et al. [5] introduced cloud classification by counting
the color and texture features of cloud images, and at the same time considered multi-modal
information as the input of the improved K-nearest neighbors classifier. Zhao et al. [6]
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proposed that the texture, local structure, and statistical feature were used as the input of
SVM and achieved an accuracy of 64.1% on the dataset of nine cloud categories.

With the continuous development of deep learning in recent years, the performance of
convolutional neural network (CNN) in the field of image classification has been greatly
improved. Because of better feature representation capabilities, CNN can mine more deep
semantic features from the image. Liu et al. [7] produced a MGCD dataset with 8000 ground-
based cloud images and corresponding meteorological data, yielding an accuracy as high as
87.9% with multi-modal fusion algorithm. Ye et al. [8] introduced a CNN to extract the fea-
tures of cloud images; fisher vector coding and SVM classifier are utilized for cloud images
classification. Zhang et al. [9] proposed a CloudNet model and obtained a high accuracy on
a self-built CCSN dataset containing 2543 cloud images. Huertas-Tato et al. [10] proposed
an ensemble learning algorithm to fuse the output probability vector of CNN and random
forest classifier to improve the classification accuracy. In [11], the network named MMFN
was proposed, which could learn extended cloud information by fusing heterogeneous
features in a unified framework. In [12], the task-based graph convolutional network was
introduced to obtain the correlation between cloud images, yielding an accuracy as high
as 89.48%.

There are many cloud image datasets available for reference in existing research. It can
be divided into satellite cloud images, part-sky ground-based cloud images, and all-sky
ground-based cloud images. There are many research methods for the classification of
satellite cloud images [13–16], and this classification is extremely effective for macro-level
meteorological analysis. However, satellite cloud images cover a large area and have few
local details. It is extremely difficult to analyze cloud clusters in a small patch of sky, which
makes it not widely used in the field of PV power generation. For the classification of
part-sky ground-based cloud images, there have also been many research methods [17–19].
However, part-sky ground-based cloud images have a small field of view and cannot meet
the large-scale PV power station requirements. The field of view of the all-sky ground-
based cloud images is generally 180°, which can capture most of the sky, as shown in
Figure 1. The collected cloud images have clear textures and rich structural features, which
are suitable for PV power stations of almost all sizes. However, there are still few studies
on this type of cloud images, and the amount of data in public datasets is also small.
In some existing studies, the accuracy of classification is low, which cannot well meet
the application in PV power generation. In response to the above problems, we made a
ground-based cloud images dataset with a larger amount of data and proposed a deep
learning-based ground-based cloud image classification method. The main contributions
are shown as follows:

(1) By collecting historical cloud images data published by the National Renewable
Energy Laboratory (NREL) on the US Measurement and Instrument Data Center (MIDC)
website, a ground-based cloud images dataset NRELCD (NREL Cloud Dataset) is con-
structed. The dataset contains 15,450 cloud images and is divided into 7 categories.

(2) A novel ground-based cloud images classification method by improved combined
neural network is proposed; overlap pooling kernels are used in the sub-network to
improve the effect of eliminating information redundancy and reduce the risk of overfitting.
The improved channel attention module ECA-WS is introduced after the pooling layer,
which further enhances the sub-network’s ability to express channel characteristics. The
synchronization of parameter optimization among sub-networks is realized by improving
the sub-networks. The decision fusion algorithm is used to weight the output of the two
sub-networks in the combined network to improve the classification accuracy significantly.
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Figure 1. Ground-based cloud images.

The rest of this paper is organized as follows: Section 2 briefly introduces some related
work; Section 3 describes a novel ground-based cloud images classification method based
on improved combined neural network; and Section 4 presents experimental results and
some discussion. At the end of this paper, some remarking points are given in Section 5.

2. Related Work
2.1. Deep Feature Extraction Network

ResNet50 [20] and VGG16 [21] deep convolutional neural networks are introduced
to obtain more deep features. ResNet50 is composed of multiple residual blocks, and
each residual block added a direct connection channel. The residual learning algorithm
can reduce the loss of information when the feature is propagated to the deeper network.
VGG16 replaces a larger size convolution kernel by stacking multiple 3 × 3 size convolution
kernels, which ensures that the network can learn more complex nonlinear mapping modes
while obtaining the same receptive field.

2.2. ECA Attention Mechanism

The attention mechanism can redistribute the originally evenly allocated resources
according to the importance of the objects. The contrast between different features is
enhanced and useful features are more prominent. Many attention mechanisms such as
MAT [22], IHSM&EFRM [23], CBAM [24], SE [25], and ECA [26] have been applied in
various visual tasks. MAT module consists of a soft attention unit and an attention transition
unit, which allows the transition of attentive motion features to enhance appearance
learning at each convolution stage and enrich spatio-temporal object features. This module
is of great value in video analysis tasks. IHSM&EFRM are used in the human–object
interaction detection task, and they enhance the expression of human and object features,
respectively. CBAM module includes channel and space dual attention, which improves
the feature extraction ability of the network in multi-dimensions. SE module uses squeeze-
and-excitation to learn the relationship among each channel and assign different weights
to different channels. Though dimensionality reduction can reduce model complexity, it
destroys the direct correspondence between channel and its weight. ECA module proposes
a local cross-channel interaction strategy without dimensionality reduction based on the
SE. This method can adaptively select the size of the 1D convolution kernel.

The ECA module is shown in Figure 2, where X and X′ represent input and output
feature maps, and w, h, c represent their width, height, and channel dimensions, respectively.
As shown in Equation (1), after using global average pooling (GAP) on the input feature
map X, a channel coding vector γgap with a size of 1× 1× c is obtained.

γgap =
1

wh

w,h

∑
i=1, j=1

Xij·, X ∈ Rw×h×c, (1)

ηgap = σ(Vgap
k γgap), Vgap

k ∈ Rc×c, (2)
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Figure 2. ECA attention module.

As shown in Equation (3), where Vgap
k is a band weight matrix. The channel weight

vector ηgap can be obtained after normalization by the σ (sigmoid) function. The k can be
adaptively calculated according to

k = ψ(c) = |
log2(c)

y
+

b
y
|odd, (3)

ψ(·) indicates the mapping relationship between c and k. | · |odd indicates the nearest odd
number. y and b are custom mapping parameters, here 2 and 1. The feature vector obtained
after 1D convolution still maintains its original dimension.

2.3. Decision Fusion

Different networks have different classification probability for the same sample, which
is embodied in the output vector of the network. When the output probabilities of each
category are close to equal, it can be considered that the corresponding network hardly
makes a positive judgment on the sample [27]. If multiple networks are used to make joint
decisions, the probability of the sample being correctly classified will greatly increase, as
shown in Figure 3.

Figure 3. Multiple network fusion decision. When the probabilities of different categories are nearly
equal, use a smaller value to multiply the vector. Otherwise, use a larger value to multiply the vector.

3. Our Proposed Methods

The model consists of four parts, which are deep feature combined network, overlap
pooling, improved ECA module, and decision fusion. The specific structure of the model is
shown in Figure 4.
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Figure 4. Classification network model of ground-based cloud images.

3.1. Combined Network

The existing ground-based cloud images classification is usually based on a single
channel network. However, there are limitations on performance of feature extract. At the
same time, there is no such requirement as real-time for the classification of ground-based
cloud images in PV power prediction. Therefore, in order to improve the classification
accuracy, a combined network is used to improve the ability of the model for feature
extraction. Here, ResNet50 and VGG16 networks are used to extract the depth and width
feature of images. ResNet50 can extract more deep semantic features in ground-based
cloud images because of its depth advantages. However, the network scales four times
the width and height dimension of the first convolutional layer, resulting in the loss of
some image features during subsequent convolutions. The first-stage convolutional layer
of VGG16 can perform feature extraction at the input dimension, so the feature extraction
advantage on the width and height dimension is more obvious.

In our experiments, we found that the results of ResNet50 tend to be stable when
training on a dataset with less data, while VGG16 undergoes overfitting, which degrades
the accuracy. Such results are unfavorable for decision fusion, and the decision fusion
algorithm can only perform its best when the performance between sub-networks is close to
the same. In this regard, we improve the pooling layer structure and the ECA-Pro module
to ensure that the accuracy of VGG16 will not be degraded.

3.2. Overlap Pooling

Most of the clouds in the ground-based cloud images are grayish-white, and the back-
ground sky shows a uniform blue color. This results in a high degree of similarity between
adjacent pixels of the image. This similarity leads to a higher information redundancy in
ground-based cloud images compared to other images and also makes the VGG16 network
more prone to overfitting. The network parameter quantity and overfitting caused by the
image information redundancy can be reduced through the feature map pooling. How-
ever, the 2 × 2 pooling kernels cannot significantly improve the down-sampling quality of
high-redundancy images.

As shown in Figure 5, a pooling kernel of size 3 × 3 is used instead of the original
pooling kernel. The redundancy of features can be eliminated while the common features
of adjacent receptive fields will be extracted. The pooling step is set to 2, which makes
the pooling kernels overlap each other and adjacent receptive fields overlap each other as
well. At the same time, the feature correlation and the overfitting suppression ability of the
network are promoted.
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Figure 5. 3 × 3 overlap pooling kernel.

3.3. Improved ECA

Referring to the ground-based cloud image sample in Figure 1, due to the all-sky
imager being utilized to acquire the image, only the inscribed circular part of the image
is the effective area, and the surrounding four corners are invalid black pixels. Therefore,
although GAP has strong noise suppression capabilities, it still does not work well for the
special images. To avoid the above-mentioned problems, global max pooling (GMP) is used
to prevent the introduction of invalid parts in the feature calculation, which improves the
ability of channel feature extraction to a certain extent. The GMP is shown in Equation (5)

γgmp = max
i∈[1,w]
j∈[1,h]

(Xij·), X ∈ Rw×h×c, (4)

Like global average pooling, the vector γgmp is multiplied by the band weight matrix
Vgmp

k . The output obtained is the channel weight vector ηgmp

ηgmp = σ(Vgmp
k γgmp), Vgmp

k ∈ Rc×c, (5)

Then, the ECA attention module is spliced with the pooling layer, GAP and GMP are
employed to jointly extract the global features of X. It should be noted that GAP and GMP
are used here in parallel to aggregate the spatial information of the two feature maps. If
GAP is executed before GMP, then after the GMP operation, all the values less than the
maximum value in the feature map will be discarded, and this is the useful information
processed by GAP.

X′ = σ(ηgap + ηgmp)X, ηgap ∈ R1×1×c, ηgmp ∈ R1×1×c, (6)

where X′ represents the output of the entire attention module.
In the ECA module, there are two combinations of GAP and GMP. As illustrated

in Figure 6a,b, we named them the weight sharing method (ECA-WS) and the weight
independent method (ECA-WI), respectively.
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(a) (b)

Figure 6. Improved ECA. (a) GAP share weights with GMP (ECA-WS); (b) GAP and GMP weight
independent (ECA-WI).

In ECA-WS, GMP uses the same band weight matrix with GAP, that is, vgap
k = vgmp

k .
It hardly increases the parameters of the ECA module but improves the feature extraction
capability of the module. In ECA-WI, GMP uses the different band weight matrix with GAP,
that is, vgap

k 6= vgmp
k . However, this method not only increases the network parameters but

also reduces the correlation between the two global pooling. This may lead to the instability
of the combined network performance, which is also proved by comparative experiments.
Therefore, ECA-WS attention mechanism is used to improve the characterization ability of
the channel characteristics of the VGG16 sub-network after each stage of pooling.

3.4. Decision Fusion

Considering the significant effects of fusion of multiple networks on the improvement
of classification performance, a weighted algorithm is introduced to fuse the output results
of the two sub-networks.

Details of the algorithm are shown as follows,

li = σ(xi) =
1

1 + e−xi
, i ∈ [1, 2], (7)

first, the σ function is used to normalize each network output values. Where xi indicates
the output vector of the i-th sub-network.

The normalized probability distribution is expressed as

Pi =
lim

∑n
j=1 lij

,
{

m ∈ [1, n]
i ∈ [1, 2]

, (8)

where Pi is the probability vector output by the network, lim is the value of the m-th
category, and n indicates the number of cloud image categories.

The output probability matrix of the transformed combined network is expressed as

P =

[
P1

P2

]
, (9)

Subsequently, the information entropy Hi of the probability distribution of each net-
work output is

Hi = −
n

∑
j=1

Pij log2 Pij, i ∈ [1, 2], (10)
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The greater information entropy, the greater uncertainty of the network prediction
results and the higher probability of being misdiagnosed. Therefore, a lower weight should
be assigned. The weight whi of sub-network is given as follows

whi =
e−Hi

∑n
k=1 e−Hk

, i ∈ [1, 2], (11)

The weight wcm of each category according to the number of samples of different
categories is defined as follows

wcm =
1− Nm

Ntotal

∑n
j=1(1−

Nj
Ntotal

)
,
{

m ∈ [1, n]
i ∈ [1, 2]

, (12)

where Nm represents the number of samples in the m-th category and Ntotal represents the
total number of samples.

Multiply the sub-network weight wci and category weight wci with the original output
vector x. The weighted matrix W of the combined network is written as

W =

[
wh1wc1x11 wh1wc2x12 · · ·wh1wcnx1n

wh2wc1x21 wh2wc2x22 · · ·wh2wcnx2n

]
, (13)

Add W in rows,

W ′ =

[
2

∑
i=1

whiwc1xi1,
2

∑
i=1

whiwc2xi2, · · · ,
2

∑
i=1

whiwcnxin

]
, (14)

Take the maximum index of the column to be the final classification decision result,

lable = arg max(W ′). (15)

4. Result and Discussion
4.1. Dataset for Classification

The NRELCD and the MGCD dataset are used to prove the effectiveness of the method
in this paper. The NRELCD dataset comes from the historical ground-based cloud images
published by the National Renewable Energy Laboratory (NREL) in the United States. The
image size is 1024 × 1024 pixels and the collection period is from 2018 to 2020. We screened
15,450 images with distinct category characteristics and analyzed the effect of each category
on solar radiation attenuation to produce a dataset specific to the PV power sector.

The amount of solar radiation received by the PV panels is a direct factor affecting
the power generated by PV. According to the method described in the literature [28], we
collected the all-day radiation for days when there was only one cloud genus in the sky
and also for the nearest cloudless day to that day. As shown in Figure 7, the two data are
compared to see the effect of each cloud category on the solar radiation attenuation. Nearly
similar cloud types are combined according to the degree of attenuation of solar radiation
by each type of clouds. Cloud categorization is not as clear as other categorization tasks.
Clouds are sometimes in a transitional state and their classification is highly controversial.
We did not use those transition state cloud images as part of the dataset but instead forced
them to be classified in a practical application using a trained classifier. Since the cloud
images in the NRELCD have continuity in time, the adjacent images are relatively similar.
Random distribution of the dataset to the training set and the test set will cause the accuracy
to be high, which is not in line with the actual situation. Therefore, the first 70% of the
dataset is used as the training set and the rest as the test set according to the acquisition time.
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Figure 7. Effect of different cloud genera on solar radiation attenuation. Altocumulus and Cirrocu-
mulus are infrequent, we have boxed the time of occurrence in red.

Different categories of clouds have different probabilities of occurring in different
regions. In order to adapt the power prediction to the real environment, there are different
cloud classification criteria. We try to test the classification ability of the model under
different cloud classification criterias with two datasets with different categories. The
MGCD dataset [7] also includes 7 categories, with a total of 8000 ground-based cloud
images, each of which corresponds to 4 modals of weather data. The data format of
cloud images is JPEG, and the size is 1024 × 1024 pixels. The training set and the test set
contain 4000 cloud image samples, respectively. We only use cloud image samples in the
dataset for experiments. Mixed clouds in the MGCD dataset are composed of multiple
categories of clouds. Objectively speaking, these combinations have different effects on
solar radiation, so putting mixed clouds into one category is not reasonable in practice, but
this classification criterion is informative for testing model performance. Table 1 shows the
number of samples in each dataset, while Figures 8 and 9, respectively, listed the cloud
samples of the two datasets.
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Table 1. Ground-based cloud images dataset.

NRELCD MGCD

Type
(ABBR.) Train Test Quantity Type

(ABBR.) Train Test Quantity

Cirrus and Cirrostratus
(Ci and Cs) 1673 716 2389

Cumulus
(Cu) 690 748 1438

Altocumulus and Cirrocumulus
(Ac and Cc) 876 376 1252

Altocumulus and Cirrocumulus
(Ac and Cc) 400 331 731

Altostratus and Stratus
(As and St) 1534 658 2192

Cirrus and Cirrostratus
(Ci and Cs) 650 673 1323

Stratocumulus
(Sc) 1362 585 1947

Clear sky
(Clear sky) 650 688 1338

Cumulus
(Cu) 1410 605 2015

Stratocumulus, Altostratus and Stratus
(Sc, St and As) 500 463 963

Cumulonimbus
(Cb) 1293 555 1848

Cumulonimbus and Nimbostratus
(Cb and Ns) 600 587 1187

Nimbostratus
(Ns) 2652 1155 3807

Mixed
(Mixed) 510 510 1020

Total 10,800 4650 15,450 Total 4000 4000 8000

(a) (b) (c) (d) (e) (f) (g)

Figure 8. NRELCD dataset. (a) Ci and Cs; (b) Ac and Cc; (c) As and St; (d) Sc; (e) Cu; (f) Cb; (g) Ns.
Considering that there are extremely high structural similarities between certain types of clouds, this will
make their impact on PV power generation very similar or almost the same. Some changes are made
to the International Meteorological Organization’s cloud classification standards. The main work is to
combine the original cirrus and cirrostratus, altocumulus and cirrocumulus, and altostratus and stratus.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. MGCD dataset. (a) Cu; (b) Ac and Cc; (c) Ci and Cs; (d) clear sky; (e) Sc, St and As; (f) Cb and
Ns; (g) mixed. This dataset combines altocumulus and cirrocumulus, cirrocumulus and cirrostratus,
stratocumulus and stratus and altostratus, and cumulonimbus and nimbostratus, respectively.
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4.2. Experimental Setup

In the experiment, the Ubuntu 18.04 operating system with 128 G of running memory
and an RTX3090 graphics card with 24 G of video memory are implemented. The deep
learning framework is Pytorch1.7.1, and the CUDA version is 11.1.

Data augmentation on the cloud images were performed to increase the noise of the
dataset and the robustness of the model. The operations included (1) random horizontal
flip, (2) vertical flip, (3) grayscale with a probability of 50%, (4) random rotation of 45°, and
(5) random change of brightness, contrast, saturation, and hue. The input cloud images’
size was adjusted to 224 × 224 pixels, and transfer learning was used to train these cloud
images. The learning rate of two sub-networks is fixed to 0.000001, and the Adam optimizer
is used to optimize the gradient operation. The batch size of training and testing are both
set to 50. The epoch of the NRELCD dataset was set to 200, and the epoch of the MGCD
dataset was set to 100.

4.3. Ablation Experiment

Ablation experiments are used to compare several improved methods proposed in
this paper. The results are listed in Table 2. Where CN is combined network, OP is overlap
pooling, ICN is improved combined network we proposed, CC is the number of correct
classifications, P is average accuracy, R is average recall, F1 is average F1-score, Acc is
overall classification accuracy, and K (Kappa) is consistency index.

Table 2. Ablation experiment.

Method
MGCD/4000 Test Samples NRELCD/4650 Test Samples

CC P R F1 Acc K CC P R F1 Acc K

ResNet50 3522 85.67% 86.12% 85.69% 88.05% 0.8593 4373 93.33% 93.12% 93.12% 94.04% 0.9291
VGG16 3488 84.77% 84.86% 84.76% 87.20% 0.8492 4378 93.40% 93.30% 93.27% 94.15% 0.9304

CN 3551 86.23% 87.02% 86.53% 88.78% 0.8679 4411 94.17% 94.23% 94.17% 94.86% 0.9389
CN + OP 3557 86.77% 86.87% 86.69% 88.93% 0.8696 4436 94.88% 94.67% 94.77% 95.40% 0.9453

CN + OP + ECA 3585 87.59% 87.91% 87.55% 89.63% 0.878 4440 94.91% 94.79% 94.84% 95.55% 0.9471
ICN 3603 88.09% 88.15% 87.85% 90.08% 0.8834 4445 95.11% 94.93% 95.01% 95.60% 0.9477

Table 2 illustrates the performance of the model at various stages from the basic
structure to the final structure. In the ICN model, accuracy of the MGCD dataset is increased
by 2.03% and 2.88%, respectively, compared with the sub-networks ResNet50 and VGG16,
while the accuracy of the NRELCD dataset is increased by 1.56% and 1.45%, respectively.
Figure 10 is the accuracy curve of the model on different datasets as the epoch increases.
As shown in Figure 9a, VGG16 produces overfitting in training on MGCD dataset. At this
time, the parameters of the ResNet50 are still being further optimized. The overfitting
phenomenon is suppressed effectively on improved VGG16(VGG16 + OP + ECA-WS), and
the parameter optimization of the two sub-networks is close to synchronization, which
provides a good prerequisite for decision fusion. As illustrated in Figure 10b, improved
VGG16 is better than VGG16 in performance on the NRELCD dataset with a larger scale.
The optimization process of the two sub-networks is also almost synchronized in time.
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(a) (b)

Figure 10. Experimental results of different datasets. (a) Accuracy of MGCD, (b) accuracy
of NRELCD.

4.4. Overlap Pooling Experiment

To verify the effect of overlap pooling, the pooling kernels in the VGG16 were changed
to 2× 2, 3× 3, 4× 4, and 5× 5.

In Figure 11, it can be seen that the 3 × 3 overlap pooling kernel has the highest
accuracy on the two datasets. The main reason is that the 3× 3 overlap pooling kernel has
a greater ability to eliminate the redundancy of image feature information than the 2× 2
pooling kernel while retaining useful information. At the same time, a larger kernel may
reduce information redundancy while causing more useful information to be lost in the
pooling process, thereby affecting the overall performance of the network.

Figure 11. Variation of classification accuracy with respect to the kernel size.

4.5. Attention Mechanism Experiment

To verify the role of the attention mechanism, GRAD-CAM [29] is used to visualize the
VGG16, VGG16 and ECA, and VGG16 and ECA-WS. A piece of ground-based cloud image
is randomly selected from different categories. The results are shown in Figures 12 and 13.
Network’s attention to the cloud area can be increased significantly by embedding the
ECA attention mechanism into the VGG16 network. However, sometimes it can only focus
on part of the cloud or focus part of the attention on the sky background. The ECA-WS
attention mechanism we proposed can focus attention on image areas with more inter-class
differences, which improves the classification ability of the network.



Appl. Sci. 2022, 12, 1570 13 of 16

Figure 12. MGCD category heat maps.

Figure 13. NRELCD category heat maps.

Different attention mechanisms are used for comparative experiments, and the results
are listed in Table 3, where backbone is combined network with improved pooling layer.
CBAM module, SE module, ECA module, ECA-WI module, and ECA-WS module are
introduced, respectively, based on backbone.

Table 3. Comparative result of attention mechanisms.

Attention Mechanisms MGCD NRELCD

Backbone + CBAM 88.95% 94.51%
Backbone + SE 89.51% 95.30%

Backbone + ECA 89.63% 95.55%
Backbone + ECA-WI 89.53% 95.55%
Backbone + ECA-WS 90.08% 95.60%

In Table 3, the ECA-WS module has the best performance on improving the accuracy
of network classification than other attention modules. However, the ECA-WI cannot
improve the performance of the module and may even lead to a decrease.
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4.6. Classification Method Experiment

From Table 4, the performance of method [4] based on texture or spectral feature on
the two datasets is worse deep learning. Cloud images have more texture features and deep
semantic features than other images, and only by acquiring more image features can we
satisfy the classification needs of such images. In recent years, CNN has been widely used
in ground-based cloud images classification tasks, thanks to its powerful feature extraction
capabilities. Method [9] has shown good results on both datasets. Methods [7,11] fuse
multimodal meteorological data and CNN, and achieved accuracy rates of 87.90% and
88.63%, respectively.

While good classification accuracy is achieved on other classic CNN models, the
one that achieved the highest on our model had accuracy of the MGCD dataset that
reached 90.08% and of the NREL dataset, it reached 95.60%. The combined network greatly
optimizes the probability distribution of the classification output vector. By comparing with
the latest algorithms and single network, the results show that the method in this paper
has a greater improvement in classification accuracy, and it also proves the generalization
ability of the method. For ground-based cloud images collected in different regions, the
model has strong robustness, which will play a positive role in the field of PV power
generation forecasting.

Table 4. Comparative experiment of classification methods.

Methods MGCD NRELCD

Method [4] 68.90% 75.61%
Method [9] 81.14% 92.17%
Method [7] 87.90% -
Method [11] 88.63% -
ResNet50 88.05% 94.04%
VGG16 87.20% 94.15%
GoogleNet 87.53% 93.54%
Inception_v3 88.32% 94.20%
MobileNet_v2 86.92% 93.73%
Ours 90.08% 95.60%

Note. References [7,11] use the meteorological data in MGCD, and NRELCD does not contain meteorological data.

5. Conclusions

In this paper, a combined network-based ground-based cloud images classification
method is proposed. Specifically, the ResNet50 and VGG16 networks are combined using
decision fusion algorithm, which uses dual weights to weight the output of the sub-
network. In addition, to optimize the parameters of the two sub-networks to approach
synchronization, overlap pooling is used to replace the original VGG16 pooling layer.
At the same time, the ECA-WS module is embedded after the pooling layer to improve
the cross-channel interaction capability of the network. We constructed the NRELCD
dataset that meets the actual application scenarios and used the MGCD dataset to verify
the advanced nature of the network model.

At present, our classification of clouds is only based on image features. In reality, there
are many physical characteristics that can provide a basis for cloud classification, such as
height, thickness, and speed. In the future, we will consider using these parameters in
classification research to improve the performance of the model.
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